1
|
Guo J, Wang A, Liao R, Yan J, Li X, Kang Y, Duan Z, Wang C, Šimůnek J, Yang D. An Optimization Generator of Synthetic DNA Fragments for the Rational Design of Environmental Tracers. ACS NANO 2025; 19:9412-9421. [PMID: 40000381 DOI: 10.1021/acsnano.5c01980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Chemically synthesized DNA fragments are increasingly recognized as highly valuable tracers for investigating environmental pollution due to their inherent high specificity, sequence diversity, environmental friendliness, stable migration, and high detection sensitivity, outperforming traditional ion and dye tracers. Despite their advantages, a systematic approach for generating suitable DNA sequences, which is a critical requirement for preparing DNA tracers, remains not fully developed. This study introduces an optimization generator of synthetic DNA sequences guided by seven principles, which enables the concurrent generation of multiple sequences with enhanced stability, specificity, and detectability. The DNA sequences produced by our optimization generator display a balanced base distribution, uniform melting temperatures, and reduced formation of hairpin and dimer structures. The necessity of the established principles was further validated through PCR and qPCR detection, showing that noncompliance led to unstable or undetectable DNA amplification. The column and sandbox injection experiments also demonstrated that the generated DNA sequences can be clearly distinguished and effectively used for hydrological multitracing applications. Our research underscores the importance of established principles in creating suitable DNA sequences and offers valuable insights for the efficient preparation of DNA tracers.
Collapse
Affiliation(s)
- Jie Guo
- College of Land Science and Technology, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, P. R. China
| | - Aiwen Wang
- College of Land Science and Technology, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, P. R. China
| | - Renkuan Liao
- College of Land Science and Technology, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, P. R. China
| | - Jiapei Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, P. R. China
| | - Xinlin Li
- College of Land Science and Technology, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, P. R. China
| | - Yulin Kang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Zhaofei Duan
- College of Land Science and Technology, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, P. R. China
| | - Changxi Wang
- College of Land Science and Technology, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, P. R. China
| | - Jirka Šimůnek
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Dayong Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
2
|
Podbevšek P, Plavec J. Enzymatic bypass of G-quadruplex structures containing oxidative lesions. Nucleic Acids Res 2025; 53:gkae1157. [PMID: 39673512 PMCID: PMC11724267 DOI: 10.1093/nar/gkae1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024] Open
Abstract
The function of many DNA processing enzymes involves sliding along the double helix or individual DNA strands. Stable secondary structures in the form of G-quadruplexes are difficult for such enzymes to bypass. We used a polymerase stop assay to determine which structural features of the human telomeric and the BCL2 promoter G-quadruplexes can stall progression of the Klenow fragment. Primer extension profiles revealed that G-quartets are effective roadblocks for the Klenow fragment, while auxiliary base pairs can be easily bypassed. Furthermore, we utilized 8-oxoguanine to simulate oxidative damage in G-rich regions and determine the effects on enzyme bypass. In rare cases, oxidative lesions reduce the level of G-quadruplex bypass. In general, however, oxidative lesions reduce G-quadruplex stability and facilitate bypassing of such G-rich regions, especially if the lesion persists in unfolding intermediates. Our findings using Klenow fragment can be extrapolated to other G-quadruplex forming sequences and enzymes that utilise a clamp-like structure to slide along DNA and are involved in processes such as gene expression regulation and telomere maintenance.
Collapse
Affiliation(s)
- Peter Podbevšek
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- EN-FIST Center of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Murat P, Guilbaud G, Sale JE. DNA replication initiation drives focal mutagenesis and rearrangements in human cancers. Nat Commun 2024; 15:10850. [PMID: 39738026 PMCID: PMC11685606 DOI: 10.1038/s41467-024-55148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas. Using ductal pancreatic adenocarcinoma as a cancer model, we demonstrate that the initiation of DNA synthesis is error-prone at G-quadruplex-forming sequences in tumours displaying markers of replication stress, resulting in a previously recognised but uncharacterised mutational signature. Finally, we demonstrate that replication origins serve as hotspots for genomic rearrangements, including structural and copy number variations. These findings reveal replication origins as functional determinants of tumour biology and demonstrate that replication initiation both passively and actively drives focal mutagenesis in cancer genomes.
Collapse
Affiliation(s)
- Pierre Murat
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Wellcome Sanger Institute, Hinxton, CB10 1RQ, UK.
| | - Guillaume Guilbaud
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
4
|
Ren CX, Duan RF, Wang J, Hao YH, Tan Z. Dominant and genome-wide formation of DNA:RNA hybrid G-quadruplexes in living yeast cells. Proc Natl Acad Sci U S A 2024; 121:e2401099121. [PMID: 39441636 PMCID: PMC11536079 DOI: 10.1073/pnas.2401099121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Guanine-rich DNA forms G-quadruplexes (G4s) that play a critical role in essential cellular processes. Previous studies have mostly focused on intramolecular G4s composed of four consecutive guanine tracts (G-tracts) from a single strand. However, this structural form has not been strictly confirmed in the genome of living eukaryotic cells. Here, we report the formation of hybrid G4s (hG4s), consisting of G-tracts from both DNA and RNA, in the genome of living yeast cells. Analysis of Okazaki fragment syntheses and two other independent G4-specific detections reveal that hG4s can efficiently form with as few as a single DNA guanine-guanine (GG) tract due to the participation of G-tracts from RNA. This finding increases the number of potential G4-forming sites in the yeast genome from 38 to 587,694, a more than 15,000-fold increase. Interestingly, hG4s readily form and even dominate at G4 sites that are theoretically capable of forming the intramolecular DNA G4s (dG4s) by themselves. Compared to dG4s, hG4s exhibit broader kinetics, higher prevalence, and greater structural diversity and stability. Most importantly, hG4 formation is tightly coupled to transcription through the involvement of RNA, allowing it to function in a transcription-dependent manner. Overall, our study establishes hG4s as the overwhelmingly dominant G4 species in the yeast genome and emphasizes a renewal of the current perception of the structural form, formation mechanism, prevalence, and functional role of G4s in eukaryotic genomes. It also establishes a sensitive and currently the only method for detecting the structural form of G4s in living cells.
Collapse
Affiliation(s)
- Chen-xia Ren
- Shanxi Key Laboratory of Aging Mechanism Research and Translational Applications, Center for Healthy Aging, Central Laboratory, Changzhi Medical College, Changzhi, Shanxi046000, People’s Republic of China
| | - Rui-fang Duan
- Shanxi Key Laboratory of Aging Mechanism Research and Translational Applications, Center for Healthy Aging, Central Laboratory, Changzhi Medical College, Changzhi, Shanxi046000, People’s Republic of China
| | - Jia Wang
- Shanxi Key Laboratory of Aging Mechanism Research and Translational Applications, Center for Healthy Aging, Central Laboratory, Changzhi Medical College, Changzhi, Shanxi046000, People’s Republic of China
| | - Yu-hua Hao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Zheng Tan
- Shanxi Key Laboratory of Aging Mechanism Research and Translational Applications, Center for Healthy Aging, Central Laboratory, Changzhi Medical College, Changzhi, Shanxi046000, People’s Republic of China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| |
Collapse
|
5
|
Sahoo BR, Deng X, Wong EL, Clark N, Yang H, Subramanian V, Guzman BB, Harris SE, Dehury B, Miyashita E, Hoff JD, Kocaman V, Saito H, Dominguez D, Plavec J, Bardwell JCA. Visualizing liquid-liquid phase transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.09.561572. [PMID: 39554013 PMCID: PMC11565804 DOI: 10.1101/2023.10.09.561572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Liquid-liquid phase condensation governs a wide range of protein-protein and protein-RNA interactions in vivo and drives the formation of membrane-less compartments such as the nucleolus and stress granules. We have a broad overview of the importance of multivalency and protein disorder in driving liquid-liquid phase transitions. However, the large and complex nature of key proteins and RNA components involved in forming condensates such as stress granules has inhibited a detailed understanding of how condensates form and the structural interactions that take place within them. In this work, we focused on the small human SERF2 protein. We show here that SERF2 contributes to the formation of stress granules. We also show that SERF2 specifically interacts with non-canonical tetrahelical RNA structures called G-quadruplexes, structures which have previously been linked to stress granule formation. The excellent biophysical amenability of both SERF2 and RNA G4 quadruplexes has allowed us to obtain a high-resolution visualization of the multivalent protein-RNA interactions involved in liquid-liquid phase transitions. Our visualization has enabled us to characterize the role that protein disorder plays in these transitions, identify the specific contacts involved, and describe how these interactions impact the structural dynamics of the components involved in liquid-liquid phase transitions, thus enabling a detailed understanding of the structural transitions involved in early stages of ribonucleoprotein condensate formation.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Xiexiong Deng
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Ee Lin Wong
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Nathan Clark
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Harry Yang
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | | | - Bryan B Guzman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Sarah E Harris
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal-576104, India
| | - Emi Miyashita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto-6068507, Japan
| | - J Damon Hoff
- Department of Biophysics, University of Michigan, Ann Arbor, MI-48109, USA
| | - Vojč Kocaman
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Hirohide Saito
- Center for iPS Cell Research and Application, Kyoto University, Kyoto-6068507, Japan
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - James C A Bardwell
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| |
Collapse
|
6
|
Liu X, Qi Q, Xiong W, Shen W, Zhang K, Fan R, Zhang Y, Zhao Y, Xu X, Li M, Zhou E, Tian T, Zhou X. Unveiling a Potent Small Molecule Disruptor for RNA G-Quadruplexes Tougher Than DNA G-Quadruplex Disruption. ACS Chem Biol 2024; 19:2032-2040. [PMID: 39225324 DOI: 10.1021/acschembio.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This research presents a unique small molecule characterized by its ability to effectively disrupt RNA G-quadruplexes (G4s), which are notably more stable than their DNA counterparts. We conducted a comprehensive series of in vitro experiments to thoroughly assess the disruptive capabilities of this molecule on RNA G4s. These experiments included comparisons with established G4 stabilizers and DNA G4 disruptors, providing a multifaceted evaluation of the molecule's efficacy. Our extensive in vitro analyses demonstrated that this molecule effectively alters G4 structures and interactions with the BG4 protein, a well-recognized G4-specific antibody. These findings underscore the molecule's potential to modulate G4-protein interactions, indicating promising applications for manipulating cellular functions associated with G4 dynamics in future research.
