1
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
2
|
Al-mahamad LL. Synthesis and surface characterization of new triplex polymer of Ag(I) and mixture nucleosides: cytidine and 8-bromoguanosine. Heliyon 2019; 5:e01609. [PMID: 31193246 PMCID: PMC6522667 DOI: 10.1016/j.heliyon.2019.e01609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
In this work one-dimensional (1D) triplex polymer of silver (I): mixture nucleosides of cytidine and 8-bromoguanosine was synthesised. The polymer showed high stability due to the presence Ag(I) ions in the structure of the polymer in addition to the stability that produces from the effect of Hoogsteen hydrogen bonding in the triplex CGC. Atomic Force Microscopy (AFM) and transmission electron microscopy (TEM) were used to investigate the morphology of the polymer. The AFM images revealed formation of nanofibres extending many microns in length with height in the range of 2-3 nm. Statistical analyses carried out to analyse the AFM images to determine the height of the loops that formed in the polymer. The data displayed that the height value was in the range between 10 nm to 15 nm. The data of TEM images were consistent with the data of AFM images by displaying a very long fibre. Gwyddion software program was used to investigate surface parameters (roughness and waviness), diameter (size distribution), and probability density of the fibre. The data showed that the diameter of the fibre was ∼0.4 nm.
Collapse
Affiliation(s)
- Lamia L.G. Al-mahamad
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
3
|
Aviñó A, Eritja R, Ciudad CJ, Noé V. Parallel Clamps and Polypurine Hairpins (PPRH) for Gene Silencing and Triplex‐Affinity Capture: Design, Synthesis, and Use. ACTA ACUST UNITED AC 2019; 77:e78. [DOI: 10.1002/cpnc.78] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Carlos J. Ciudad
- School of Pharmacy and IN2UBUniversity of Barcelona Barcelona Spain
| | - Verónica Noé
- School of Pharmacy and IN2UBUniversity of Barcelona Barcelona Spain
| |
Collapse
|
4
|
Huertas CS, Aviñó A, Kurachi C, Piqué A, Sandoval J, Eritja R, Esteller M, Lechuga LM. Label-free DNA-methylation detection by direct ds-DNA fragment screening using poly-purine hairpins. Biosens Bioelectron 2018; 120:47-54. [DOI: 10.1016/j.bios.2018.08.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/25/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
|
5
|
Sathyamoorthy B, Shi H, Zhou H, Xue Y, Rangadurai A, Merriman DK, Al-Hashimi HM. Insights into Watson-Crick/Hoogsteen breathing dynamics and damage repair from the solution structure and dynamic ensemble of DNA duplexes containing m1A. Nucleic Acids Res 2017; 45:5586-5601. [PMID: 28369571 PMCID: PMC5435913 DOI: 10.1093/nar/gkx186] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
In the canonical DNA double helix, Watson-Crick (WC) base pairs (bps) exist in dynamic equilibrium with sparsely populated (∼0.02-0.4%) and short-lived (lifetimes ∼0.2-2.5 ms) Hoogsteen (HG) bps. To gain insights into transient HG bps, we used solution-state nuclear magnetic resonance spectroscopy, including measurements of residual dipolar couplings and molecular dynamics simulations, to examine how a single HG bp trapped using the N1-methylated adenine (m1A) lesion affects the structural and dynamic properties of two duplexes. The solution structure and dynamic ensembles of the duplexes reveals that in both cases, m1A forms a m1A•T HG bp, which is accompanied by local and global structural and dynamic perturbations in the double helix. These include a bias toward the BI backbone conformation; sugar repuckering, major-groove directed kinking (∼9°); and local melting of neighboring WC bps. These results provide atomic insights into WC/HG breathing dynamics in unmodified DNA duplexes as well as identify structural and dynamic signatures that could play roles in m1A recognition and repair.
