1
|
Cotranscriptional 3'-End Processing of T7 RNA Polymerase Transcripts by a Smaller HDV Ribozyme. J Mol Evol 2018; 86:425-430. [PMID: 30099590 DOI: 10.1007/s00239-018-9861-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
In vitro run-off transcription by T7 RNA polymerase generates heterogeneous 3'-ends because the enzyme tends to add untemplated adenylates. To generate homogeneous 3'-termini, HDV ribozymes have been used widely. Their sequences are added to the 3'-terminus such that co-transcriptional self-cleavage generates homogeneous 3'-ends. A shorter HDV sequence that cleaves itself efficiently would be advantageous. Here we show that a recently discovered, small HDV ribozyme is a good alternative to the previously used HDV ribozyme. The new HDV ribozyme is more efficient in some sequence contexts, and less efficient in other sequence contexts than the previously used HDV ribozyme. The smaller size makes the new HDV ribozyme a good alternative for transcript 3'-end processing.
Collapse
|
2
|
Riccitelli N, Lupták A. HDV family of self-cleaving ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:123-71. [PMID: 24156943 DOI: 10.1016/b978-0-12-381286-5.00004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) ribozymes are catalytic RNAs capable of cleaving their own sugar-phosphate backbone. The HDV virus possesses the ribozymes in both sense and antisense genomic transcripts, where they are essential for processing during replication. These ribozymes have been the subject of intense biochemical scrutiny and have yielded a wealth of mechanistic insights. In recent years, many HDV-like ribozymes have been identified in nearly all branches of life. The ribozymes are implicated in a variety of biological events, including episodic memory in mammals and retrotransposition in many eukaryotes. Detailed analysis of additional HDV-like ribozyme isolates will likely reveal many more biological functions and provide information about the evolution of this unique RNA.
Collapse
Affiliation(s)
- Nathan Riccitelli
- Department of Chemistry, University of California, Irvine, California, USA
| | | |
Collapse
|
3
|
Ruminski DJ, Webb CHT, Riccitelli NJ, Lupták A. Processing and translation initiation of non-long terminal repeat retrotransposons by hepatitis delta virus (HDV)-like self-cleaving ribozymes. J Biol Chem 2011; 286:41286-41295. [PMID: 21994949 DOI: 10.1074/jbc.m111.297283] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many non-long terminal repeat (non-LTR) retrotransposons lack internal promoters and are co-transcribed with their host genes. These transcripts need to be liberated before inserting into new loci. Using structure-based bioinformatics, we show that several classes of retrotransposons in phyla-spanning arthropods, nematodes, and chordates utilize self-cleaving ribozymes of the hepatitis delta virus (HDV) family for processing their 5' termini. Ribozyme-terminated retrotransposons include rDNA-specific R2, R4, and R6, telomere-specific SART, and Baggins and RTE. The self-scission of the R2 ribozyme is strongly modulated by the insertion site sequence in the rDNA, with the most common insertion sequences promoting faster processing. The ribozymes also promote translation initiation of downstream open reading frames in vitro and in vivo. In some organisms HDV-like and hammerhead ribozymes appear to be dedicated to processing long and short interspersed elements, respectively. HDV-like ribozymes serve several distinct functions in non-LTR retrotransposition, including 5' processing, translation initiation, and potentially trans-templating.
Collapse
Affiliation(s)
- Dana J Ruminski
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Chiu-Ho T Webb
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | | | - Andrej Lupták
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697; Department of Chemistry, University of California, Irvine, California 92697; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697.
| |
Collapse
|
4
|
Abstract
HDV ribozymes catalyze their own scission from the transcript during rolling circle replication of the hepatitis delta virus. In vitro selection of self-cleaving ribozymes from a human genomic library revealed an HDV-like ribozyme in the second intron of the human CPEB3 gene and recent results suggest that this RNA affects episodic memory performance. Bioinformatic searches based on the secondary structure of the HDV/CPEB3 fold yielded numerous functional ribozymes in a wide variety of organisms. Genomic mapping of these RNAs suggested several biological roles, one of which is the 5' processing of non-LTR retrotransposons. The family of HDV-like ribozymes thus continues to grow in numbers and biological importance.