Collapse
Affiliation(s)
- Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Kaisong Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Ruochen Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuanyuan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Yunting Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Xinyan Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Ming Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Enyi Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, The Institute of Molecular Medicine, Wuhan University People's Hospital, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
7
|
Rosenkrantz JL, Brandorff JE, Raghib S, Kapadia A, Vaine CA, Bragg DC, Farmiloe G, Jacobs FMJ. ZNF91 is an endogenous repressor of the molecular phenotype associated with X-linked dystonia-parkinsonism (XDP). Proc Natl Acad Sci U S A 2024; 121:e2401217121. [PMID: 39102544 PMCID: PMC11331120 DOI: 10.1073/pnas.2401217121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
X-linked dystonia-parkinsonism (XDP) is a severe neurodegenerative disorder resulting from an inherited intronic SINE-Alu-VNTR (SVA) retrotransposon in the TAF1 gene that causes dysregulation of TAF1 transcription. The specific mechanism underlying this dysregulation remains unclear, but it is hypothesized to involve the formation of G-quadruplexes (G4) structures within the XDP-SVA that impede transcription. In this study, we show that ZNF91, a critical repressor of SVA retrotransposons, specifically binds to G4-forming DNA sequences. Further, we found that genetic deletion of ZNF91 exacerbates the molecular phenotype associated with the XDP-SVA insertion in patient cells, while no difference was observed when ZNF91 was deleted from isogenic control cells. Additionally, we observed a significant age-related reduction in ZNF91 expression in whole blood and brain, indicating a progressive loss of repression of the XDP-SVA in XDP. These findings indicate that ZNF91 plays a crucial role in controlling the molecular phenotype associated with XDP. Since ZNF91 binds to G4-forming DNA sequences in SVAs, this suggests that interactions between ZNF91 and G4-forming sequences in the XDP-SVA minimize the severity of the molecular phenotype. Our results showing that ZNF91 expression levels significantly decrease with age provide a potential explanation for the age-related progressive neurodegenerative character of XDP. Collectively, our study provides important insights into the protective role of ZNF91 in XDP pathogenesis and suggests that restoring ZNF91 expression, destabilization of G4s, or targeted repression of the XDP-SVA could be future therapeutic strategies to prevent or treat XDP.
Collapse
Affiliation(s)
- Jimi L. Rosenkrantz
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - J. Elias Brandorff
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Sanaz Raghib
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Ashni Kapadia
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Christine A. Vaine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA02129
| | - D. Cristopher Bragg
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA02129
| | - Grace Farmiloe
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Frank M. J. Jacobs
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
- Faculty of Science, Amsterdam Neuroscience, Complex Trait Genetics, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| |
Collapse
|
8
|
Neha N, Das P. Exploring G-quadruplex structure in PRCC-TFE3 fusion oncogene: Plausible use as anti cancer therapy for translocation Renal cell carcinoma (tRCC). J Biotechnol 2024; 390:39-49. [PMID: 38740306 DOI: 10.1016/j.jbiotec.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The TFE3 fusion gene, byproduct of Xp11.2 translocation, is the diagnostic marker for translocation renal cell carcinoma (tRCC). Absence of any clinically recognized therapy for tRCC, pressing a need to create novel and efficient therapeutic approaches. Previous studies shown that stabilization of the G-quadruplex structure in oncogenes suppresses their expression machinery. To combat the oncogenesis caused by fusion genes, our objective is to locate and stabilize the G-quadruplex structure within the PRCC-TFE3 fusion gene. Using the Quadruplex-forming G Rich Sequences (QGRS) mapper and the Non-B DNA motif search tool (nBMST) online server, we found putative G-quadruplex forming sequences (PQS) in the PRCC-TFE3 fusion gene. Circular dichroism demonstrating a parallel G-quadruplex in the targeted sequence. Fluorescence and UV-vis spectroscopy results suggest that pyridostatin binds to this newly discovered G-quadruplex. The PCR stop assay, as well as transcriptional or translational inhibition using real time PCR and Dual luciferase assay, revealed that stable G-quadruplex formation affects biological processes. Confocal microscopy of HEK293T cells transfected with the fusion transcript confirmed G-quadruplexes formation in cell. This investigation may shed light on G-quadruplex's functions in fusion genes and may help in the development of therapies specifically targeted against fusion oncogenes, which would enhance the capability of current tRCC therapy approach.
Collapse
Affiliation(s)
- Neha Neha
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
9
|
Zhao Z, Wang J, Yu H, Wang X. Guide for phenotype-specific profiling of DNA G-quadruplex-regulated genes. STAR Protoc 2024; 5:102820. [PMID: 38198280 PMCID: PMC10820308 DOI: 10.1016/j.xpro.2023.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
DNA G-quadruplex (G4) is a non-canonical four-stranded secondary structure that has been shown to play a role in epigenetic modulation of gene expression. Here, we present a primer on phenotype-specific profiling of DNA G-quadruplex-regulated genes. We provide guidance on in silico exploration of G4-related genes and phenotypes, and in vitro and in vivo validation of the relationship between G4 and phenotype. We describe commonly utilized techniques and detail critical steps involved in determining the phenotype-specific G4-regulated genes for subsequent investigations.
Collapse
Affiliation(s)
- Zhuoyang Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Huichuan Yu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China.
| | - Xiaolin Wang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China.
| |
Collapse
|
10
|
Şahin G, Bağda E, Göktuğ Temiz Ö, Bağda E, Ayhan E, Durmuş M. Thermodynamic and structural investigation of the interaction of quaternized 2,3-octakis-[(2-mercaptopyridine)phthalocyaninato] copper (II) sulfate (CuPc) with parallel and hybrid type G-quadruplex. J Mol Recognit 2024; 37:e3072. [PMID: 38126580 DOI: 10.1002/jmr.3072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
G-quadruplexes are important drug targets and get attention due to their existence in telomere, ribosomal DNA, promoter regions of some oncogenes, and the untranslated regions of mRNA. Due to the biological roles of G-quadruplexes, investigating of the G-quadruplex-small molecule interaction is essential. The primary motivation for these studies is the possibility of inhibiting cell functions associated with G-quadruplex sequences by binding with small molecules. Targeting the small molecules to desired tissue with the G-quadruplex vehicles is the second important goal of the G-quadruplex-small molecule interaction studies. In the present study, the new peripherally 2-mercaptopyridine octasubstituted copper(II) phthalocyanine and its quaternized derivative (CuPc) were synthesized and characterized by elemental analysis FT-IR, UV-Vis, and mass spectra. The excellent solubility of CuPc in water is essential for its transport in the organism. Because of this feature, its affinity toward G-quadruplex forming aptamers, AS1411, Tel21, and Tel45, was investigated. The UV-Vis spectrophotometric titration data confirmed the prevention of aggregation upon interaction with G-quadruplex, which is very important for biomedical applications. The CD spectroscopic analyses and binding stoichiometry confirmed the "end stacking" model for interaction of AS1411 with CuPc. The interaction of CuPc caused the equilibrium shift from hybrid conformation to antiparallel conformation for Tel21 and Tel45. The isothermal titration calorimeter (ITC) was used for the determination of thermodynamic parameters. The thermodynamic data of the interaction was fitted well with the one-site model. The negative values of Gibbs free energy change confirmed the spontaneous nature of the reactions. Besides, the negative values of enthalpy change and entropy change proved that the nature of processes was "enthalpy driven." The interaction stoichiometry was 2 for AS1411 and Tel21 and 1.5 for Tel45. The binding constants were 1.3(±0.3) × 105 , 3.2(±0.4) × 105 , and 1.1(±0.3) × 105 M-1 , which were at the level of ethidium bromide intercalation binding constant given in the literature. The DNA polymerase stop assay further supported the interaction of CuPc with G-quadruplex DNA. The experimental results confirm that the CuPc has a potential photosensitizer behaviour for photodynamic therapy.
