1
|
Charles MA, Johnson IT, Belshaw NJ. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro. Epigenetics 2012; 7:689-94. [PMID: 22617627 DOI: 10.4161/epi.20461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.
Collapse
|
2
|
hGH-V gene expression and promoter activity under glucose and 5-azacytidine (5azaC) effects. Gene 2010; 452:7-15. [DOI: 10.1016/j.gene.2009.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 11/19/2022]
|
3
|
Rood BR, Zhang H, Cogen PH. Intercellular heterogeneity of expression of the MGMT DNA repair gene in pediatric medulloblastoma. Neuro Oncol 2004; 6:200-7. [PMID: 15279712 PMCID: PMC1872000 DOI: 10.1215/s1152851703000565] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA methylation and epigenetic inactivation of the O6-methylguanine methyltransferase (MGMT) gene induces MGMT deficiency, reducing the tumor cell's DNA repair capacity and increasing its susceptibility to alkylating chemotherapeutic agents. Consequently, adult patients whose tumors are deficient in MGMT have better outcomes with alkylator chemotherapy, and MGMT methylation has been proposed as a screening marker of deficient tumors. In order to test the feasibility of this approach for medulloblastoma, a common brain tumor in children, we determined the methylation status, mRNA expression pattern, and protein expression of MGMT in a panel of clinical specimens. Methylation-specific polymerase chain reaction analysis revealed methylation of MGMT in 28 of 37 tumor samples. Quantitative real-time reverse transcriptase-polymerase chain reaction showed a range of expression of MGMT mRNA varying more than 20-fold. However, there was no correlation found between MGMT methylation and mRNA expression. Immunohistochemistry demonstrated that all tumors were immunoreactive for MGMT in the nucleus of the medulloblastoma cells in a heterogeneous pattern. The intercell variability of MGMT complement explained the discordance between methylation and expression. Therefore, MGMT methylation as determined by methylation-specific polymerase chain reaction cannot be used as a marker for MGMT deficiency in medulloblastoma. Further, these findings support the use of pharmacological MGMT depletion as a rational approach for intensification of alkylator chemotherapy in the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Brian R Rood
- Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | |
Collapse
|
4
|
Niculescu MD, Yamamuro Y, Zeisel SH. Choline availability modulates human neuroblastoma cell proliferation and alters the methylation of the promoter region of the cyclin-dependent kinase inhibitor 3 gene. J Neurochem 2004; 89:1252-9. [PMID: 15147518 PMCID: PMC1592524 DOI: 10.1111/j.1471-4159.2004.02414.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Choline is an important methyl donor and a component of membrane phospholipids. In this study, we tested the hypothesis that choline availability can modulate cell proliferation and the methylation of genes that regulate cell cycling. In several other model systems, hypomethylation of cytosine bases that are followed by a guanosine (CpG) sites in the promoter region of a gene is associated with increased gene expression. We found that in choline-deficient IMR-32 neuroblastoma cells, the promoter of the cyclin-dependent kinase inhibitor 3 gene (CDKN3) was hypomethylated. This change was associated with increased expression of CDKN3 and increased levels of its gene product, kinase-associated phosphatase (KAP), which inhibits the G(1)/S transition of the cell cycle by dephosphorylating cyclin-dependent kinases. Choline deficiency also reduced global DNA methylation. The percentage of cells that accumulated bromodeoxyuridine (proportional to cell proliferation) was 1.8 times lower in the choline-deficient cells than in the control cells. Phosphorylated retinoblastoma (p110) levels were 3 times lower in the choline-deficient cells than in control cells. These findings suggest that the mechanism whereby choline deficiency inhibits cell proliferation involves hypomethylation of key genes regulating cell cycling. This may be a mechanism for our previously reported observation that stem cell proliferation in hippocampus neuroepithelium is decreased in choline-deficient rat and mouse fetuses.