Collapse
Affiliation(s)
- Chiu-Ho T Webb
- Department of Molecular Biology, University of California, Irvine, CA, USA
| | | |
Collapse
|
5
|
Inhibition of telomerase activity by HDV ribozyme in cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:1. [PMID: 21208462 PMCID: PMC3024244 DOI: 10.1186/1756-9966-30-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 01/06/2011] [Indexed: 12/30/2022]
Abstract
Background Telomerase plays an important role in cell proliferation and carcinogenesis and is believed to be a good target for anti-cancer drugs. Elimination of template function of telomerase RNA may repress the telomerase activity. Methods A pseudo-knotted HDV ribozyme (g.RZ57) directed against the RNA component of human telomerase (hTR) was designed and synthesized. An in vitro transcription plasmid and a eukaryotic expression plasmid of ribozyme were constructed. The eukaryotic expression plasmid was induced into heptocellular carcinoma 7402 cells, colon cancer HCT116 cells and L02 hepatocytes respectively. Then we determine the cleavage activity of ribozyme against human telomerase RNA component (hTR) both in vitro and in vivo, and detect telomerase activity continuously. Results HDV ribozyme showed a specific cleavage activity against the telomerase RNA in vitro. The maximum cleavage ratio reached about 70.4%. Transfection of HDV ribozyme into 7402 cells and colon cancer cells HCT116 led to growth arrest and the spontaneous apoptosis of cells, and the telomerase activity dropped to 10% of that before. Conclussion HDV ribozyme (g.RZ57) is an effective strategy for gene therapy.
Collapse
|
6
|
Hori T, Guo F, Uesugi S. Addition of an extra substrate binding site and partial destabilization of stem structures in HDV ribozyme give rise to high sequence-specificity for its target RNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:489-501. [PMID: 16838841 DOI: 10.1080/15257770600684183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Because the substrate binding site (P1) of HDV ribozyme consists of only seven nucleotides, cleavage of undesired RNA is likely to occur when applied for a specific long RNA target such as mRNA. To overcome this problem, we designed modified trans-acting HDV ribozymes with an extra substrate-binding site (P5) in addition to the original binding site (P1). By inserting an additional seven base-pair stem (P5 stem) into the J1/2 single-stranded region of the ribozyme core system and partial destabilization of the P2 or P4 stem, we succeeded in preparation of new HDV ribozymes that can cleave the target RNA depending on the formation of P5 stem. Moreover, the ribozyme with a six-nucleotide P1 site was able to distinguish the substrate RNA with a complete match from that with a single mismatch in the P1 region. These results suggest that the HDV ribozyme system is useful for the application in vivo.
Collapse
Affiliation(s)
- Tamaki Hori
- Department of Environment and Natural Sciences, Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | | | | |
Collapse
|
7
|
Bergeron LJ, Reymond C, Perreault JP. Functional characterization of the SOFA delta ribozyme. RNA (NEW YORK, N.Y.) 2005; 11:1858-68. [PMID: 16251383 PMCID: PMC1370874 DOI: 10.1261/rna.2112705] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molecular engineering has led to the development of a novel target-dependent riboswitch that increases deltaribozyme fidelity. This delta ribozyme possesses a specific on/off adapter (SOFA) that switches the cleavage activity from off (a "safety lock") to on solely in the presence of the desired RNA substrate. In this report, we investigate the influence of both the structure and the sequence of each domain of the SOFA module. Analysis of the cleavage activity, using a large collection of substrates and SOFA-ribozyme mutants, together with RNase H probing provided several insights into the nature of the sequence and the optimal design of each domain of the SOFA module. For example, we determined that (1) the optimal size of the blocker sequence, which keeps the ribozyme off in the absence of the substrate, is 4 nucleotides (nt); (2) a single nucleotide difference between the substrate and the biosensor domain, which is responsible for the initial binding of the substrate that subsequently switches the SOFA-ribozyme on, is sufficient to cause non-recognition of the appropriate substrate; (3) the stabilizer, which joins the 5' and 3' ends of the SOFA-ribozyme, plays only a structural role; and (4) the optimal spacer sequence, which serves to separate the binding regions of the biosensor and catalytic domain of the ribozyme on the substrate, is from 1 to 5 nt long. Together, these data should facilitate the design of more efficient SOFA-ribozymes with significant potential for many applications in gene-inactivation systems.