Collapse
Affiliation(s)
- Gamze Şahin
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Esra Bağda
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Efkan Bağda
- Moleculer Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ebubekir Ayhan
- Moleculer Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
11
|
Malina J, Kostrhunova H, Song H, Scott P, Brabec V. Asymmetric triplex metallohelices stabilise DNA G-quadruplexes in promoter oncogene sequences and efficiently reduce their expression in cancer cells. J Enzyme Inhib Med Chem 2023; 38:2198678. [PMID: 37019444 PMCID: PMC10078150 DOI: 10.1080/14756366.2023.2198678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Some metallo-supramolecular helical assemblies with size, shape, charge and amphipathic architectures similar to short cationic α-helical peptides have been shown to target and stabilise DNA G-quadruplexes (G4s) in vitro and downregulate the expression of G4-regulated genes in human cells. To expand the library of metallohelical structures that can act as efficient DNA G4 binders and downregulate genes containing G4-forming sequences in their promoter regions, we investigated the interaction of the two enantiomeric pairs of asymmetric Fe(II) triplex metallohelices with a series of five different DNA G4s formed by the human telomeric sequence (hTelo) and in the promoter regions of c-MYC, c-KIT, and k-RAS oncogenes. The metallohelices display preferential binding to G4s over duplex DNA in all investigated G4-forming sequences and induced arrest of DNA polymerase on template strands containing G4-forming sequences. Moreover, the investigated metallohelices suppressed the expression of c-MYC and k-RAS genes at mRNA and protein levels in HCT116 human cancer cells, as revealed by RT-qPCR analysis and western blotting.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic
| | - Hualong Song
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Peter Scott
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic
| |
Collapse
|
12
|
Zhang ZH, Qian SH, Wei D, Chen ZX. In vivo dynamics and regulation of DNA G-quadruplex structures in mammals. Cell Biosci 2023; 13:117. [PMID: 37381029 DOI: 10.1186/s13578-023-01074-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
G-quadruplex (G4) is a four-stranded helical DNA secondary structure formed by guanine-rich sequence folding, and G4 has been computationally predicted to exist in a wide range of species. Substantial evidence has supported the formation of endogenous G4 (eG4) in living cells and revealed its regulatory dynamics and critical roles in several important biological processes, making eG4 a regulator of gene expression perturbation and a promising therapeutic target in disease biology. Here, we reviewed the methods for prediction of potential G4 sequences (PQS) and detection of eG4s. We also highlighted the factors affecting the dynamics of eG4s and the effects of eG4 dynamics. Finally, we discussed the future applications of eG4 dynamics in disease therapy.
Collapse
Affiliation(s)
- Ze-Hao Zhang
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Hu Qian
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengguo Wei
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen-Xia Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
13
|
Chashchina GV, Tevonyan LL, Beniaminov AD, Kaluzhny DN. Taq-Polymerase Stop Assay to Determine Target Selectivity of G4 Ligands in Native Promoter Sequences of MYC, TERT, and KIT Oncogenes. Pharmaceuticals (Basel) 2023; 16:ph16040544. [PMID: 37111301 PMCID: PMC10142109 DOI: 10.3390/ph16040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Computational and high-throughput experimental methods predict thousands of potential quadruplex sequences (PQSs) in the human genome. Often these PQSs contain more than four G-runs, which introduce additional uncertainty into the conformational polymorphism of the G4 DNA. G4-specific ligands, which are currently being actively developed as potential anticancer agents or tools for studying G4 structures in genomes, may preferentially bind to specific G4 structures over the others that can be potentially formed in the extended G-rich genomic region. We propose a simple technique that identifies the sequences that tend to form G4 in the presence of potassium ions or a specific ligand. Thermostable DNA Taq-polymerase stop assay can detect the preferential position of the G4 -ligand binging within a long PQS-rich genomic DNA fragment. This technique was tested for four G4 binders PDS, PhenDC3, Braco-19, and TMPyP4 at three promoter sequences of MYC, KIT, and TERT that contain several PQSs each. We demonstrate that the intensity of polymerase pausing reveals the preferential binding of a ligand to particular G4 structures within the promoter. However, the strength of the polymerase stop at a specific site does not always correlate with the ligand-induced thermodynamic stabilization of the corresponding G4 structure.
Collapse
Affiliation(s)
- Galina V Chashchina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Liana L Tevonyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Artemy D Beniaminov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
14
|
Yuan C, Wang Z, Wang Z, Liu W, Li G, Meng J, Wu R, Wu Q, Wang J, Mei W. Novel Chiral Ru(II) Complexes as Potential c-myc G-quadruplex DNA Stabilizers Inducing DNA Damage to Suppress Triple-Negative Breast Cancer Progression. Int J Mol Sci 2022; 24:ijms24010203. [PMID: 36613647 PMCID: PMC9820592 DOI: 10.3390/ijms24010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Currently, effective drugs for triple-negative breast cancer (TNBC) are lacking in clinics. c-myc is one of the core members during TNBC tumorigenesis, and G-rich sequences in the promoter region can form a G-quadruplex conformation, indicating that the c-myc inhibitor is a possible strategy to fight cancer. Herein, a series of chiral ruthenium(II) complexes ([Ru(bpy)2(DPPZ-R)](ClO4)2, Λ/Δ-1: R = -H, Λ/Δ-2: R = -Br, Λ/Δ-3: R = -C≡C(C6H4)NH2) were researched based on their interaction with c-myc G-quadruplex DNA. Λ-3 and Δ-3 show high affinity and stability to decrease their replication. Additional studies showed that Λ-3 and Δ-3 exhibit higher inhibition against different tumor cells than other molecules. Δ-3 decreases the viability of MDA-MB-231 cells with an IC50 of 25.51 μM, which is comparable with that of cisplatin, with an IC50 of 25.9 μM. Moreover, Δ-3 exhibits acceptable cytotoxic activity against MDA-MB-231 cells in a zebrafish xenograft breast cancer model. Further studies suggested that Δ-3 decreases the viability of MDA-MB-231 cells predominantly through DNA-damage-mediated apoptosis, which may be because Δ-3 can induce DNA damage. In summary, the results indicate that Ru(II) complexes containing alkinyl groups can be developed as c-myc G-quadruplex DNA binders to block TNBC progression.
Collapse
Affiliation(s)
- Chanling Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhixiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zongtao Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wentao Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guohu Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinlan Meng
- Department of Physiology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruzhen Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiong Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 530316, China
- Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (Q.W.); (W.M.)
| | - Jiacheng Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Engineering Technology Research Centre of Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (Q.W.); (W.M.)
| |
Collapse
|
15
|
A first-in-class clinical G-quadruplex-targeting drug. The bench-to-bedside translation of the fluoroquinolone QQ58 to CX-5461 (Pidnarulex). Bioorg Med Chem Lett 2022; 77:129016. [DOI: 10.1016/j.bmcl.2022.129016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022]
|
16
|
Shen R, Li X, Chen Y, Yang A, Kou X. Xanthone derivatives as potential telomeric G-quadruplex stabilizing and cytotoxic agents: Effects of substitution on quadruplex binding affinity and cytotoxicity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Shi X, Teng H, Sun Z. An updated overview of experimental and computational approaches to identify non-canonical DNA/RNA structures with emphasis on G-quadruplexes and R-loops. Brief Bioinform 2022; 23:bbac441. [PMID: 36208174 PMCID: PMC9677470 DOI: 10.1093/bib/bbac441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple types of non-canonical nucleic acid structures play essential roles in DNA recombination and replication, transcription, and genomic instability and have been associated with several human diseases. Thus, an increasing number of experimental and bioinformatics methods have been developed to identify these structures. To date, most reviews have focused on the features of non-canonical DNA/RNA structure formation, experimental approaches to mapping these structures, and the association of these structures with diseases. In addition, two reviews of computational algorithms for the prediction of non-canonical nucleic acid structures have been published. One of these reviews focused only on computational approaches for G4 detection until 2020. The other mainly summarized the computational tools for predicting cruciform, H-DNA and Z-DNA, in which the algorithms discussed were published before 2012. Since then, several experimental and computational methods have been developed. However, a systematic review including the conformation, sequencing mapping methods and computational prediction strategies for these structures has not yet been published. The purpose of this review is to provide an updated overview of conformation, current sequencing technologies and computational identification methods for non-canonical nucleic acid structures, as well as their strengths and weaknesses. We expect that this review will aid in understanding how these structures are characterised and how they contribute to related biological processes and diseases.