Collapse
Affiliation(s)
- Bharathwaj Sathyamoorthy
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Huiqing Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yi Xue
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| |
Collapse
|
6
|
Bahal R, Gupta A, Glazer PM. Precise Genome Modification Using Triplex Forming Oligonucleotides and Peptide Nucleic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Zhou H, Hintze BJ, Kimsey IJ, Sathyamoorthy B, Yang S, Richardson JS, Al-Hashimi HM. New insights into Hoogsteen base pairs in DNA duplexes from a structure-based survey. Nucleic Acids Res 2015; 43:3420-33. [PMID: 25813047 PMCID: PMC4402545 DOI: 10.1093/nar/gkv241] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/01/2015] [Indexed: 11/14/2022] Open
Abstract
Hoogsteen (HG) base pairs (bps) provide an alternative pairing geometry to Watson-Crick (WC) bps and can play unique functional roles in duplex DNA. Here, we use structural features unique to HG bps (syn purine base, HG hydrogen bonds and constricted C1'-C1' distance across the bp) to search for HG bps in X-ray structures of DNA duplexes in the Protein Data Bank. The survey identifies 106 A•T and 34 G•C HG bps in DNA duplexes, many of which are undocumented in the literature. It also uncovers HG-like bps with syn purines lacking HG hydrogen bonds or constricted C1'-C1' distances that are analogous to conformations that have been proposed to populate the WC-to-HG transition pathway. The survey reveals HG preferences similar to those observed for transient HG bps in solution by nuclear magnetic resonance, including stronger preferences for A•T versus G•C bps, TA versus GG steps, and also suggests enrichment at terminal ends with a preference for 5'-purine. HG bps induce small local perturbations in neighboring bps and, surprisingly, a small but significant degree of DNA bending (∼14°) directed toward the major groove. The survey provides insights into the preferences and structural consequences of HG bps in duplex DNA.
Collapse
Affiliation(s)
- Huiqing Zhou
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Bradley J Hintze
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | | | - Shan Yang
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University, Durham, NC 27710, USA Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Brancolini G, Migliore A, Corni S, Fuentes-Cabrera M, Luque FJ, Di Felice R. Dynamical treatment of charge transfer through duplex nucleic acids containing modified adenines. ACS NANO 2013; 7:9396-406. [PMID: 24060008 PMCID: PMC3903158 DOI: 10.1021/nn404165y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We address the issue of whether chemical alterations of nucleobases are an effective tool to modulate charge transfer through DNA molecules. Our investigation uses a multilevel computational approach based on classical molecular dynamics and quantum chemistry. We find yet another piece of evidence that structural fluctuations are a key factor to determine the electronic structure of double-stranded DNA. We argue that the electronic structure and charge transfer ability of flexible polymers is the result of a complex intertwining of various structural, dynamical and chemical factors. Chemical intuition may be used to design molecular wires, but this is not the sole component in the complex charge transfer mechanism through DNA.
Collapse
Affiliation(s)
- Giorgia Brancolini
- CNR Institute of Nanoscience, S3 Center, Via Campi 213/A, 41125 Modena, Italy
- (GB); (RDF). Phone: +39-059-205-5320. Fax: +39-059-205-5651
| | - Agostino Migliore
- School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Stefano Corni
- CNR Institute of Nanoscience, S3 Center, Via Campi 213/A, 41125 Modena, Italy
| | - Miguel Fuentes-Cabrera
- Center for Nanophase Materials Sciences, and Computer Science and Mathematics Division, Oak Ridge National Laboratory, P O Box 2008, Oak Ridge, Tennessee 37831 6494, USA
| | - F. Javier Luque
- Department de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Avenida Diagonal 643, Barcelona 08028, Spain
| | - Rosa Di Felice
- CNR Institute of Nanoscience, S3 Center, Via Campi 213/A, 41125 Modena, Italy
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089 USA
- (GB); (RDF). Phone: +39-059-205-5320. Fax: +39-059-205-5651
| |
Collapse
|
9
|
Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013; 113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Osman Doluca
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
10
|
Ferreira R, Alvira M, Aviñó A, Gómez-Pinto I, González C, Gabelica V, Eritja R. Synthesis and structural characterization of stable branched DNA g-quadruplexes using the trebler phosphoramidite. ChemistryOpen 2012; 1:106-14. [PMID: 24551498 PMCID: PMC3922461 DOI: 10.1002/open.201200009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Indexed: 01/17/2023] Open
Abstract
Guanine (G)-rich sequences can form a noncanonical four-stranded structure known as the G-quadruplex. G-quadruplex structures are interesting because of their potential biological properties and use in nanosciences. Here, we describe a method to prepare highly stable G-quadruplexes by linking four G-rich DNA strands to form a monomolecular G-quadruplex. In this method, one strand is synthesized first, and then a trebler molecule is added to simultaneously assemble the remaining three strands. This approach allows the introduction of specific modifications in only one of the strands. As a proof of concept, we prepared a quadruplex where one of the chains includes a change in polarity. A hybrid quadruplex is observed in ammonium acetate solutions, whereas in the presence of sodium or potassium, a parallel G-quadruplex structure is formed. In addition to the expected monomolecular quadruplexes, we observed the presence of dimeric G-quadruplex structures. We also applied the method to prepare G-quadruplexes containing a single 8-aminoguanine substitution and found that this single base stabilizes the G-quadruplex structure when located at an internal position.