Collapse
Affiliation(s)
- Lucien Junior Bergeron
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine et des sciences de la santé, Universitéde Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | | | | |
Collapse
|
8
|
Abstract
Ribozymes, RNA molecules that catalyze the cleavage of RNA substrates, provide an interesting alternative to the RNA interference (RNAi) approach to gene inactivation, especially given the fact that RNAi seems to trigger an immunological response. Unfortunately, the limited substrate specificity of ribozymes is considered to be a significant hurdle in their development as molecular tools. Here, we report the molecular engineering of a ribozyme possessing a new biosensor module that switches the cleavage activity from ‘off’ (a ‘safety lock’) to ‘on’ solely in the presence of the appropriate RNA target substrate. Both proof-of-concept and the mechanism of action of this man-made riboswitch are demonstrated using hepatitis delta virus ribozymes that cleave RNA transcripts derived from the hepatitis B and C viruses. To our knowledge, this is the first report of a ribozyme bearing a target-dependent module that is activated by its RNA substrate, an arrangement which greatly diminishes non-specific effects. This new approach provides a highly specific and improved tool with significant potential for application in the fields of both functional genomics and gene therapy.
Collapse
Affiliation(s)
| | - Jean-Pierre Perreault
- To whom correspondence should be addressed. Tel: +1 819 564 5310; Fax: +1 819 564 5340;
| |
Collapse
|
9
|
Nishikawa F, Kakiuchi N, Funaji K, Fukuda K, Sekiya S, Nishikawa S. Inhibition of HCV NS3 protease by RNA aptamers in cells. Nucleic Acids Res 2003; 31:1935-43. [PMID: 12655010 PMCID: PMC152807 DOI: 10.1093/nar/gkg291] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-structural protein 3 (NS3) of hepatitis C virus (HCV) has two distinct activities, protease and helicase, which are essential for HCV proliferation. In previous work, we obtained RNA aptamers (G9-I, II and III) which specifically bound the NS3 protease domain (DeltaNS3), efficiently inhibiting protease activity in vitro. To utilize these aptamers in vivo, we constructed a G9 aptamer expression system in cultured cells, using the cytomegarovirus enhancer + chicken beta-actin globin (CAG) promoter. By conjugating the cis-acting genomic human hepatitis delta virus (HDV) ribozyme and G9-II aptamer, a chimeric HDV ribozyme-G9-II aptamer (HA) was constructed, which was used to produce stable RNA in vivo and to create tandem repeats of the functional unit. To target the transcribed RNA aptamers to the cytoplasm, the minimal mutant of constitutive transport element (CTE), derived from type D retroviruses, was conjugated at the 3' end of HA (HAC). Transcript RNAs from (HA)(n) and (HAC)(n) were processed into the G9-II aptamer unit by the cis-acting HDV ribozyme, both in vitro and in vivo. Efficient protease inhibition activity of HDV ribozyme-G9-II aptamer expression plasmid was demonstrated in HeLa cells. Protease inhibition activity level of tandem chimeric aptamers, (HA)(n) and (HAC)(n), rose with the increase of n from 1 to 4.
Collapse
Affiliation(s)
- Fumiko Nishikawa
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Sciences and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
AIM: To explore whether HDV ribozymes have the ability to trans-cleave HCV RNA.
METHODS: Three HDV genomic ribozymes were designed and named RzC1, RzC2 and RzC3. The substrate RNA contained HCV RNA 5’-noncoding region and 5'-fragment of C region (5'-NCR-C). All the ribozymes and HCV RNA 5'-NCR-C were obtained by transcription in vitro from their DNA templates, and HCV RNA 5'-NCR-C was radiolabelled at its 5’-end. Under certain pH, temperature, appropriate concentration of Mg2+ and deionized formamide, these ribozymes were respectively or simultaneously mixed with HCV RNA 5'-NCR-C and reacted for a certain time. The trans-cleavage reaction was stopped at different time points, and the products were separated with polyacrylamide gel electrophoresis (PAGE), displayed by autoradiography. Percentage of trans-cleaved products was measured to indicate the activity of HDV ribozymes.
RESULTS: RzC1 and RzC2 could trans-cleave 26% and 21.8% of HCV RNA 5'-NCR-C under our reaction conditions with 2.5 mol•L-1 deionized formamide respectively. The percentage of HCV RNA 5'-NCR-C trans-cleaved by RzC1, RzC2 or combined usage of the three ribozymes increased with time, up to 24.9%, 20.3% and 37.3% respectively at 90 min point. Almost no product from RzC3 was observed.
CONCLUSION: HDV ribozymes are able to trans-cleave specifically HCV RNA at certain sites under appropriate conditions, and combination of several ribozymes aiming at different target sites can trans-cleave the substrate more efficiently than using only one of them.