Collapse
Affiliation(s)
- Xiaohui Shi
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) at Peking University Cancer Hospital and Institute, Ouhai District, Wenzhou 325000, China
| | - Zhongsheng Sun
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; CAS Center for Excellence in Biotic Interactions and State Key Laboratory of Integrated Management of Pest Insects and Rodents, University of Chinese Academy of Sciences; Institute of Genomic Medicine, Wenzhou Medical University; IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| |
Collapse
|
18
|
Chowdhury S, Wang J, Nuccio SP, Mao H, Di Antonio M. Short LNA-modified oligonucleotide probes as efficient disruptors of DNA G-quadruplexes. Nucleic Acids Res 2022; 50:7247-7259. [PMID: 35801856 PMCID: PMC9303293 DOI: 10.1093/nar/gkac569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (G4s) are well known non-canonical DNA secondary structures that can form in human cells. Most of the tools available to investigate G4-biology rely on small molecule ligands that stabilise these structures. However, the development of probes that disrupt G4s is equally important to study their biology. In this study, we investigated the disruption of G4s using Locked Nucleic Acids (LNA) as invader probes. We demonstrated that strategic positioning of LNA-modifications within short oligonucleotides (10 nts.) can significantly accelerate the rate of G4-disruption. Single-molecule experiments revealed that short LNA-probes can promote disruption of G4s with mechanical stability sufficient to stall polymerases. We corroborated this using a single-step extension assay, revealing that short LNA-probes can relieve replication dependent polymerase-stalling at G4 sites. We further demonstrated the potential of such LNA-based probes to study G4-biology in cells. By using a dual-luciferase assay, we found that short LNA probes can enhance the expression of c-KIT to levels similar to those observed when the c-KIT promoter is mutated to prevent the formation of the c-KIT1 G4. Collectively, our data suggest a potential use of rationally designed LNA-modified oligonucleotides as an accessible chemical-biology tool for disrupting individual G4s and interrogating their biological functions in cells.
Collapse
Affiliation(s)
- Souroprobho Chowdhury
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.,Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Jiayi Wang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Sabrina Pia Nuccio
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.,Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.,The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.,Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.,The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
19
|
Jamroskovic J, Deiana M, Sabouri N. Probing the folding pathways of four-stranded intercalated cytosine-rich motifs at single base-pair resolution. Biochimie 2022; 199:81-91. [PMID: 35452743 DOI: 10.1016/j.biochi.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
Abstract
Cytosine-rich DNA can fold into four-stranded intercalated structures called i-motifs (iMs) under acidic conditions through the formation of hemi-protonated C:C+ base pairs. However, the folding and stability of iMs rely on many other factors that are not yet fully understood. Here, we combined biochemical and biophysical approaches to determine the factors influencing iM stability under a wide range of experimental conditions. By using high-resolution primer extension assays, circular dichroism, and absorption spectroscopies, we demonstrate that the stabilities of three different biologically relevant iMs are not dependent on molecular crowding agents. Instead, some of the crowding agents affected overall DNA synthesis. We also tested a range of small molecules to determine their effect on iM stabilization at physiological temperature and demonstrated that the G-quadruplex-specific molecule CX-5461 is also a promising candidate for selective iM stabilization. This work provides important insights into the requirements needed for different assays to accurately study iM stabilization, which will serve as important tools for understanding the contribution of iMs in cell regulation and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden.
| | - Marco Deiana
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
20
|
The Dynamic Regulation of G-Quadruplex DNA Structures by Cytosine Methylation. Int J Mol Sci 2022; 23:ijms23052407. [PMID: 35269551 PMCID: PMC8910436 DOI: 10.3390/ijms23052407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
It is well known that certain non B-DNA structures, including G-quadruplexes, are key elements that can regulate gene expression. Here, we explore the theory that DNA modifications, such as methylation of cytosine, could act as a dynamic switch by promoting or alleviating the structural formation of G-quadruplex structures in DNA or RNA. The interaction between epigenetic DNA modifications, G4 formation, and the 3D architecture of the genome is a complex and developing area of research. Although there is growing evidence for such interactions, a great deal still remains to be discovered. In vivo, the potential effect that cytosine methylation may have on the formation of DNA structures has remained largely unresearched, despite this being a potential mechanism through which epigenetic factors could regulate gene activity. Such interactions could represent novel mechanisms for important biological functions, including altering nucleosome positioning or regulation of gene expression. Furthermore, promotion of strand-specific G-quadruplex formation in differentially methylated genes could have a dynamic role in directing X-inactivation or the control of imprinting, and would be a worthwhile focus for future research.
Collapse
|
21
|
Malina J, Kostrhunova H, Brabec V. Dinuclear nickel( ii) supramolecular helicates down-regulate gene expression in human cells by stabilizing DNA G-quadruplexes formed in the promoter regions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dinuclear nickel(ii) supramolecular helicates selectively stabilize DNA G-quadruplexes and suppress G-quadruplex-regulated genes.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
22
|
Tu J, Duan M, Liu W, Lu N, Zhou Y, Sun X, Lu Z. Direct genome-wide identification of G-quadruplex structures by whole-genome resequencing. Nat Commun 2021; 12:6014. [PMID: 34650044 PMCID: PMC8516911 DOI: 10.1038/s41467-021-26312-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
We present a user-friendly and transferable genome-wide DNA G-quadruplex (G4) profiling method that identifies G4 structures from ordinary whole-genome resequencing data by seizing the slight fluctuation of sequencing quality. In the human genome, 736,689 G4 structures were identified, of which 45.9% of all predicted canonical G4-forming sequences were characterized. Over 89% of the detected canonical G4s were also identified by combining polymerase stop assays with next-generation sequencing. Testing using public datasets of 6 species demonstrated that the present method is widely applicable. The detection rates of predicted canonical quadruplexes ranged from 32% to 58%. Because single nucleotide variations (SNVs) influence the formation of G4 structures and have individual differences, the given method is available to identify and characterize G4s genome-wide for specific individuals.
Collapse
Affiliation(s)
- Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China.
| | - Mengqin Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Wenli Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Na Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Yue Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China.
| |
Collapse
|
23
|
Teng FY, Jiang ZZ, Guo M, Tan XZ, Chen F, Xi XG, Xu Y. G-quadruplex DNA: a novel target for drug design. Cell Mol Life Sci 2021; 78:6557-6583. [PMID: 34459951 PMCID: PMC11072987 DOI: 10.1007/s00018-021-03921-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.
Collapse
Affiliation(s)
- Fang-Yuan Teng
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zong-Zhe Jiang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao-Zhen Tan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, 61, Avenue du Président Wilson, 94235, Cachan, France.
| | - Yong Xu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
24
|
Ribaudo G, Ongaro A, Oselladore E, Memo M, Gianoncelli A. Combining Electrospray Mass Spectrometry (ESI-MS) and Computational Techniques in the Assessment of G-Quadruplex Ligands: A Hybrid Approach to Optimize Hit Discovery. J Med Chem 2021; 64:13174-13190. [PMID: 34510895 PMCID: PMC8474113 DOI: 10.1021/acs.jmedchem.1c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Guanine-rich sequences
forming G-quadruplexes (GQs) are present
in several genomes, ranging from viral to human. Given their peculiar
localization, the induction of GQ formation or GQ stabilization with
small molecules represents a strategy for interfering with crucial
biological functions. Investigating the recognition event at the molecular
level, with the aim of fully understanding the triggered pharmacological
effects, is challenging. Native electrospray ionization mass spectrometry
(ESI-MS) is being optimized to study these noncovalent assemblies.
Quantitative parameters retrieved from ESI-MS studies, such as binding
affinity, the equilibrium binding constant, and sequence selectivity,
will be overviewed. Computational experiments supporting the ESI-MS
investigation and boosting its efficiency in the search for GQ ligands
will also be discussed with practical examples. The combination of
ESI-MS and in silico techniques in a hybrid high-throughput-screening
workflow represents a valuable tool for the medicinal chemist, providing
data on the quantitative and structural aspects of ligand–GQ
interactions.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Erika Oselladore
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
25
|
Deiana M, Mosser M, Le Bahers T, Dumont E, Dudek M, Denis-Quanquin S, Sabouri N, Andraud C, Matczyszyn K, Monnereau C, Guy L. Light-induced in situ chemical activation of a fluorescent probe for monitoring intracellular G-quadruplex structures. NANOSCALE 2021; 13:13795-13808. [PMID: 34477654 DOI: 10.1039/d1nr02855c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Light-activated functional materials capable of remote control over duplex and G-quadruplex (G4) nucleic acids formation at the cellular level are still very rare. Herein, we report on the photoinduced macrocyclisation of a helicenoid quinoline derivative of binaphthol that selectively provides easy access to an unprecedented class of extended heteroaromatic structures with remarkable photophysical and DNA/RNA binding properties. Thus, while the native bisquinoline precursor shows no DNA binding activity, the new in situ photochemically generated probe features high association constants to DNA and RNA G4s. The latter inhibits DNA synthesis by selectively stabilizing G4 structures associated with oncogenic promoters and telomere repeat units. Finally, the light sensitive compound is capable of in cellulo photoconversion, localizes primarily in the G4-rich sites of cancer cells, competes with a well-known G4 binder and shows a clear nuclear co-localization with the quadruplex specific antibody BG4. This work provides a benchmark for the future design and development of a brand-new generation of light-activated target-selective G4-binders.
