1
|
Mukherjee A, Vasquez KM. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie 2011; 93:1197-208. [PMID: 21501652 DOI: 10.1016/j.biochi.2011.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/01/2011] [Indexed: 12/18/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | | |
Collapse
|
2
|
Sargent RG, Kim S, Gruenert DC. Oligo/polynucleotide-based gene modification: strategies and therapeutic potential. Oligonucleotides 2011; 21:55-75. [PMID: 21417933 DOI: 10.1089/oli.2010.0273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.
Collapse
Affiliation(s)
- R Geoffrey Sargent
- Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California 94115, USA
| | | | | |
Collapse
|
3
|
Datta K, Purkayastha S, Neumann RD, Pastwa E, Winters TA. Base damage immediately upstream from double-strand break ends is a more severe impediment to nonhomologous end joining than blocked 3'-termini. Radiat Res 2011; 175:97-112. [PMID: 21175352 PMCID: PMC3518376 DOI: 10.1667/rr2332.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Radiation-induced DNA double-strand breaks (DSBs) are critical cytotoxic lesions that are typically repaired by nonhomologous end joining (NHEJ) in human cells. Our previous work indicated that the highly cytotoxic DSBs formed by (125)I decay possess base damage clustered within 8 to 10 bases of the break and 3'-phosphate (P) and 3'-OH ends. This study examined the effect of such structures on NHEJ in in vitro assays employing either (125)I decay-induced DSB linearized plasmid DNA or structurally defined duplex oligonucleotides. Duplex oligonucleotides that possess either a 3'-P or 3'-phosphoglycolate (PG) or a ligatable 3'-OH end with either an AP site or an 8-oxo-dG 1 nucleotide upstream (-1n) from the 3'-terminus have been examined for reparability. Moderate to severe end-joining inhibition was observed for modified DSB ends or 8-oxo-dG upstream from a 3'-OH end. In contrast, abolition of end joining was observed with duplexes possessing an AP site upstream from a ligatable 3'-OH end or for a lesion combination involving 3'-P plus an upstream 8-oxo-dG. In addition, base mismatches at the -1n position were also strong inhibitors of NHEJ in this system, suggesting that destabilization of the DSB terminus as a result of base loss or improper base pairing may play a role in the inhibitory effects of these structures. Furthermore, we provide data indicating that DSB end joining is likely to occur prior to removal or repair of base lesions proximal to the DSB terminus. Our results show that base damage or base loss near a DSB end may be a severe block to NHEJ and that complex combinations of lesions presented in the context of a DSB may be more inhibitory than the individual lesions alone. In contrast, blocked DSB 3'-ends alone are only modestly inhibitory to NHEJ. Finally, DNA ligase activity is implicated as being responsible for these effects.
Collapse
Affiliation(s)
- Kamal Datta
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Shubhadeep Purkayastha
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Ronald D. Neumann
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Elzbieta Pastwa
- Department of Medicinal Chemistry, Medical University of Lodz, Lodz, Poland 92-215
| | - Thomas A. Winters
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
4
|
Pavlova AS, Vorob'ev PE, Zarytova VF. [Direct site-specific cleavage of double-stranded DNA by conjugates of bleomycin A5 with triplex-forming oligonucleotide]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2009; 35:215-25. [PMID: 19537173 DOI: 10.1134/s1068162009020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monofunctional conjugates of 15-mer triplex-forming oligonucleotide (TFO) with covalently attached bleomycin A5 residue at the 5'-end (Blm-p15) were synthesized. Bifunctional conjugates of TFO containing, in addition to Blm, the residues of intercalator 6-chloro-2-methoxy-9-aminoacridine (Acr) or (N-(2-hydroxyethyl)phenazinium (Phn) were obtained for the first time. The Acr and Phn residues were attached to the 3'-phosphate group of TFO through L1 and L2 linkers, respectively, resulting in the compounds Blm-p15pL1-Acr and Blm-p15pL2-Phn. The values of dissociation constants of the corresponding triplexes were evaluated using the gel retardation method. The Acr residue in Blm-p15pL1-Acr was shown to enhance the stability of the formed triplex by one order of magnitude. It was demonstrated that all synthesized conjugates are capable of specifically and nonspecifically damaging a target DNA, forming direct breaks and alkaline-labile sites. The extent of the specific cleavage of the target DNA was 15% in the case of a fivefold excess of the conjugates over the DNA duplex. The site-specific triplex-mediated cleavage of a target DNA was shown for the first time to occur predominantly (> 90%) with the formation of the direct breaks of both DNA strands. The results show the availability of bleomycin-containing oligonucleotides as antigene compounds.