Collapse
Affiliation(s)
- Rubén Ferreira
- Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona (Spain) ; Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona) Baldiri i Reixac 10, 08028 Barcelona (Spain)
| | - Margarita Alvira
- Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona (Spain) ; Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona) Baldiri i Reixac 10, 08028 Barcelona (Spain)
| | - Anna Aviñó
- Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona (Spain) ; Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona) Baldiri i Reixac 10, 08028 Barcelona (Spain)
| | - Irene Gómez-Pinto
- Departmento de Química Física Biológica, Instituto de Química Física 'Rocasolano' CSIC, Serrano 119, 28006 Madrid (Spain)
| | - Carlos González
- Departmento de Química Física Biológica, Instituto de Química Física 'Rocasolano' CSIC, Serrano 119, 28006 Madrid (Spain)
| | - Valérie Gabelica
- Department of Chemistry, University of Liège Allée de la Chimie Building B6c, 4000 Liège (Belgium)
| | - Ramon Eritja
- Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona (Spain) ; Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona) Baldiri i Reixac 10, 08028 Barcelona (Spain)
| |
Collapse
|
11
|
Aviñó A, Cubero E, Gargallo R, González C, Orozco M, Eritja R. Structural properties of g,t-parallel duplexes. J Nucleic Acids 2010; 2010. [PMID: 20798879 PMCID: PMC2925217 DOI: 10.4061/2010/763658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/15/2009] [Indexed: 11/20/2022] Open
Abstract
The structure of G,T-parallel-stranded duplexes of DNA carrying similar amounts of adenine and guanine residues is studied by means of molecular dynamics (MD) simulations and UV- and CD spectroscopies. In addition the impact of the substitution of adenine by 8-aminoadenine and guanine by 8-aminoguanine is analyzed. The presence of 8-aminoadenine and 8-aminoguanine stabilizes the parallel duplex structure. Binding of these oligonucleotides to their target polypyrimidine sequences to form the corresponding G,T-parallel triplex was not observed. Instead, when unmodified parallel-stranded duplexes were mixed with their polypyrimidine target, an interstrand Watson-Crick duplex was formed. As predicted by theoretical calculations parallel-stranded duplexes carrying 8-aminopurines did not bind to their target. The preference for the parallel-duplex over the Watson-Crick antiparallel duplex is attributed to the strong stabilization of the parallel duplex produced by the 8-aminopurines. Theoretical studies show that the isomorphism of the triads is crucial for the stability of the parallel triplex.
Collapse
Affiliation(s)
- Anna Aviñó
- Institute for Research in Biomedicine, IQAC-CSIC, CIBER-BBN Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Edifici Helix, Baldiri Reixac 15, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Gros J, Aviñó A, Lopez de la Osa J, González C, Lacroix L, Pérez A, Orozco M, Eritja R, Mergny JL. 8-Amino guanine accelerates tetramolecular G-quadruplex formation. Chem Commun (Camb) 2008:2926-8. [PMID: 18566727 DOI: 10.1039/b801221k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate here that 8-amino guanine () strongly accelerates quadruplex formation, which makes this nucleobase the most attractive replacement for guanine in the context of tetramolecular parallel quadruplexes.
Collapse
Affiliation(s)
- Julien Gros
- Muséum National d'Histoire Naturelle (MNHN) USM 503, INSERM U565, CRNS UMR 5153, 43 rue Cuvier CP26, F-75231, Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Aviñó A, Grimau MG, Alvira M, Eritja R, Gargallo R, Orozco M, González C. Triplex formation using oligonucleotide clamps carrying 8-aminopurines. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:979-83. [PMID: 18058521 DOI: 10.1080/15257770701508398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The synthesis and properties of triplex-forming DNA clamps carrying 8-aminopurines are described. The stability of triple helices is enhanced by replacing purine bases with 8-aminopurine residues. These enhanced binding properties are used for the specific capture of polypyrimidine RNA/DNA sequences of interest.