Collapse
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Deiana M, Obi I, Andreasson M, Tamilselvi S, Chand K, Chorell E, Sabouri N. A Minimalistic Coumarin Turn-On Probe for Selective Recognition of Parallel G-Quadruplex DNA Structures. ACS Chem Biol 2021; 16:1365-1376. [PMID: 34328300 PMCID: PMC8397291 DOI: 10.1021/acschembio.1c00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
G-quadruplex (G4)
DNA structures are widespread in the human genome
and are implicated in biologically important processes such as telomere
maintenance, gene regulation, and DNA replication. Guanine-rich sequences
with potential to form G4 structures are prevalent in the promoter
regions of oncogenes, and G4 sites are now considered as attractive
targets for anticancer therapies. However, there are very few reports
of small “druglike” optical G4 reporters that are easily
accessible through one-step synthesis and that are capable of discriminating
between different G4 topologies. Here, we present a small water-soluble
light-up fluorescent probe that features a minimalistic amidinocoumarin-based
molecular scaffold that selectively targets parallel G4 structures
over antiparallel and non-G4 structures. We showed that this biocompatible
ligand is able to selectively stabilize the G4 template resulting
in slower DNA synthesis. By tracking individual DNA molecules, we
demonstrated that the G4-stabilizing ligand perturbs DNA replication
in cancer cells, resulting in decreased cell viability. Moreover,
the fast-cellular entry of the probe enabled detection of nucleolar
G4 structures in living cells. Finally, insights gained from the structure–activity
relationships of the probe suggest the basis for the recognition of
parallel G4s, opening up new avenues for the design of new biocompatible
G4-specific small molecules for G4-driven theranostic applications.
Collapse
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Måns Andreasson
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Shanmugam Tamilselvi
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Karam Chand
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Erik Chorell
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
27
|
Mitteaux J, Lejault P, Wojciechowski F, Joubert A, Boudon J, Desbois N, Gros CP, Hudson RHE, Boulé JB, Granzhan A, Monchaud D. Identifying G-Quadruplex-DNA-Disrupting Small Molecules. J Am Chem Soc 2021; 143:12567-12577. [PMID: 34346684 DOI: 10.1021/jacs.1c04426] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The quest for small molecules that strongly bind to G-quadruplex-DNA (G4), so-called G4 ligands, has invigorated the G4 research field from its very inception. Massive efforts have been invested to discover or rationally design G4 ligands, evaluate their G4-interacting properties in vitro through a series of now widely accepted and routinely implemented assays, and use them as innovative chemical biology tools to interrogate cellular networks that might involve G4s. In sharp contrast, only uncoordinated efforts aimed at developing small molecules that destabilize G4s have been invested to date, even though it is now recognized that such molecular tools would have tremendous application in neurobiology as many genetic and age-related diseases are caused by an overrepresentation of G4s. Herein, we report on our efforts to develop in vitro assays to reliably identify molecules able to destabilize G4s. This workflow comprises the newly designed G4-unfold assay, adapted from the G4-helicase assay implemented with Pif1, as well as a series of biophysical and biochemical techniques classically used to study G4/ligand interactions (CD, UV-vis, PAGE, and FRET-melting), and a qPCR stop assay, adapted from a Taq-based protocol recently used to identify G4s in the genomic DNA of Schizosaccharomyces pombe. This unique, multipronged approach leads to the characterization of a phenylpyrrolocytosine (PhpC)-based G-clamp analog as a prototype of G4-disrupting small molecule whose properties are validated through many different and complementary in vitro evaluations.
Collapse
Affiliation(s)
- Jérémie Mitteaux
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Pauline Lejault
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Filip Wojciechowski
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Alexandra Joubert
- Genome Structure and Instability Laboratory, CNRS UMR 7196, INSERM U1154, National Museum of Natural History, Alliance Sorbonne Université, 75005 Paris, France
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, ICB CNRS UMR 6303, UBFC, 21078 Dijon, France
| | - Nicolas Desbois
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Claude P Gros
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Jean-Baptiste Boulé
- Genome Structure and Instability Laboratory, CNRS UMR 7196, INSERM U1154, National Museum of Natural History, Alliance Sorbonne Université, 75005 Paris, France
| | - Anton Granzhan
- Institut Curie, CNRS UMR 9187, INSERM U1196, PSL Research University, 91405 Orsay, France.,Université Paris Saclay, CNRS UMR 9187, INSERM U1196, 91405 Orsay, France
| | - David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, 21078 Dijon, France
| |
Collapse
|
28
|
Dahal S, Siddiqua H, Katapadi VK, Iyer D, Raghavan SC. Characterization of G4 DNA formation in mitochondrial DNA and their potential role in mitochondrial genome instability. FEBS J 2021; 289:163-182. [PMID: 34228888 DOI: 10.1111/febs.16113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/29/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022]
Abstract
Mitochondria possess their own genome which can be replicated independently of nuclear DNA. Mitochondria being the powerhouse of the cell produce reactive oxygen species, due to which the mitochondrial genome is frequently exposed to oxidative damage. Previous studies have demonstrated an association of mitochondrial deletions to aging and human disorders. Many of these deletions were present adjacent to non-B DNA structures. Thus, we investigate noncanonical structures associated with instability in mitochondrial genome. In silico studies revealed the presence of > 100 G-quadruplex motifs (of which 5 have the potential to form 3-plate G4 DNA), 23 inverted repeats, and 3 mirror repeats in the mitochondrial DNA (mtDNA). Further analysis revealed that among the deletion breakpoints from patients with mitochondrial disorders, majority are located at G4 DNA motifs. Interestingly, ~ 50% of the deletions were at base-pair positions 8271-8281, ~ 35% were due to deletion at 12362-12384, and ~ 12% due to deletion at 15516-15545. Formation of 3-plate G-quadruplex DNA structures at mitochondrial fragile regions was characterized using electromobility shift assay, circular dichroism (CD), and Taq polymerase stop assay. All 5 regions could fold into both intramolecular and intermolecular G-quadruplex structures in a KCl-dependent manner. G4 DNA formation was in parallel orientation, which was abolished in the presence of LiCl. The formation of G4 DNA affected both replication and transcription. Finally, immunolocalization of BG4 with MitoTracker confirmed the formation of G-quadruplex in mitochondrial genome. Thus, we characterize the formation of 5 different G-quadruplex structures in human mitochondrial region, which may contribute toward formation of mitochondrial deletions.
Collapse
Affiliation(s)
- Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Humaira Siddiqua
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Vijeth K Katapadi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Divyaanka Iyer
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
29
|
Malina J, Kostrhunova H, Scott P, Brabec V. Fe II Metallohelices Stabilize DNA G-Quadruplexes and Downregulate the Expression of G-Quadruplex-Regulated Oncogenes. Chemistry 2021; 27:11682-11692. [PMID: 34048082 DOI: 10.1002/chem.202101388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Indexed: 12/15/2022]
Abstract
DNA G-quadruplexes (G4s) have been identified within the promoter regions of many proto-oncogenes. Thus, G4s represent attractive targets for cancer therapy, and the design and development of new drugs as G4 binders is a very active field of medicinal chemistry. Here, molecular biophysics and biology methods were employed to investigate the interaction of chiral metallohelices with a series of four DNA G4s (hTelo, c-myc, c-kit1, c-kit2) that are formed by the human telomeric sequence (hTelo) and in the promoter regions of c-MYC and c-KIT proto-oncogenes. We show that the investigated water-compatible, optically pure metallohelices, which are made by self-assembly of simple nonpeptidic organic components around FeII ions and exhibit bioactivity emulating the natural systems, bind with high affinity to G4 DNA and much lower affinity to duplex DNA. Notably, both enantiomers of a metallohelix containing a m-xylenyl bridge (5 b) were found to effectively inhibit primer elongation catalyzed by Taq DNA polymerase by stabilizing G4 structures formed in the template strands containing c-myc and c-kit2 G4-forming sequences. Moreover, both enantiomers of 5 b downregulated the expression of c-MYC and c-KIT oncogenes in human embryonic kidney cells at mRNA and protein levels. As metallohelices also bind alternative nucleic acid structures, they hold promise as potential multitargeted drugs.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Peter Scott
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| |
Collapse
|
30
|
Hossain KA, Jurkowski M, Czub J, Kogut M. Mechanism of recognition of parallel G-quadruplexes by DEAH/RHAU helicase DHX36 explored by molecular dynamics simulations. Comput Struct Biotechnol J 2021; 19:2526-2536. [PMID: 34025941 PMCID: PMC8114077 DOI: 10.1016/j.csbj.2021.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Because of high stability and slow unfolding rates of G-quadruplexes (G4), cells have evolved specialized helicases that disrupt these non-canonical DNA and RNA structures in an ATP-dependent manner. One example is DHX36, a DEAH-box helicase, which participates in gene expression and replication by recognizing and unwinding parallel G4s. Here, we studied the molecular basis for the high affinity and specificity of DHX36 for parallel-type G4s using all-atom molecular dynamics simulations. By computing binding free energies, we found that the two main G4-interacting subdomains of DHX36, DSM and OB, separately exhibit high G4 affinity but they act cooperatively to recognize two distinctive features of parallel G4s: the exposed planar face of a guanine tetrad and the unique backbone conformation of a continuous guanine tract, respectively. Our results also show that DSM-mediated interactions are the main contributor to the binding free energy and rely on making extensive van der Waals contacts between the GXXXG motifs and hydrophobic residues of DSM and a flat guanine plane. Accordingly, the sterically more accessible 5'-G-tetrad allows for more favorable van der Waals and hydrophobic interactions which leads to the preferential binding of DSM to the 5'-side. In contrast to DSM, OB binds to G4 mostly through polar interactions by flexibly adapting to the 5'-terminal guanine tract to form a number of strong hydrogen bonds with the backbone phosphate groups. We also identified a third DHX36/G4 interaction site formed by the flexible loop missing in the crystal structure.