Collapse
Affiliation(s)
- Mihai D. Niculescu
- Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Yutaka Yamamuro
- Department of Animal Science, Nihon University, Fujisawa, Kanagawa, Japan
| | - Steven H. Zeisel
- Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
- Address correspondence and reprint requests to Steven H. Zeisel, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, 2212 McGavran-Greenberg Hall, CB# 7461, Chapel Hill, NC 27599–7461, USA. E-mail:
| |
Collapse
|
5
|
Wong WK, Chen K, Shih JC. Decreased methylation and transcription repressor Sp3 up-regulated human monoamine oxidase (MAO) B expression during Caco-2 differentiation. J Biol Chem 2003; 278:36227-35. [PMID: 12855685 DOI: 10.1074/jbc.m305549200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Monoamine oxidase (MAO) A and B catalyze the oxidative deamination of neuroactive and dietary monoamines such as serotonin, tyramine, and phenylethylamine. Here we show that MAO B, but not MAO A, gene expression was induced during Caco-2 cell differentiation; thus this cell line was used as a model system to study the gene regulation unique for MAO B. Luciferase and gel shift assays showed that transcription factors Sp1 and Sp3 binding to -246 and -99 bp were responsible for the observed gene activation. Overexpression of Sp3 inhibited the induction of MAO B gene by Sp1, and the expression of Sp3 was decreased during Caco-2 cell differentiation. Computer analysis revealed a putative CpG island containing 22 potential CpG methylation sites between -261 and -58 bp. In vitro methylation of MAO B promoter with 5-aza-2'-deoxycytidine, a DNA methyltransferase inhibitor, up-regulated MAO B gene expression in both HeLa and Caco-2 cells. Sodium bisulfite sequencing showed a gradually reduced methylation of the CpG sites during Caco-2 cell differentiation. These results suggested that MAO B gene expression is selectively induced by a decreased Sp3/Sp1 ratio and reduced DNA methylation. This new information may provide insights on the tissue-specific expression of these two isoenzymes.
Collapse
Affiliation(s)
- Wai K Wong
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
6
|
Baqir S, Smith LC. Growth RestrictedIn VitroCulture Conditions Alter the Imprinted Gene Expression Patterns of Mouse Embryonic Stem Cells. CLONING AND STEM CELLS 2003; 5:199-212. [PMID: 14588138 DOI: 10.1089/153623003769645866] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Embryonic stem (ES) cell-derived clones and chimeras are often associated with growth abnormalities during fetal development, leading to the production of over/under-weight offspring that show elevated neonatal mortality and morbidity. Due to the role played by imprinted genes in controlling fetal growth, much of the blame is pointed at improper epigenetic reprogramming of cells used in the procedures. We have analyzed the expression pattern of two growth regulatory imprinted genes, namely insulin like growth factor II (Igf2) and H19, in mouse ES cells cultured under growth restricted conditions and after in vitro aging. Culture of cells with serum-depleted media (starvation) and at high cell density (confluence) increased the expression of both imprinted genes and led to aberrant methylation profiles of differentially methylated regions in key regulatory sites of Igf2 and H19. These findings confirm that growth constrained cultures of ES cells are associated with alterations to methylation of the regulatory domains and the expression patterns of imprinted genes, suggesting a possible role of epigenetic factors in the loss of developmental potential.
Collapse
Affiliation(s)
- Senan Baqir
- CRRA, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada
| | | |
Collapse
|
7
|
Abstract
Hypermethylation of CpG islands, an epigenetic event that is not accompanied by changes in DNA sequence, represents an alternative mechanism to deletions or mutations to inactivate tumor suppressor genes. Recent evidence supports the notion that CpG island hypermethylation, by silencing key cancer-related genes, plays a major causal role in cancer. However, a long-standing issue in the field is the sequence of molecular events leading to epigenetic gene silencing. A new model has been proposed that chromatin remodeling, as a result of histone deacetylation and methylation, is the primary event in abrogating transcriptional initiation; subsequently, CpG island hypermethylation establishes a permanent state of gene silencing. Accumulating evidence indicates that CpG island hypermethylation is an early event in cancer development and, in some cases, may precede the neoplastic process. Because of their heritable nature, hypermethylated CpG islands leave 'molecular footprints' in evolving cancer cells and can be used as molecular markers to reconstruct epigenetic progression during tumorigenesis. Furthermore, hypermethylated CpG islands are proving to be useful for molecular classification of different cancer types.