Collapse
Affiliation(s)
- Anna Aviñó
- Instituto de Biologia Molecular de Barcelona, C.S.I.C., Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Beda NV, Nedospasov AA. NO-dependent modifications of nucleic acids. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2007; 33:195-228. [PMID: 17476982 DOI: 10.1134/s106816200702001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review is devoted to chemical transformations of nucleic acids and their components under the action of nitrogen oxide metabolites. The deamination reaction of bases is discussed in the context of possible competing transformations of its intermediates (nitrosamines, diazonium cations, diazotates, triazenes, and diazoanhydrides) and mechanisms of crosslink formation with proteins and nucleic acids. The oxidation and nitration of bases by NO2 is considered together with the possibility of radical transfer to domains from the base stacks in DNA. Reduction of redox potentials of bases as a result of stacking interactions explains the possibility of their reactions within nucleic acids with the oxidants whose redox potential is insufficient for the effective reactions with mononucleotides. Modifications of nucleic acids with peroxynitrite derivatives are discussed in the context of the effect of the DNA primary structure and the modification products formed on the reactivity of single bases. The possibility of reduction of nitro groups within modified bases to amino derivatives and their subsequent diazotation is considered. The substitution of oxoguanine for nitroguanine residues may result; the reductive diazotation can lead to undamaged guanine. The intermediate modified bases, e.g., 8-aminoguanine and 8-diazoguanine, were shown to participate in noncanonical base pairing, including the formation of more stable bonds with two bases, which is characteristic of the DNA Z-form. A higher sensitivity of RNA in comparison with DNA to NO-dependent modifications (NODMs) is predicted on the basis of the contribution of medium microheterogeneity and the known mechanisms of nitrosylation and nitration. The possible biological consequences of nucleic acids NODMs are briefly considered. It is shown that the NODMs under the action of nitrogen oxide metabolites generated by macrophages and similar cells in inflammations or infections should lead to a sharp increase in the number of mutations in the case of RNA-containing viruses. As a result, the defense mechanisms of the host organism may contribute to the appearance of new, including more dangerous, variants of infecting viruses.
Collapse
|
15
|
|
16
|
Shchyolkina AK, Kaluzhny DN, Arndt-Jovin DJ, Jovin TM, Zhurkin VB. Recombination R-triplex: H-bonds contribution to stability as revealed with minor base substitutions for adenine. Nucleic Acids Res 2006; 34:3239-45. [PMID: 16798913 PMCID: PMC1500870 DOI: 10.1093/nar/gkl431] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 01/29/2023] Open
Abstract
Several cellular processes involve alignment of three nucleic acids strands, in which the third strand (DNA or RNA) is identical and in a parallel orientation to one of the DNA duplex strands. Earlier, using 2-aminopurine as a fluorescent reporter base, we demonstrated that a self-folding oligonucleotide forms a recombination-like structure consistent with the R-triplex. Here, we extended this approach, placing the reporter 2-aminopurine either in the 5'- or 3'-strand. We obtained direct evidence that the 3'-strand forms a stable duplex with the complementary central strand, while the 5'-strand participates in non-Watson-Crick interactions. Substituting 2,6-diaminopurine or 7-deazaadenine for adenine, we tested and confirmed the proposed hydrogen bonding scheme of the A*(T.A) R-type triplet. The adenine substitutions expected to provide additional H-bonds led to triplex structures with increased stability, whereas the substitutions consistent with a decrease in the number of H-bonds destabilized the triplex. The triplex formation enthalpies and free energies exhibited linear dependences on the number of H-bonds predicted from the A*(T.A) triplet scheme. The enthalpy of the 10 nt long intramolecular triplex of -100 kJ x mol(-1) demonstrates that the R-triplex is relatively unstable and thus an ideal candidate for a transient intermediate in homologous recombination, t-loop formation at the mammalian telomere ends, and short RNA invasion into a duplex. On the other hand, the impact of a single H-bond, 18 kJ x mol(-1), is high compared with the overall triplex formation enthalpy. The observed energy advantage of a 'correct' base in the third strand opposite the Watson-Crick base pair may be a powerful mechanism for securing selectivity of recognition between the single strand and the duplex.