Collapse
Affiliation(s)
- Kazi Amirul Hossain
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Michal Jurkowski
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Mateusz Kogut
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
31
|
Disruptors, a new class of oligonucleotide reagents, significantly improved PCR performance on templates containing stable intramolecular secondary structures. Anal Biochem 2021; 624:114169. [PMID: 33766577 DOI: 10.1016/j.ab.2021.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
Intramolecular secondary structures within templates have been shown to lower PCR performance. Whereas many approaches have been developed to mitigate such impairment on PCR, their effects can vary greatly depending on template sequences. Here we present a novel, universally effective approach to improve PCR performance involving specifically designed oligonucleotides called disruptors. A disruptor contained three functional components, an anchor designed to initiate template binding, an effector to disrupt intramolecular secondary structure, and a 3' blocker to prevent its elongation by DNA polymerase. A functional mechanism for a disruptor to improve PCR efficiency was proposed where anchor first binds to template followed by effector-mediated strand displacement to unwind intramolecular secondary structure. Such a mechanism was consistent with the observation that anchor played a more critical role for disruptor function. As an example of potential disruptor applications, inverted terminal repeat sequences of recombinant adeno-associated virus vectors were successfully amplified in the presence of disruptors despite their well-known reputation as some of the most difficult templates for PCR amplification and Sanger sequencing due to their ultra-stable T-shaped hairpin structures. In stark contrast, both DMSO and betaine, two PCR additives routinely used to facilitate PCR amplification and Sanger sequencing of GC-rich templates, did not demonstrate any improving effect.
Collapse
|
32
|
Desai N, Shah V, Datta B. Assessing G4-Binding Ligands In Vitro and in Cellulo Using Dimeric Carbocyanine Dye Displacement Assay. Molecules 2021; 26:molecules26051400. [PMID: 33807659 PMCID: PMC7961521 DOI: 10.3390/molecules26051400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/31/2021] [Accepted: 02/24/2021] [Indexed: 12/05/2022] Open
Abstract
G-quadruplexes (G4) are the most actively studied non-canonical secondary structures formed by contiguous repeats of guanines in DNA or RNA strands. Small molecule mediated targeting of G-quadruplexes has emerged as an attractive tool for visualization and stabilization of these structures inside the cell. Limited number of DNA and RNA G4-selective assays have been reported for primary ligand screening. A combination of fluorescence spectroscopy, AFM, CD, PAGE, and confocal microscopy have been used to assess a dimeric carbocyanine dye B6,5 for screening G4-binding ligands in vitro and in cellulo. The dye B6,5 interacts with physiologically relevant DNA and RNA G4 structures, resulting in fluorescence enhancement of the molecule as an in vitro readout for G4 selectivity. Interaction of the dye with G4 is accompanied by quadruplex stabilization that extends its use in primary screening of G4 specific ligands. The molecule is cell permeable and enables visualization of quadruplex dominated cellular regions of nucleoli using confocal microscopy. The dye is displaced by quarfloxin in live cells. The dye B6,5 shows remarkable duplex to quadruplex selectivity in vitro along with ligand-like stabilization of DNA G4 structures. Cell permeability and response to RNA G4 structures project the dye with interesting theranostic potential. Our results validate that B6,5 can serve the dual purpose of visualization of DNA and RNA G4 structures and screening of G4 specific ligands, and adds to the limited number of probes with such potential.
Collapse
Affiliation(s)
- Nakshi Desai
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, India; (N.D.); (V.S.)
| | - Viraj Shah
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, India; (N.D.); (V.S.)
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, India; (N.D.); (V.S.)
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, Gandhinagar 382355, India
- Correspondence: ; Tel.: +91-79-2395-2427; Fax: +91-79-2397-2622
| |
Collapse
|
33
|
Malina J, Kostrhunova H, Farrell NP, Brabec V. Antitumor substitution-inert polynuclear platinum complexes stabilize G-quadruplex DNA and suppress G-quadruplex-mediated gene expression. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00488c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Anticancer substitution-inert polynuclear platinum(ii) complexes (SI-PPCs) effectively stabilize DNA G-quadruplexes (G4) and terminate DNA polymerization on templates containing G4-forming sequences.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| | | | - Viktor Brabec
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| |
Collapse
|
34
|
Chaudhuri R, Bhattacharya S, Dash J, Bhattacharya S. Recent Update on Targeting c-MYC G-Quadruplexes by Small Molecules for Anticancer Therapeutics. J Med Chem 2020; 64:42-70. [PMID: 33355454 DOI: 10.1021/acs.jmedchem.0c01145] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Guanine-rich DNA sequences have the propensity to adopt four-stranded tetrahelical G-quadruplex (G4) structures that are overrepresented in gene promoters. The structural polymorphism and physicochemical properties of these non-Watson-Crick G4 structures make them important targets for drug development. The guanine-rich nuclease hypersensitivity element III1 present in the upstream of P1 promoter of c-MYC oncogene has the ability to form an intramolecular parallel G4 structure. The G4 structure that forms transiently in the c-MYC promoter functions as a transcriptional repressor element. The c-MYC oncogene is overexpressed in a wide variety of cancers and plays a key role in cancer progression. Till now, a large number of compounds that are capable of interacting and stabilizing thec-MYC G4 have been reported. In this review, we summarize various c-MYC G4 specific molecules and discuss their effects on c-MYC gene expression in vitro and in vivo.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Semantee Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
35
|
Wang F, Wang C, Liu Y, Lan W, Wang R, Huang S, Cao C. NMR
Studies on the Interaction between Oncogene
RET
G‐Quadruplex
and Berberine
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fei Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- University of Chinese Academy of Science No. 19A, Yuquan Road, Shijingshan District Beijing 100049 China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- University of Chinese Academy of Science No. 19A, Yuquan Road, Shijingshan District Beijing 100049 China
| | - Yaping Liu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- University of Chinese Academy of Science No. 19A, Yuquan Road, Shijingshan District Beijing 100049 China
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- University of Chinese Academy of Science No. 19A, Yuquan Road, Shijingshan District Beijing 100049 China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- University of Chinese Academy of Science No. 19A, Yuquan Road, Shijingshan District Beijing 100049 China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University No 818 Fenghua Road, Ningbo Zhejiang 315211 China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- University of Chinese Academy of Science No. 19A, Yuquan Road, Shijingshan District Beijing 100049 China
| |
Collapse
|
36
|
Obi I, Rentoft M, Singh V, Jamroskovic J, Chand K, Chorell E, Westerlund F, Sabouri N. Stabilization of G-quadruplex DNA structures in Schizosaccharomyces pombe causes single-strand DNA lesions and impedes DNA replication. Nucleic Acids Res 2020; 48:10998-11015. [PMID: 33045725 PMCID: PMC7641769 DOI: 10.1093/nar/gkaa820] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
G-quadruplex (G4) structures are stable non-canonical DNA structures that are implicated in the regulation of many cellular pathways. We show here that the G4-stabilizing compound PhenDC3 causes growth defects in Schizosaccharomyces pombe cells, especially during S-phase in synchronized cultures. By visualizing individual DNA molecules, we observed shorter DNA fragments of newly replicated DNA in the PhenDC3-treated cells, suggesting that PhenDC3 impedes replication fork progression. Furthermore, a novel single DNA molecule damage assay revealed increased single-strand DNA lesions in the PhenDC3-treated cells. Moreover, chromatin immunoprecipitation showed enrichment of the leading-strand DNA polymerase at sites of predicted G4 structures, suggesting that these structures impede DNA replication. We tested a subset of these sites and showed that they form G4 structures, that they stall DNA synthesis in vitro and that they can be resolved by the breast cancer-associated Pif1 family helicases. Our results thus suggest that G4 structures occur in S. pombe and that stabilized/unresolved G4 structures are obstacles for the replication machinery. The increased levels of DNA damage might further highlight the association of the human Pif1 helicase with familial breast cancer and the onset of other human diseases connected to unresolved G4 structures.