Collapse
|
5
|
Chin JY, Glazer PM. Repair of DNA lesions associated with triplex-forming oligonucleotides. Mol Carcinog 2009; 48:389-99. [PMID: 19072762 DOI: 10.1002/mc.20501] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) are gene targeting tools that can bind in the major groove of duplex DNA in a sequence-specific manner. When bound to DNA, TFOs can inhibit gene expression, can position DNA-reactive agents to specific locations in the genome, or can induce targeted mutagenesis and recombination. There is evidence that third strand binding, alone or with an associated cross-link, is recognized and metabolized by DNA repair factors, particularly the nucleotide excision repair pathway. This review examines the evidence for DNA repair of triplex-associated lesions.
Collapse
Affiliation(s)
- Joanna Y Chin
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, 15 York Street, New Haven, CT 06510, USA
| | | |
Collapse
|
6
|
Benfield AP, Macleod MC, Liu Y, Wu Q, Wensel TG, Vasquez KM. Targeted generation of DNA strand breaks using pyrene-conjugated triplex-forming oligonucleotides. Biochemistry 2008; 47:6279-88. [PMID: 18473480 DOI: 10.1021/bi7024029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene targeting by triplex-forming oligonucleotides (TFOs) has proven useful for gene modulation in vivo. Photoreactive molecules have been conjugated to TFOs to direct sequence-specific damage in double-stranded DNA. However, the photoproducts are often repaired efficiently in cells. This limitation has led to the search for sequence-specific photoreactive reagents that can produce more genotoxic lesions. Here we demonstrate that photoactivated pyrene-conjugated TFOs (pyr-TFOs) induce DNA strand breaks near the pyrene moiety with remarkably high efficiency and also produce covalent pyrene-DNA adducts. Free radical scavenging experiments demonstrated a role for singlet oxygen activated by the singlet excited state of pyrene in the mechanism of pyr-TFO-induced DNA damage. In cultured mammalian cells, the effect of photoactivated pyr-TFO-directed DNA damage was to induce mutations, in the form of deletions, approximately 7-fold over background levels, at the targeted site. Thus, pyr-TFOs represent a potentially powerful new tool for directing DNA strand breaks to specific chromosomal locations for biotechnological and potential clinical applications.
Collapse
Affiliation(s)
- Aaron P Benfield
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | | | | | | | | | |
Collapse
|
7
|
Datta K, Weinfeld M, Neumann RD, Winters TA. Determination and analysis of site-specific 125I decay-induced DNA double-strand break end-group structures. Radiat Res 2007; 167:152-66. [PMID: 17390723 DOI: 10.1667/rr0629.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
End groups contribute to the structural complexity of radiation-induced DNA double-strand breaks (DSBs). As such, end-group structures may affect a cell's ability to repair DSBs. The 3'-end groups of strand breaks caused by gamma radiation, or oxidative processes, under oxygenated aqueous conditions have been shown to be distributed primarily between 3'-phosphoglycolate and 3'-phosphate, with 5'-phosphate ends in both cases. In this study, end groups of the high-LET-like DSBs caused by 125I decay were investigated. Site-specific DNA double-strand breaks were produced in plasmid pTC27 in the presence or absence of 2 M DMSO by 125I-labeled triplex-forming oligonucleotide targeting. End-group structure was assessed enzymatically as a function of the DSB end to serve as a substrate for ligation and various forms of end labeling. Using this approach, we have demonstrated 3'-hydroxyl (3'-OH) and 3'-phosphate (3'-P) end groups and 5'-ends (> or = 42%) terminated by phosphate. A 32P postlabeling assay failed to detect 3'-phosphoglycolate in a restriction fragment terminated by the 125I-induced DNA double-strand break, and this is likely due to restricted oxygen diffusion during irradiation as a frozen aqueous solution. Even so, end-group structure and relative distribution varied as a function of the free radical scavenging capacity of the irradiation buffer.