Collapse
Affiliation(s)
- Kenneth P Nephew
- Medical Sciences, School of Medicine, Indiana University, Bloomington, IN 47405-4401, USA
| | | |
Collapse
|
8
|
Fornoni A, Wang Y, Lenz O, Striker LJ, Striker GE. Association of a decreased number of d(CA) repeats in the matrix metalloproteinase-9 promoter with glomerulosclerosis susceptibility in mice. J Am Soc Nephrol 2002; 13:2068-76. [PMID: 12138138 DOI: 10.1097/01.asn.0000022421.86757.8d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The genetic background plays an important role in the development of progressive glomerulosclerosis. However, no marker is available for the reliable prediction of genetic susceptibility to glomerulosclerosis. Because matrix metalloproteinase-9 (MMP-9) levels are decreased in models of glomerulosclerosis and MMP-9 promoter polymorphism has been observed among patients with diabetic nephropathy, MMP-9 could be one such marker. The object of this study was to determine whether MMP-9 promoter polymorphism was associated with altered MMP-9 expression in mesangial cells (MC) from two mouse strains, i.e., ROP (glomerulosclerosis prone) and B6SJL (glomerulosclerosis resistant). ROP MC expressed 12-fold less MMP-9 mRNA. The MMP-9 promoter in ROP MC contained fewer d(CA) repeats, which was associated with lower MMP-9 expression and activity. Phorbol-12-myristate-13-acetate (3 to 60 ng/ml) increased MMP-9 expression in both MC types (3- to 4.5-fold), but the level in ROP MC never reached that in B6SLJ MC. Although reciprocal transfection of ROP and B6SJL MMP-9 promoter constructs into B6SJL and ROP cells revealed that the promoters were functional in both cell types, the B6SJL promoter was less responsive to phorbol-12-myristate-13-acetate stimulation when transfected into ROP MC, suggesting a role for other factors. In conclusion, the MMP-9 promoter exhibits a decreased number of d(CA) repeats in the sclerosis-prone strain. Because fewer d(CA) repeats associated with decreased MMP-9 expression in MC, it might be a genetic marker for glomerulosclerosis.
Collapse
Affiliation(s)
- Alessia Fornoni
- Vascular Biology Institute, Department of Medicine, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
9
|
Sengupta PK, Fargo J, Smith BD. The RFX family interacts at the collagen (COL1A2) start site and represses transcription. J Biol Chem 2002; 277:24926-37. [PMID: 11986307 DOI: 10.1074/jbc.m111712200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription start site of the collagen alpha2(1) gene (COL1A2) has a sequence-specific binding site for a DNA methylation-responsive binding protein called regulatory factor for X-box 1 (RFX1) (Sengupta, P. K., Erhlich, M., and Smith, B. D. (1999) J. Biol. Chem. 274, 36649-36655). In this report, we demonstrate that RFX1 forms homodimers as well as heterodimers with RFX2 spanning the collagen transcription start site. Methylation at +7 on the coding strand increases RFX1 complex formation in gel shift assays. Methylation on the template strand, however, does not increase RFX1 complex formation. DNA from human fibroblasts contains minimal methylation on the coding strand (<4%) with variable methylation on the template strand. RFX1 acts as a repressor of collagen transcription as judged by in vitro transcription and co-transfection assays with an unmethylated collagen promoter-reporter construct. In addition, an RFX5 complex present in human fibroblasts interacts with the collagen RFX site, which is not sensitive to methylation. This is the first demonstration of RFX5 complex formation on a gene other than major histocompatibility complex (MHC) promoters. Also, RFX5 represses transcription of a collagen promoter-reporter construct in rat fibroblasts that have no detectable RFX5 complex formation or protein. RFX5 complex activates MHC II transcription by interacting with an interferon-gamma (IFN-gamma)-inducible protein, major histocompatibility class II trans-activator (CIITA). Collagen transcription is repressed by IFN-gamma in a dose-dependent manner in human but not in rat fibroblasts. IFN-gamma enhances RFX5 binding activity, and CIITA is present in the RFX5 complex of IFN-gamma-treated human fibroblasts. CIITA repressed collagen gene transcription more effectively in human fibroblasts than in rat fibroblasts, suggesting that the RFX5 complex may, in part, recruit CIITA protein to the collagen transcription start site. Thus the RFX family may be important repressors of collagen gene transcription through a RFX binding site spanning the transcription start site.