Collapse
Affiliation(s)
- Ikenna Obi
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Matilda Rentoft
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Vandana Singh
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Karam Chand
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Erik Chorell
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
37
|
Chen M, Chen Q, Li Y, Yang Z, Taylor EW, Zhao L. A G-quadruplex nanoswitch in the SGK1 promoter regulates isoform expression by K +/Na + balance and resveratrol binding. Biochim Biophys Acta Gen Subj 2020; 1865:129778. [PMID: 33144140 DOI: 10.1016/j.bbagen.2020.129778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND High sodium intake can up-regulate the level of renal serum- and glucocorticoid-inducible kinase-1 (SGK1), which plays a pivotal role in controlling blood pressure via activation of the epithelial sodium channel (ENaC), which can lead to salt-sensitive hypertension. Increased potassium intake, or a vegetarian diet, counteracts salt-sensitive hypertension, but the underlying mechanisms are not fully understood. METHODS Bioinformatics and molecular modeling were used to identify G-quadruplex (G4) and their conformations in the SGK1 promoter. CD spectra and UV melting dynamics were measured to study the stability of G4 as influenced by potassium/sodium balance and resveratrol. RT-PCR and Western blot were employed to study the effects of potassium and resveratrol on the SGK1 isoform expression. RESULTS The SGK1 gene encodes a G4 structure in the proximal upstream of promoter-2; the G4 structure is stabilized by potassium or resveratrol, but destabilized by sodium. Super-physiological levels of sodium stimulate the transcription of all SGK1 isoforms, whereas resveratrol or potassium supplementation inhibits the transcription of iso-2 and iso-3, but not iso-1. CONCLUSIONS Stabilizing the G4 by potassium or resveratrol induces alternative promoter usage and/or pre-mRNA splicing in the transcription of SGK1. GENERAL SIGNIFICANCE Potassium/sodium ion balance or resveratrol binding can act to regulate G4 molecular switches for controlling SGK1 gene expression, thereby presenting a new avenue for drug development.
Collapse
Affiliation(s)
- Mengjie Chen
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qi Chen
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yirui Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Zhenjun Yang
- School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Ethan W Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | - Lijun Zhao
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
38
|
Barthwal R, Raje S, Pandav K. Structural basis for stabilization of human telomeric G-quadruplex [d-(TTAGGGT)] 4 by anticancer drug epirubicin. Bioorg Med Chem 2020; 28:115761. [PMID: 32992248 DOI: 10.1016/j.bmc.2020.115761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Anthracycline anticancer drugs show multiple strategies of action on gene functioning by regulation of telomerase enzyme by apoptotic factors, e.g. ceramide level, p53 activity, bcl-2 protein levels, besides inhibiting DNA/RNA synthesis and topoisomerase-II action. We report binding of epirubicin with G-quadruplex (G4) DNA, [d-(TTAGGGT)]4, comprising human telomeric DNA sequence TTAGGG, using 1H and 31P NMR spectroscopy. Diffusion ordered spectroscopy, sequence selective changes in chemical shift (~0.33 ppm) and line broadening in DNA signals suggest formation of a well-defined complex. Presence of sequential nuclear Overhauser enhancements at all base quartet steps and absence of large downfield shifts in 31P resonances preclude intercalative mode of interaction. Restrained molecular dynamics simulations using AMBER force field incorporating intermolecular drug to DNA interproton distances, involving ring D protons of epirubicin depict external binding close to T1-T2-A3 and G6pT7 sites. Binding induced thermal stabilization of G4 DNA (~36 °C), obtained from imino protons and differential scanning calorimetry, is likely to come in the way of telomerase association with telomeres. The findings pave the way for drug-designing with modifications at ring D and daunosamine sugar.
Collapse
Affiliation(s)
- Ritu Barthwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | - Shailja Raje
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kumud Pandav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
39
|
Malina J, Scott P, Brabec V. Stabilization of human telomeric RNA G-quadruplex by the water-compatible optically pure and biologically-active metallohelices. Sci Rep 2020; 10:14543. [PMID: 32884069 PMCID: PMC7471899 DOI: 10.1038/s41598-020-71429-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
RNA G-quadruplexes have been suggested to play key roles in fundamental biological processes and are linked to human diseases. Thus, they also represent good potential therapeutic targets. Here, we describe, using the methods of molecular biophysics, interactions of a series of biologically-active supramolecular cationic metallohelices with human telomeric RNA G-quadruplex. We demonstrate that the investigated metallohelices bind with a high affinity to human telomeric RNA G-quadruplex and that their binding selectivity considerably differs depending on the dimensions and overall shape of the metallohelices. Additionally, the investigated metallohelices inhibit DNA synthesis on the RNA template containing four repeats of the human telomeric sequence by stabilizing the RNA G-quadruplex structure. Collectively, the results of this study suggest that stabilization of RNA sequences capable of G-quadruplex formation by metallohelices investigated in this work might contribute to the mechanism of their biological activity.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Peter Scott
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.
| |
Collapse
|
40
|
Han JH, Cho HY, Kim DY, Jang YJ, Lee YA, Kim SK. Binding properties of pyrene-porphyrin dyad to G-quadruplexes in the presence of K+ and Na+ ion and their effect on stability. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Design, synthesis and SARs of novel telomerase inhibitors based on BIBR1532. Bioorg Chem 2020; 102:104077. [DOI: 10.1016/j.bioorg.2020.104077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
|
42
|
Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol 2020; 21:459-474. [PMID: 32313204 PMCID: PMC7115845 DOI: 10.1038/s41580-020-0236-x] [Citation(s) in RCA: 752] [Impact Index Per Article: 150.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
DNA and RNA can adopt various secondary structures. Four-stranded G-quadruplex (G4) structures form through self-recognition of guanines into stacked tetrads, and considerable biophysical and structural evidence exists for G4 formation in vitro. Computational studies and sequencing methods have revealed the prevalence of G4 sequence motifs at gene regulatory regions in various genomes, including in humans. Experiments using chemical, molecular and cell biology methods have demonstrated that G4s exist in chromatin DNA and in RNA, and have linked G4 formation with key biological processes ranging from transcription and translation to genome instability and cancer. In this Review, we first discuss the identification of G4s and evidence for their formation in cells using chemical biology, imaging and genomic technologies. We then discuss possible functions of DNA G4s and their interacting proteins, particularly in transcription, telomere biology and genome instability. Roles of RNA G4s in RNA biology, especially in translation, are also discussed. Furthermore, we consider the emerging relationships of G4s with chromatin and with RNA modifications. Finally, we discuss the connection between G4 formation and synthetic lethality in cancer cells, and recent progress towards considering G4s as therapeutic targets in human diseases.
Collapse
Affiliation(s)
- Dhaval Varshney
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Jochen Spiegel
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Katherine Zyner
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - David Tannahill
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK.
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Zafar M, Hazeslip L, Chauhan MZ, Byrd AK. The Expression of Human DNA Helicase B Is Affected by G-Quadruplexes in the Promoter. Biochemistry 2020; 59:2401-2409. [PMID: 32478505 PMCID: PMC7346868 DOI: 10.1021/acs.biochem.0c00218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Indexed: 12/25/2022]
Abstract
G-Quadruplexes are secondary structures that can form in guanine-rich DNA and RNA that have been implicated in regulating multiple biological processes, including transcription. G-Quadruplex-forming sequences are prevalent in promoter regions of proto-oncogenes and DNA repair proteins. HELB is a human helicase involved in DNA replication and repair with 12 runs of three to four guanines in the proximal promoter. This sequence has the potential to form three canonical three-tetrad G-quadruplexes. Our results show that although all three G-quadruplexes can form, a structure containing two noncanonical G-quadruplexes with longer loops containing runs of three to four guanines is the most prevalent. These HELB G-quadruplexes are stable under physiological conditions. In cells, stabilization of the G-quadruplexes results in a decrease in the level of HELB expression, suggesting that the G-quadruplexes in the HELB promoter serve as transcriptional repressors.
Collapse
Affiliation(s)
- Maroof
Khan Zafar
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Lindsey Hazeslip
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Muhammad Zain Chauhan
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alicia K. Byrd
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Winthrop
P. Rockefeller Cancer Institute, Little Rock, Arkansas 72205, United States
| |
Collapse
|
44
|
Majee P, Shankar U, Pasadi S, Muniyappa K, Nayak D, Kumar A. Genome-wide analysis reveals a regulatory role for G-quadruplexes during Adenovirus multiplication. Virus Res 2020; 283:197960. [DOI: 10.1016/j.virusres.2020.197960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
|
45
|
He YD, Zheng KW, Wen CJ, Li XM, Gong JY, Hao YH, Zhao Y, Tan Z. Selective Targeting of Guanine-Vacancy-Bearing G-Quadruplexes by G-Quartet Complementation and Stabilization with a Guanine-Peptide Conjugate. J Am Chem Soc 2020; 142:11394-11403. [PMID: 32491844 DOI: 10.1021/jacs.0c00774] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stabilization of G-quadruplexes (G4s) formed in guanine-rich (G-rich) nucleic acids by small-molecule ligands has been extensively explored as a therapeutic approach for diseases such as cancer. Finding ligands with sufficient affinity and specificity toward G4s remains a challenge, and many ligands reported seemed to compromise between the two features. To cope with this challenge, we focused on targeting a particular type of G4s, i.e., the G-vacancy-bearing G-quadruplexes (GVBQs), by taking a structure complementation strategy to enhance both affinity and selectivity. In this approach, a G-quadruplex-binding peptide RHAU23 is guided toward a GVBQ by a guanine moiety covalently linked to the peptide. The filling-in of the vacancy in a GVBQ by the guanine ensures an exclusive recognition of GVBQ. Moreover, the synergy between the RHAU23 and the guanine dramatically improves both the affinity toward and stabilization of the GVBQ. Targeting a GVBQ in DNA by this bifunctional peptide strongly suppresses in vitro replication. This study demonstrates a novel and promising alternative targeting strategy to a distinctive panel of G4s that are as abundant as the canonical ones in the human genome.