Collapse
Affiliation(s)
- Anna K. Shchyolkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences119991 Moscow, Russia
- Department of Molecular Biology, Max Planck Institute for Biophysical ChemistryD-37070 Goettingen, Germany
- Laboratory of Cell Biology, National Cancer InstituteNIH, Bethesda, MD 20892, USA
| | - Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences119991 Moscow, Russia
- Department of Molecular Biology, Max Planck Institute for Biophysical ChemistryD-37070 Goettingen, Germany
- Laboratory of Cell Biology, National Cancer InstituteNIH, Bethesda, MD 20892, USA
| | - Donna J. Arndt-Jovin
- Department of Molecular Biology, Max Planck Institute for Biophysical ChemistryD-37070 Goettingen, Germany
| | - Thomas M. Jovin
- Department of Molecular Biology, Max Planck Institute for Biophysical ChemistryD-37070 Goettingen, Germany
| | - Victor B. Zhurkin
- Laboratory of Cell Biology, National Cancer InstituteNIH, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
López de la Osa J, González C, Gargallo R, Rueda M, Cubero E, Orozco M, Aviñó A, Eritja R. Destabilization of Quadruplex DNA by 8-Aminoguanine. Chembiochem 2005; 7:46-8. [PMID: 16292787 DOI: 10.1002/cbic.200500281] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
May JP, Ting R, Lermer L, Thomas JM, Roupioz Y, Perrin DM. Covalent Schiff base catalysis and turnover by a DNAzyme: a M2+ -independent AP-endonuclease mimic. J Am Chem Soc 2004; 126:4145-56. [PMID: 15053604 DOI: 10.1021/ja037625s] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A DNAzyme, synthetically modified with both primary amines and imidazoles, is found to act as a M2+ -independent AP lyase-endonuclease. In the course of the cleavage reaction, this DNAzyme forms a covalent Schiff base intermediate with an abasic site on a complementary oligodeoxyribonucleotide. This intermediate, which is inferred from NaCNBH3 trapping as well as cyanide inhibition, does not evidently accumulate because the second step, dehydrophosphorylative elimination, is fast compared to Schiff base formation. The 5'-product that remains linked to the catalyst hydrolyzes slowly to regenerate free catalyst. The use of duly modified DNAzymes to perform Schiff base catalysis demonstrates the value of modified nucleotides for enhancing the catalytic repertoire of nucleic acids. This work suggests that DNAzymes will be capable of catalyzing aldol condensation reactions.
Collapse
Affiliation(s)
- Jonathan P May
- Department of Chemistry, The University of British Columbia, Vancouver, B.C., V6T-1Z1 Canada
| | | | | | | | | | | |
Collapse
|
19
|
Murphy D, Eritja R, Redmond G. Monitoring denaturation behaviour and comparative stability of DNA triple helices using oligonucleotide-gold nanoparticle conjugates. Nucleic Acids Res 2004; 32:e65. [PMID: 15107480 PMCID: PMC407843 DOI: 10.1093/nar/gnh065] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 03/10/2004] [Accepted: 03/29/2004] [Indexed: 11/12/2022] Open
Abstract
Gold nanoparticle labels, combined with UV-visible optical absorption spectroscopic methods, are employed to probe the temperature-dependent solution properties of DNA triple helices. By using oligonucleotide-nanoparticle conjugates to characterize triplex denaturation, for the first time triplex to duplex melting transitions may be sensitively monitored, with minimal signal interference from duplex to single strand melting, for both parallel and antiparallel triple helices. Further, the comparative sequence-dependent stability of DNA triple helices may also be examined using this approach. Specifically, triplex to duplex melting transitions for triplexes formed using oligonucleotides that incorporate 8-aminoguanine derivatives were successfully monitored and stabilization of both parallel and antiparallel triplexes following 8-aminoguanine substitutions is demonstrated.