Collapse
Affiliation(s)
- Yue-Cheng Yu
- Institute of Infectious Diseases of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038,China.
| | | | | | | | | |
Collapse
|
11
|
Kato Y, Kuwabara T, Warashina M, Toda H, Taira K. Relationships between the activities in vitro and in vivo of various kinds of ribozyme and their intracellular localization in mammalian cells. J Biol Chem 2001; 276:15378-85. [PMID: 11278700 DOI: 10.1074/jbc.m010570200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nineteen different functional RNAs were synthesized for an investigation of the actions of ribozymes, in vitro and in vivo, under the control of two different promoters, tRNA or U6, which localize transcripts either in the cytoplasm or in the nucleus. No relationships were found between the activities of these RNAs in cultured cells and the kinetic parameters of their respective chemical cleavage reactions in vitro, indicating that in no case was chemical cleavage the rate-limiting step in vivo. For example, a hepatitis delta virus (HDV) ribozyme, whose activity in vitro was almost 3 orders of magnitude lower than that of a hammerhead ribozyme, still exhibited similar activity in cells when an appropriate expression system was used. As expected, external guide sequences, the actions of which depend on nuclear RNase P, were more active in the nucleus. Analysis of data obtained with cultured cells clearly demonstrated that the cytoplasmic ribozymes were significantly more active than the nuclear ribozymes, suggesting that mature mRNAs in the cytoplasm might be more accessible to antisense molecules than are pre-mRNAs in the nucleus. Our findings should be useful for the future design of intracellularly active functional molecules.
Collapse
Affiliation(s)
- Y Kato
- The Gene Discovery Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-4 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | | | |
Collapse
|
12
|
Nishikawa F, Nishikawa S. Requirement for canonical base pairing in the short pseudoknot structure of genomic hepatitis delta virus ribozyme. Nucleic Acids Res 2000; 28:925-31. [PMID: 10648784 PMCID: PMC102583 DOI: 10.1093/nar/28.4.925] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1999] [Revised: 11/25/1999] [Accepted: 12/22/1999] [Indexed: 11/14/2022] Open
Abstract
The tertiary structure of the 3'-cleaved product of the genomic hepatitis delta virus (HDV) ribozyme was solved by X-ray crystallographic analysis. In this structure, three single-stranded regions (SSrA, -B and -C) interact intricately with one another via hydrogen bonds between nucleotide bases, phosphate oxygens and 2'-OHs to form a nested double pseudoknot structure. Among these interactions, two Watson-Crick (W-C) base pairs, 726G-710C and 727G-709C, that form between SSrA and SSrC (P1.1) seem to be especially important for compact folding. To characterize the importance of these base pairs, ribozymes were subjected to in vitro selection from a pool of RNA molecules randomly substituted at positions 709, 710, 726 and 727. The results establish the importance of the two W-C base pairs for activity, although some mutants are active with one G-C base pair. In addition, the kinetic parameters were analyzed in all 16 combinations with two canonical base pairs. Comparison of variant ribozymes with the wild-type ribozyme reveals that the difference in reaction rates for these variants (DeltaDelta G (double dagger)) is not simply accounted for by the differences in the stability of P1.1 (DeltaDelta G (0)(37)). The role played by Mg(2+)ions in formation of the P1.1 structure is also discussed.
Collapse
Affiliation(s)
- F Nishikawa
- National Institute of Bioscience and Human Technology, AIST, MITI, 1-1 Higashi, Tsukuba Science City, Ibaraki 305-8566, Japan
| | | |
Collapse
|
13
|
Deschênes P, Lafontaine DA, Charland S, Perreault JP. Nucleotides -1 to -4 of hepatitis delta ribozyme substrate increase the specificity of ribozyme cleavage. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2000; 10:53-61. [PMID: 10726661 DOI: 10.1089/oli.1.2000.10.53] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the past, the use of delta ribozyme as a therapeutic tool was limited because substrate specificity was thought to be determined by only 8 nucleotides. Recently, we have accumulated evidence suggesting that the substrate sequence upstream of the cleavage site, which is not involved in the binding with the delta ribozyme, appears to be essential in the selection of an appropriate cleavage site. To understand the role of this region in efficient cleavage, we synthesized a collection of small substrates that possessed single and multiple mutations in positions -1 to -4 and determined the kinetic parameters of their cleavage using a model antigenomic delta ribozyme. Some substrates were found to be uncleavage, whereas others showed >60-fold difference in relative specificity between the least and most efficiently cleaved substrates. The base at each position from -1 to -4 contributes differently to the ability of a substrate to be cleaved. An optimal sequence for positions -1 to -4 was determined to be -1HRHY(-4) (H = U, C, or A). These results shed light on new features that contribute to the substrate requirement of delta ribozyme cleavage and should increase interest in the use of this unique ribozyme.
Collapse
Affiliation(s)
- P Deschênes
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|