Collapse
Affiliation(s)
- Kamal Datta
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
8
|
Datta K, Jaruga P, Dizdaroglu M, Neumann RD, Winters TA. Molecular analysis of base damage clustering associated with a site-specific radiation-induced DNA double-strand break. Radiat Res 2006; 166:767-81. [PMID: 17067210 PMCID: PMC2901180 DOI: 10.1667/rr0628.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 07/26/2006] [Indexed: 11/03/2022]
Abstract
Base damage flanking a radiation-induced DNA double-strand break (DSB) may contribute to DSB complexity and affect break repair. However, to date, an isolated radiation-induced DSB has not been assessed for such structures at the molecular level. In this study, an authentic site-specific radiation-induced DSB was produced in plasmid DNA by triplex forming oligonucleotide-targeted (125)I decay. A restriction fragment terminated by the DSB was isolated and probed for base damage with the E. coli DNA repair enzymes endonuclease III and formamidopyrimidine-DNA glycosylase. Our results demonstrate base damage clustering within 8 bases of the (125)I-targeted base in the DNA duplex. An increased yield of base damage (purine > pyrimidine) was observed for DSBs formed by irradiation in the absence of DMSO. An internal control fragment 1354 bp upstream from the targeted base was insensitive to enzymatic probing, indicating that the damage detected proximal to the DSB was produced by the (125)I decay that formed the DSB. Gas chromatography-mass spectrometry identified three types of damaged bases in the approximately 32-bp region proximal to the DSB. These base lesions were 8-hydroxyguanine, 8-hydroxyadenine and 5-hydroxycytosine. Finally, evidence is presented for base damage >24 bp upstream from the (125)I-decay site that may form via a charge migration mechanism.
Collapse
Affiliation(s)
- Kamal Datta
- Department of Nuclear Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Pawel Jaruga
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Miral Dizdaroglu
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Ronald D. Neumann
- Department of Nuclear Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Thomas A. Winters
- Department of Nuclear Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892
- Address correspondence to: Nuclear Medicine Department Warren Grant Magnuson Clinical Center National Institutes of Health Bldg. 10, Room 1C401, 9000 Rockville Pike Bethesda, MD 20892 Tel. 301-496-4388 Fax. 301-480-9712
| |
Collapse
|
9
|
Nikjoo H, Girard P, Charlton DE, Hofer KG, Laughton CA. Auger electrons--a nanoprobe for structural, molecular and cellular processes. RADIATION PROTECTION DOSIMETRY 2006; 122:72-9. [PMID: 17132671 DOI: 10.1093/rpd/ncl441] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This paper provides a brief review of recently published work on biophysical and biological aspects of Auger processes. Three specific questions have been considered. (1) Does charge neutralisation contribute to molecular damage such as DNA strand breaks? (2) How many DNA double strand breaks are produced by a single decay of DNA bound (125)I? (3) What is the correlation between number of gammaH2AX foci and number of double strand breaks (DSB)? The paper also gives preliminary reports on two new calculations: (a) calculation of the spectrum of Auger electrons released during decay of (124)I and (b) the use of Auger electrons in the decay of (125)I as a probing agent of novel DNA structures.