Collapse
Affiliation(s)
- Yi-de He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ke-Wei Zheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Cui-Jiao Wen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Xin-Min Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jia-Yuan Gong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yu-Hua Hao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | | | - Zheng Tan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Center for Healthy Aging, Changzhi Medical College, Changzhi 046000, Shanxi, P. R. China
| |
Collapse
|
46
|
Jamroskovic J, Doimo M, Chand K, Obi I, Kumar R, Brännström K, Hedenström M, Nath Das R, Akhunzianov A, Deiana M, Kasho K, Sulis Sato S, Pourbozorgi PL, Mason JE, Medini P, Öhlund D, Wanrooij S, Chorell E, Sabouri N. Quinazoline Ligands Induce Cancer Cell Death through Selective STAT3 Inhibition and G-Quadruplex Stabilization. J Am Chem Soc 2020; 142:2876-2888. [PMID: 31990532 PMCID: PMC7307907 DOI: 10.1021/jacs.9b11232] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The signal transducer
and activator of transcription 3 (STAT3)
protein is a master regulator of most key hallmarks and enablers of
cancer, including cell proliferation and the response to DNA damage.
G-Quadruplex (G4) structures are four-stranded noncanonical DNA structures
enriched at telomeres and oncogenes’ promoters. In cancer cells,
stabilization of G4 DNAs leads to replication stress and DNA damage
accumulation and is therefore considered a promising target for oncotherapy.
Here, we designed and synthesized novel quinazoline-based compounds
that simultaneously and selectively affect these two well-recognized
cancer targets, G4 DNA structures and the STAT3 protein. Using a combination
of in vitro assays, NMR, and molecular dynamics simulations, we show
that these small, uncharged compounds not only bind to the STAT3 protein
but also stabilize G4 structures. In human cultured cells, the compounds
inhibit phosphorylation-dependent activation of STAT3 without affecting
the antiapoptotic factor STAT1 and cause increased formation of G4
structures, as revealed by the use of a G4 DNA-specific antibody.
As a result, treated cells show slower DNA replication, DNA damage
checkpoint activation, and an increased apoptotic rate. Importantly,
cancer cells are more sensitive to these molecules compared to noncancerous
cell lines. This is the first report of a promising class of compounds
that not only targets the DNA damage cancer response machinery but
also simultaneously inhibits the STAT3-induced cancer cell proliferation,
demonstrating a novel approach in cancer therapy.
Collapse
Affiliation(s)
- Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - Mara Doimo
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - Karam Chand
- Department of Chemistry , Umeå University , Umeå 90736 , Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - Rajendra Kumar
- Department of Chemistry , Umeå University , Umeå 90736 , Sweden
| | - Kristoffer Brännström
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | | | | | - Almaz Akhunzianov
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden.,Institute of Fundamental Medicine and Biology , Kazan Federal University , Kazan 420008 , Russia
| | - Marco Deiana
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - Kazutoshi Kasho
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - Sebastian Sulis Sato
- Department of Integrative Medical Biology , Umeå University , Umeå 90736 , Sweden
| | - Parham L Pourbozorgi
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - James E Mason
- Department of Radiation Sciences , Umeå University , Umeå 90736 , Sweden
| | - Paolo Medini
- Department of Integrative Medical Biology , Umeå University , Umeå 90736 , Sweden
| | - Daniel Öhlund
- Department of Radiation Sciences , Umeå University , Umeå 90736 , Sweden
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - Erik Chorell
- Department of Chemistry , Umeå University , Umeå 90736 , Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| |
Collapse
|
47
|
Deiana M, Chand K, Jamroskovic J, Obi I, Chorell E, Sabouri N. A Light‐up Logic Platform for Selective Recognition of Parallel G‐Quadruplex Structures via Disaggregation‐Induced Emission. Angew Chem Int Ed Engl 2020; 59:896-902. [DOI: 10.1002/anie.201912027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/23/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Karam Chand
- Department of ChemistryUmeå University 90187 Umeå Sweden
| | - Jan Jamroskovic
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Erik Chorell
- Department of ChemistryUmeå University 90187 Umeå Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| |
Collapse
|
48
|
Parekh VJ, Niccum BA, Shah R, Rivera MA, Novak MJ, Geinguenaud F, Wien F, Arluison V, Sinden RR. Role of Hfq in Genome Evolution: Instability of G-Quadruplex Sequences in E. coli. Microorganisms 2019; 8:microorganisms8010028. [PMID: 31877879 PMCID: PMC7023247 DOI: 10.3390/microorganisms8010028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
Abstract
Certain G-rich DNA repeats can form quadruplex in bacterial chromatin that can present blocks to DNA replication and, if not properly resolved, may lead to mutations. To understand the participation of quadruplex DNA in genomic instability in Escherichia coli (E. coli), mutation rates were measured for quadruplex-forming DNA repeats, including (G3T)4, (G3T)8, and a RET oncogene sequence, cloned as the template or nontemplate strand. We evidence that these alternative structures strongly influence mutagenesis rates. Precisely, our results suggest that G-quadruplexes form in E. coli cells, especially during transcription when the G-rich strand can be displaced by R-loop formation. Structure formation may then facilitate replication misalignment, presumably associated with replication fork blockage, promoting genomic instability. Furthermore, our results also evidence that the nucleoid-associated protein Hfq is involved in the genetic instability associated with these sequences. Hfq binds and stabilizes G-quadruplex structure in vitro and likely in cells. Collectively, our results thus implicate quadruplexes structures and Hfq nucleoid protein in the potential for genetic change that may drive evolution or alterations of bacterial gene expression.
Collapse
Affiliation(s)
- Virali J. Parekh
- Laboratory of DNA Structure and Mutagenesis, Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Brittany A. Niccum
- Department of Mathematics, Florida Institute of Technology, Melbourne, FL 32901, USA;
| | - Rachna Shah
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA; (R.S.); (M.A.R.)
| | - Marisa A. Rivera
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA; (R.S.); (M.A.R.)
| | - Mark J. Novak
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology; Rapid City, SD 57701, USA;
| | - Frederic Geinguenaud
- Plateforme CNanoMat & Inserm U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France;
| | - Frank Wien
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France;
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Université de Paris, UFR Sciences du vivant, 35 rue Hélène Brion, 75205 Paris cedex, France
- Correspondence: (V.A.); (R.R.S.); Tel.: +1-605-394-1678 (R.R.S.)
| | - Richard R. Sinden
- Laboratory of DNA Structure and Mutagenesis, Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
- Correspondence: (V.A.); (R.R.S.); Tel.: +1-605-394-1678 (R.R.S.)
| |
Collapse
|
49
|
Deiana M, Chand K, Jamroskovic J, Obi I, Chorell E, Sabouri N. A Light‐up Logic Platform for Selective Recognition of Parallel G‐Quadruplex Structures via Disaggregation‐Induced Emission. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Karam Chand
- Department of ChemistryUmeå University 90187 Umeå Sweden
| | - Jan Jamroskovic
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| | - Erik Chorell
- Department of ChemistryUmeå University 90187 Umeå Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and BiophysicsUmeå University 90187 Umeå Sweden
| |
Collapse
|
50
|
Stefos GC, Theodorou G, Politis I. DNA G-quadruplexes: functional significance in plant and farm animal science. Anim Biotechnol 2019; 32:262-271. [PMID: 31642375 DOI: 10.1080/10495398.2019.1679823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
G-quadruplexes (G4s) are non-canonical structures that can be formed in DNA and RNA sequences which carry four short runs of guanines. They are distributed in the whole genome but are enriched in gene promoter regions, gene UTRs and chromosome telomeres. The whole array of their functional roles is not fully explored yet but there is solid evidence supporting their implication in a number of processes like regulation of transcription, replication and telomere organization, among others. During the last decade, there is an increased research interest for G4s that has resulted in a better understanding of their role in several physiological and pathological conditions. On the other hand, these structures are poorly studied in plant species and animals of agricultural interest. Here, we summarize the current methods that are used for studying G4s, we review the studies concerning plants and farm animals and we discuss the advantages of a more thorough inclusion of G4s research in the agricultural sciences.
Collapse
Affiliation(s)
- Georgios C Stefos
- Independent researcher, Agricultural University of Athens, Athens, Greece
| | - Georgios Theodorou
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Athens, Greece
| | - Ioannis Politis
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Athens, Greece
| |
Collapse
|