Collapse
|
20
|
Aviñó A, Cubero E, González C, Eritja R, Orozco M. Antiparallel triple helices. Structural characteristics and stabilization by 8-amino derivatives. J Am Chem Soc 2004; 125:16127-38. [PMID: 14678005 DOI: 10.1021/ja035039t] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural, dynamical, and recognition properties of antiparallel DNA triplexes formed by the antiparallel d(G#G.C), d(A#A.T), and d(T#A.T) motifs (the pound sign and dot mean reverse-Hoogsteen and Watson-Crick hydrogen bonds, respectively) are studied by means of "state of the art" molecular dynamics simulations. Once the characteristics of the helix are defined, molecular dynamics and thermodynamic integration calculations are used to determine the expected stabilization of the antiparallel triplex caused by the introduction of 8-aminopurines. Finally, oligonucleotides containing 8-aminopurine derivatives are synthesized and tested experimentally using several approaches in a variety of systems. A very large stabilization of the triplex is found experimentally, as predicted by simulations. These results open the possibility for the use of oligonucleotides carrying 8-aminopurines to bind single-stranded nucleic acids by formation of antiparallel triplexes.
Collapse
Affiliation(s)
- Anna Aviñó
- Institut de Biologia Molecular de Barcelona, CSIC, C/Jordi Girona 18-26, E-08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
21
|
Aviñó A, Frieden M, Morales JC, de la Torre BG, Güimil-García R, Orozco M, González C, Eritja R. Properties of triple helices formed by oligonucleotides containing 8-aminopurines. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:645-8. [PMID: 14565244 DOI: 10.1081/ncn-120021971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The synthesis of parallel hairpins carrying 8-aminopurines is described. These hairpins have a high affinity for specific polypyrimidine sequences resulting in the formation of very stable triplexes.
Collapse
Affiliation(s)
- A Aviñó
- Instituto de Biologia Molecular de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Jaumot J, Aviña A, Eritja R, Tauler R, Gargallo R. Resolution of parallel and antiparallel oligonucleotide triple helices formation and melting processes by multivariate curve resolution. J Biomol Struct Dyn 2003; 21:267-78. [PMID: 12956610 DOI: 10.1080/07391102.2003.10506922] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A procedure is described for the complete resolution of concentration profiles of oligonucleotide triplexes as a function of pH and temperature. The pH and temperature ranges at which triplexes are present and the relative concentrations of all the species involved in acid-base and conformational equilibria are successfully estimated from Multivariate Curve Resolution analysis of UV absorbance spectra recorded along acid-base titrations and melting experiments of single stranded, hairpin and their mixtures. The dependence of formation constants upon pH was successfully estimated. The hairpin h26 (5'-GAAGGAGGAGA-TTTT-TCTCCTCCTTC-3'), and the single stranded oligonucleotides s11CT (5'-CTTCCTCCTCT-3'), s11AG (5'-AGAGGAGGAAG-3') and s11TG (5'-TGTGGTGGTTG-3') were synthesized and their protonation and conformational equilibria were studied in detail. The procedure was shown to be especially useful for the study of triplexes with a low hypochromism upon formation.
Collapse
Affiliation(s)
- J Jaumot
- Departament de Quimica Analitica, Universitat de Barcelona, Marti Franques 1 -11, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
23
|
Chen HJC, Chang CM, Chen YM. Hemoprotein-mediated reduction of nitrated DNA bases in the presence of reducing agents. Free Radic Biol Med 2003; 34:254-68. [PMID: 12521607 DOI: 10.1016/s0891-5849(02)01246-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA damages by reactive nitrogen oxide species may contribute to the multistage carcinogenesis processes associated with chronic infections and inflammation. The nitrated DNA adducts 8-nitroguanine (8NG) and 8-nitroxanthine (8NX) have been shown to derive from these reactive nitrogen oxide species, but they are not stable in DNA since they undergo spontaneous depurination. We herein report that hemin and hemoproteins, including hemoglobin and cytochrome c, mediate reduction of 8NG and 8NX to their corresponding amino analogues in the presence of reducing agents under physiologically relevant conditions. This reaction is believed to involve the reduced heme moiety produced from the reduction of oxidized hemoglobin or cytochrome c by reducing agents. The combination of hemoglobin and dihydrolipoic acid generated the reduced products in high yields. Ascorbate, quercetin, and glutathione are also capable of reducing these nitrated DNA adducts. The hemoglobin macromolecule reduces 8NG and 8NX formed in nitryl chloride-treated calf thymus DNA, as evidenced by the formation of the amino adducts using reversed-phase HPLC with photodiode array detection. Hemin is more efficient than equal molar of heme on hemoglobin in reducing 8NG-containing DNA, indicating the role of protein in impeding the reaction. Furthermore, we also show that the reduction product 8-aminoguanine is persistent on DNA. These findings suggest that reduction of nitrated DNA by the heme/antioxidant system might represent a possible in vivo pathway to modify DNA nitration.