Collapse
Affiliation(s)
- H Nikjoo
- USRA, NASA Johnson Space Center, Houston, TX 77058, USA.
| | | | | | | | | |
Collapse
|
10
|
Datta K, Neumann RD, Winters TA. Characterization of a complex 125I-induced DNA double-strand break: implications for repair. Int J Radiat Biol 2005; 81:13-21. [PMID: 15962759 DOI: 10.1080/09553000400017713] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To examine the role of radiation-induced DNA double-strand break (DSB) structural organization in DSB repair, and characterize the structural features of 125I-induced DSBs that may impact the repair process. METHODS Plasmid DNA was linearized by sequence-specific targeting using an 125I-labeled triplex-forming oligonucleotide (TFO). Following isolation from agarose gels, base damage structures associated with the DSB ends in plasmids linearized by the 125I-TFO were characterized by probing with the E. coli DNA damage-specific endonuclease and DNA-glycosylases, endonuclease IV (endo IV), endonuclease III (endo III), and formamidopyrimidine-glycosylase (Fpg). RESULTS Plasmid DNA containing DSBs produced by the high-LET-like effects of 125I-TFO has been shown to support at least 2-fold lower end joining than gamma-ray linearized plasmid, and this may be a consequence of the highly complex structure expected near an 125I-induced DSB end. Therefore, to determine if a high density of base damage exists proximal to the DSBs produced by 125I-TFOs, short fragments of DNA recovered from the DSB end of 125I-TFO-linearized plasmid were enzymatically probed. Base damage and AP site clustering was demonstrated within 3 bases downstream and 7 bases upstream of the targeted base. Furthermore, the pattern and extent of base damage varied depending upon the presence or absence of 2 M DMSO during irradiation. CONCLUSIONS 125I-TFO-induced DSBs exhibit a high degree of base damage clustering proximal to the DSB end. At least 60% of the nucleotides within 10 bp of the 125I decay site are sensitive to cleavage by endo IV, endo III, or Fpg following damage accumulation in the presence of DMSO, whereas > or = 80% are sensitive in the absence of DMSO. The high degree of base damage clustering associated with the 125I-TFO-induced DSB end may be a major factor leading to its negligible in vitro repair by the non-homologous end-joining pathway (NHEJ).
Collapse
Affiliation(s)
- Kamal Datta
- Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
11
|
Pastwa E, Lubner EM, Mezhevaya K, Neumann RD, Winters TA. DNA uptake and repair enzyme access to transfected DNA is under reported by gene expression. Biochem Biophys Res Commun 2003; 306:421-9. [PMID: 12804580 DOI: 10.1016/s0006-291x(03)00972-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene expression is the typical biological end point of interest following transfection. However, transcription may not accurately assess DNA uptake, or the ability of transfected DNA to be acted on by other enzymatic pathways. We have compared DNA uptake to gene expression and the unrelated enzymatic process of DNA double strand break (DSB) repair. Transfection efficiency (at limiting DNA concentration) was assessed as a function of DNA uptake and gene expression in the DSB repair proficient WI38VA13 and MO59K cell lines and the DSB repair defective cell line MO59J, by comparing eGFP expression from the pHygEGFP expression vector with uptake of rhodamine labeled linear pSP189 plasmid (3:1). Repair proficient cells expressed eGFP most efficiently, but never approached DNA uptake levels (>or=90%). Although transfected DNAs were stable in repair proficient cells and degraded in MO59J cells, most cells did not express eGFP, but in the repair proficient cells linear DNA did undergo DSB repair.