Collapse
Affiliation(s)
- Pritam K Sengupta
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|
10
|
Kitazawa S, Kitazawa R. Epigenetic control of mouse receptor activator of NF-kappa B ligand gene expression. Biochem Biophys Res Commun 2002; 293:126-31. [PMID: 12054573 DOI: 10.1016/s0006-291x(02)00189-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Receptor activator of NF-kappa B ligand (RANKL) is a membrane-bound signal transducer requisite for differentiation and maintenance of osteoclasts. RANKL expression on stromal/osteoblastic cells is tightly regulated to maintain physiological serum calcium levels and bone mass. These stromal/osteoblastic cells, however, comprise a rather heterogeneous population ranging from immature mesenchymal cells to mature osteoblasts and also respond differently to bone resorptive stimuli. In the mouse coculture system, we also have demonstrated the passage-dependent difference of cultured mouse stromal cells in supporting osteoclastogenesis due to altered RANKL gene expression. To address the issue of what molecular mechanism gives the diversity of RANKL gene expression to stromal/osteoblastic cells, we characterized the mouse RANKL gene promoter that contains two CpG clustering regions; one around the transcription start site, and the other downstream of the vitamin D response element (VDRE). Using earlier- and later-passage mouse ST2 cells, we analyzed the CpG methylation status by sodium bisulfite mapping and found that CpG loci around the transcription start site (-66/+246) were predominantly methylated in later-passage ST2 cells. Moreover, earlier- and later-passage ST2 cells transfected with a RANKL promoter construct showed the same steady-state level of luciferase activity and of the inducible effect of 1,25(OH)(2)D(3). Furthermore, the introduction of methylation to the promoter construct silenced promoter activity. The results suggest that CpG methylation around the transcription start site of the mouse RANKL gene is an important epigenetic event, and that its heterogeneity might cause the diversity of the stromal/osteoblastic cells in RANKL gene expression.
Collapse
Affiliation(s)
- Sohei Kitazawa
- Division of Molecular Pathology, Department of Biomedical Informatics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | |
Collapse
|
11
|
Gitan RS, Shi H, Chen CM, Yan PS, Huang THM. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 2002; 12:158-64. [PMID: 11779841 PMCID: PMC155260 DOI: 10.1101/gr.202801] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oligonucleotide microarray-based hybridization is an emerging technology for genome-wide detection of DNA variations. We have extended this principle and developed a novel approach, called methylation-specific oligonucleotide (MSO) microarray, for detecting changes of DNA methylation in cancer. The method uses bisulfite-modified DNA as a template for PCR amplification, resulting in conversion of unmethylated cytosine, but not methylated cytosine, into thymine within CpG islands of interest. The amplified product, therefore, may contain a pool of DNA fragments with altered nucleotide sequences due to differential methylation status. A test sample is hybridized to a set of oligonucleotide (19-23 nucleotides in length) arrays that discriminate methylated and unmethylated cytosine at specific nucleotide positions, and quantitative differences in hybridization are determined by fluorescence analysis. A unique control system is also implemented to test the accuracy and reproducibility of oligonucleotides designed for microarray hybridization. This MSO microarray was applied to map methylated CpG sites within the human estrogen receptor alpha (ERalpha) gene CpG island in breast cancer cell lines, normal fibroblasts, breast tumors, and normal controls. Methylation patterns of the breast cancer cell lines, determined by MSO microarray, were further validated by bisulfite nucleotide sequencing (P <0.001). This proof-of-principle study shows that MSO microarray is a promising technique for mapping methylation changes in multiple CpG island loci and for generating epigenetic profiles in cancer.
Collapse
Affiliation(s)
- Raad S Gitan
- Department of Pathology, Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia 65203, USA
| | | | | | | | | |
Collapse
|
12
|
Ponger L, Duret L, Mouchiroud D. Determinants of CpG islands: expression in early embryo and isochore structure. Genome Res 2001; 11:1854-60. [PMID: 11691850 PMCID: PMC311164 DOI: 10.1101/gr.174501] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In an attempt to understand the origin of CpG islands (CGIs) in mammalian genomes, we have studied their location and structure according to the expression pattern of genes and to the G + C content of isochores in which they are embedded. We show that CGIs located over the transcription start site (named start CGIs) are very different structurally from the others (named no-start CGIs): (1) 61.6% of the no-start CGIs are due to repeated sequences (79 % are due to Alus), whereas only 5.6% of the start CGIs are due to such repeats; (2) start CGIs are longer and display a higher CpGo/e ratio and G + C level than no-start CGIs. The frequency of tissue-specific genes associated to a start CGI varies according to the genomic G + C content, from 25% in G + C-poor isochores to 64% in G + C-rich isochores. Conversely, the frequency of housekeeping genes associated to a start CGI (90%) is independent of the isochore context. Interestingly, the structure of start CGIs is very similar for tissue-specific and housekeeping genes. Moreover, 93% of genes expressed in early embryo are found to exhibit a CpG island over their transcription start point. These observations are consistent with the hypothesis that the occurrence of these CGIs is the consequence of gene expression at this stage, when the methylation pattern is installed.