Collapse
Affiliation(s)
- Elzbieta Pastwa
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
12
|
Kordyum VA. Our "Shagreen leather" is our problem. And we have to solve it. ACTA ACUST UNITED AC 2003. [DOI: 10.7124/bc.000644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- V. A. Kordyum
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
13
|
Pastwa E, Neumann RD, Mezhevaya K, Winters TA. Repair of radiation-induced DNA double-strand breaks is dependent upon radiation quality and the structural complexity of double-strand breaks. Radiat Res 2003; 159:251-61. [PMID: 12537531 DOI: 10.1667/0033-7587(2003)159[0251:roridd]2.0.co;2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mammalian cells primarily repair DSBs by nonhomologous end joining (NHEJ). To assess the ability of human cells to mediate end joining of complex DSBs such as those produced by chemicals, oxidative events, or high- and low-LET radiation, we employed an in vitro double-strand break repair assay using plasmid DNA linearized by these various agents. We found that human HeLa cell extracts support end joining of complex DSBs and form multimeric plasmid products from substrates produced by the radiomimetic drug bleomycin, 60Co gamma rays, and the effects of 125I decay in DNA. End joining was found to be dependent on the type of DSB-damaging agent, and it decreased as the cytotoxicity of the DSB-inducing agent increased. In addition to the inhibitory effects of DSB end-group structures on repair, NHEJ was found to be strongly inhibited by lesions proximal to DSB ends. The initial repair rate for complex non-ligatable bleomycin-induced DSBs was sixfold less than that of similarly configured (blunt-ended) but less complex (ligatable) restriction enzyme-induced DSBs. Repair of DSBs produced by gamma rays was 15-fold less efficient than repair of restriction enzyme-induced DSBs. Repair of the DSBs produced by 125I was near the lower limit of detection in our assay and was at least twofold lower than that of gamma-ray-induced DSBs. In addition, DSB ends produced by 125I were shown to be blocked by 3'-nucleotide fragments: the removal of these by E. coli endonuclease IV permitted ligation.
Collapse
Affiliation(s)
- Elzbieta Pastwa
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
14
|
Shen C, Rattat D, Buck A, Mehrke G, Polat B, Ribbert H, Schirrmeister H, Mahren B, Matuschek C, Reske SN. Targeting bcl-2 by triplex-forming oligonucleotide--a promising carrier for gene-radiotherapy. Cancer Biother Radiopharm 2003; 18:17-26. [PMID: 12667305 DOI: 10.1089/108497803321269296] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Triplex forming oligonucleotides (TFO) provide a promising tool for gene therapy. DNA damaging agents have been successfully coupled to TFOs and induce site-directed DNA damages. Here, we attempted to apply this antigen strategy using a TFO incorporated with a Conversion-electron-emitter, (99m)technetium, to target bcl-2 gene, the prototypical inhibitor of apoptosis. In the bcl-2 promoter region, we found two TFO binding sites which bind corresponding TFOs with very high specificity and affinity. Both partially and completely phosphorothioated TFOs form stable triplexes and significantly inhibit gene transcription in vitro. We also found that purine motif TFO with a thymidine opposite a thymidine interruption at the polypurine strand can form a stable triplex. In addition, (99m)technetium-conjugated TFOs were found to form a stable triplex and to inhibit bcl-2 gene transcription in vitro. Our results suggest a promising application of this triplex-forming oligonucleotide based Conversion-electron-emitter mediated gene radiotherapy in diseases related to bcl-2 overexpression.
Collapse
Affiliation(s)
- Changxian Shen
- Department of Nuclear Medicine, University of Ulm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Guntaka RV, Varma BR, Weber KT. Triplex-forming oligonucleotides as modulators of gene expression. Int J Biochem Cell Biol 2003; 35:22-31. [PMID: 12467644 DOI: 10.1016/s1357-2725(02)00165-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) have gained prominence in the recent years because of their potential applications in antigene therapy. In particular they have been used as (i) inducers of site-specific mutations, (ii) reagents that selectively and specifically cleave target DNA, and (iii) as modulators of gene expression. In this mini-review, we have made an attempt to highlight the characteristics of these TFOs and the effects of various modifications in the phosphate backbone as well as in the purine and pyrimidine moieties, which contribute to the stability and efficiency of triplex formation. Studies to explore the mechanism of down-regulation of transcription of various genes suggest that at least some TFOs exert their effect by inhibiting binding of specific transcription factors to their cognate cis-acting elements. Recent reports indicate the presence of these potential triplex-forming DNA structures in the genomes of prokaryotes and eukaryotes that may play a major role in target site selection and chromosome segregation as well as in the cause of heritable diseases. Finally, some potential problems in the development of these TFOs as antigene therapeutic agents have also been discussed.
Collapse
Affiliation(s)
- Ramareddy V Guntaka
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA.
| | | | | |
Collapse
|
16
|
Odersky A, Panyutin IV, Panyutin IG, Schunck C, Feldmann E, Goedecke W, Neumann RD, Obe G, Pfeiffer P. Repair of sequence-specific 125I-induced double-strand breaks by nonhomologous DNA end joining in mammalian cell-free extracts. J Biol Chem 2002; 277:11756-64. [PMID: 11821407 DOI: 10.1074/jbc.m111304200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, nonhomologous DNA end joining (NHEJ) is considered the major pathway of double-strand break (DSB) repair. Rejoining of DSB produced by decay of (125)I positioned against a specific target site in plasmid DNA via a triplex-forming oligonucleotide (TFO) was investigated in cell-free extracts from Chinese hamster ovary cells. The efficiency and quality of NHEJ of the "complex" DSB induced by the (125)I-TFO was compared with that of "simple" DSB induced by restriction enzymes. We demonstrate that the extracts are indeed able to rejoin (125)I-TFO-induced DSB, although at approximately 10-fold decreased efficiency compared with restriction enzyme-induced DSB. The resulting spectrum of junctions is highly heterogeneous exhibiting deletions (1-30 bp), base pair substitutions, and insertions and reflects the heterogeneity of DSB induced by the (125)I-TFO within its target site. We show that NHEJ of (125)I-TFO-induced DSB is not a random process that solely depends on the position of the DSB but is driven by the availability of microhomology patches in the target sequence. The similarity of the junctions obtained with the ones found in vivo after (125)I-TFO-mediated radiodamage indicates that our in vitro system may be a useful tool to elucidate the mechanisms of ionizing radiation-induced mutagenesis and repair.
Collapse
Affiliation(s)
- Andrea Odersky
- Institut für Genetik FB9, Universität Essen, Universitätsstrasse 5, D-45117 Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Casey BP, Glazer PM. Gene targeting via triple-helix formation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:163-92. [PMID: 11525382 DOI: 10.1016/s0079-6603(01)67028-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A report on a recent workshop entitled "Gene-Targeted Drugs: Function and Delivery" conveys a justified optimism for the eventual feasibility and therapeutic benefit of gene-targeting strategies. Although multiple approaches are being explored, this chapter focuses primarily on the uses of triplex-forming oligonucleotides (TFOs). TFOs are molecules that bind in the major groove of duplex DNA and by so doing can produce triplex structures. They bind to the purine-rich strand of the duplex through Hoogsteen or reverse Hoogsteen hydrogen bonding. They exist in two sequence motifs, either pyrimidine or purine. Improvements in delivery of these TFOs are reducing the quantities required for an effective intracellular concentration. New TFO chemistries are increasing the half-life of these oligos and expanding the range of sequences that can be targeted. Alone or conjugated to active molecules, TFOs have proven to be versatile agents both in vitro and in vivo. Foremost, TFOs have been employed in antigene strategies as an alternative to antisense technology. Conversely, they are also being investigated as possible upregulators of transcription. TFOs have also been shown to produce mutagenic events, even in the absence of tethered mutagens. TFOs can increase rates of recombination between homologous sequences in close proximity. Directed sequence changes leading to gene correction have been achieved through the use of TFOs. Because it is theorized that these modifications are due to the instigation of DNA repair mechanisms, an important area of TFO research is the study of triple-helix recognition and repair.
Collapse
Affiliation(s)
- B P Casey
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|