Collapse
Affiliation(s)
- L Ponger
- Laboratoire de Biométrie et Biologie Evolutive, Unité Nixte de Recherche Centre National de la Recherche Scientifique 5558-Université Claude Bernard, 69622 Villeurbanne Cedex, France.
| | | | | |
Collapse
|
13
|
Abstract
Colorectal cancer has provided an excellent model for studying the genetic basis of cancer and is one of the better-understood malignancies in this regard. The orderly progression of the disease, with distinct genetic alterations at each step, is a useful framework for deciphering the molecular basis of neoplasia. Epigenetics, the study of clonal changes in gene expression without associated genetic lesions, has raised increased interest recently, in part because of the identification of DNA methylation as a potential molecular mediator of the process. Several tumor-suppressor genes are silenced in various neoplasms in association with aberrant promoter methylation, and in the absence of coding region mutations. The study of DNA methylation changes in colorectal cancer has now provided additional clues into the pathogenesis of the disease. This review presents evidence for a model whereby DNA methylation changes play two distinct roles in the molecular evolution of colorectal cancer. Initially, progressive methylation and silencing of a subset of genes takes place in normal tissues as a function of age or time-dependent events and predisposes these normal cells to neoplastic transformation. At a later stage of disease progression, DNA methylation plays an important role in a subset of tumors affected by the CpG island methylator phenotype (CIMP), a recently identified pathway that results in a form of epigenetic instability through the simultaneous silencing of multiple genes. DNA methylation changes have important interactions with genetic lesions in this cancer type. CIMP+ cancers include the majority of tumors with sporadic mismatch repair deficiency through hypermethylation of the hMLH1 promoter, and also account for the majority of tumors with Ki-ras mutations through an unknown mechanism. By contrast, CIMP- cases evolve along a more classic genetic instability pathway, with a high rate of p53 mutations and chromosomal changes. Thus, the integration of epigenetic and genetic information provides a more complete molecular understanding of colorectal cancer and may have implications for the diagnosis, prognosis, and treatment of patients affected by this disease.
Collapse
Affiliation(s)
- J P Issa
- University of Texas at M.D. Anderson Cancer Center, Houston 77030, USA.
| |
Collapse
|
14
|
Robertson KD, Keyomarsi K, Gonzales FA, Velicescu M, Jones PA. Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G(0)/G(1) to S phase transition in normal and tumor cells. Nucleic Acids Res 2000; 28:2108-13. [PMID: 10773079 PMCID: PMC105379 DOI: 10.1093/nar/28.10.2108] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2000] [Revised: 03/24/2000] [Accepted: 03/24/2000] [Indexed: 01/12/2023] Open
Abstract
DNA methylation is essential for mammalian development, X-chromosome inactivation, and imprinting yet aberrant methylation patterns are one of the most common features of transformed cells. One of the proposed causes for these defects in the methylation machinery is overexpression of one or more of the three known catalytically active DNA methyltransferases (DNMTs) 1, 3a and 3b, yet there are clearly examples in which overexpression is minimal or non-existent but global methylation anomalies persist. An alternative mechanism which could give rise to global methylation errors is the improper expression of one or more of the DNMTs during the cell cycle. To begin to study the latter possibility we examined the expression of the mRNAs for DNMT1, 3a and 3b during the cell cycle of normal and transformed cells. We found that DNMT1 and 3b levels were significantly downregulated in G(0)/G(1)while DNMT3a mRNA levels were less sensitive to cell cycle alterations and were maintained at a slightly higher level in tumor lines compared to normal cell strains. Enzymatic activity assays revealed a similar decrease in the overall methylation capacity of the cells during G(0)/G(1)arrest and again revealed that a tumor cell line maintained a higher methylation capacity during arrest than a normal cell strain. These results reveal a new level of control exerted over the cellular DNA methylation machinery, the loss of which provides an alternative mechanism for the genesis of the aberrant methylation patterns observed in tumor cells.
Collapse
Affiliation(s)
- K D Robertson
- Norris Comprehensive Cancer Center, University of Southern California, MS 83, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|