Collapse
Affiliation(s)
- Hauh Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, Taiwan.
| | | | | |
Collapse
|
24
|
Chen HJC, Chen YM, Chang CM. Lipoyl dehydrogenase catalyzes reduction of nitrated DNA and protein adducts using dihydrolipoic acid or ubiquinol as the cofactor. Chem Biol Interact 2002; 140:199-213. [PMID: 12204577 DOI: 10.1016/s0009-2797(02)00019-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflamed tissues generate reactive nitrogen oxide species (RNO(x)), such as peroxynitrite (ONOO-)and nitryl chloride (NO2Cl), which lead to formation of nitrated DNA and protein adducts, including 8-nitroguanine (8NG), 8-nitroxanthine (8NX), and 3-nitrotyrosine (3NT). Once formed, the two nitrated DNA adducts are not stable in DNA and undergo spontaneous depurination. Nitration of protein tyrosine leads to inactivation of protein functions and 3NT has been detected in various disease states. We herein report that reduction of these nitro adducts to their corresponding amino analogues can be catalyzed by lipoyl dehydrogenases (EC 1.8.1.4) from Clostridium kluyveri (ck) and from porcine heart (ph) using NAD(P)H as the cofactor. We also found that dihydrolipoic acid (DHLA) and ubiquinol can be used as effective cofactors for reduction of 8NG, 8NX, and 3NT by these lipoyl dehydrogenases. The reduction efficiency of the mammalian enzyme is higher than the bacterial isozyme. The preference of cofactors by both lipoyl dehydrogenases is DHLA>NAD(P)H>ubiquinol. In all the systems examined, the nitrated purines are reduced to a greater extent than 3NT under the same conditions. We also demonstrate that this lipoyl dehydrogenase/antioxidant system is effective in reducing nitrated purine on NO2Cl-treated double stranded calf thymus DNA, and thus decreases apurinic site formation. The nitroreductase activity for lipoyl dehydrogenase might represent a possible metabolic pathway to reverse the process of biological nitration.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry, National Chung Cheng University, 160 San-Hsing, Ming-Hsiung, Chia-Yi, Taiwan, ROC.
| | | | | |
Collapse
|
25
|
Aviñó A, Frieden M, Morales JC, García de la Torre B, Güimil García R, Azorín F, Gelpí JL, Orozco M, González C, Eritja R. Properties of triple helices formed by parallel-stranded hairpins containing 8-aminopurines. Nucleic Acids Res 2002; 30:2609-19. [PMID: 12060677 PMCID: PMC117286 DOI: 10.1093/nar/gkf374] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parallel-stranded hairpins with a polypyrimidine sequence linked to a complementary purine carrying 8-aminopurines such as 8-aminoadenine, 8-aminoguanine and 8-aminohypoxanthine bind polypyrimidine sequences complementary (in an antiparallel sense) to the purine part by a triple helix. The relative stabilities of triplexes were assessed by UV-absorption melting experiments as a function of pH and salt concentration. Hairpins carrying 8-aminopurines give very stable triple helical structures even at neutral pH, as confirmed by gel-shift experiments, circular dichroism and nuclear magnetic resonance spectroscopy. The modified hairpins may be redesigned to cope with small interruptions in the polypyrimidine target sequence.
Collapse
Affiliation(s)
- Anna Aviñó
- Cygene Spain S.L., Parc Científic de Barcelona, Baldiri i Reixac 10-12, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Recent years have seen considerable progress in simulations of nucleic acids. Improvements in force fields, simulation techniques and protocols, and increasing computer power have all contributed to making nanosecond-scale simulations of both DNA and RNA commonplace. The results are already helping to explain how nucleic acids respond to their environment and to their base sequence and to reveal the factors underlying recognition processes by probing biologically important nucleic acid-protein interactions and medically important nucleic acid-drug complexation. This Account summarizes methodological progress and applications of molecular dynamics to nucleic acids over the past few years and tries to identify remaining challenges.
Collapse
Affiliation(s)
- Emmanuel Giudice
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris 75005, France
| | | |
Collapse
|
27
|
Rueda M, Luque FJ, Orozco M. A theoretical investigation on the effect of remote amino groups in hydrogen bonding of nucleic acids. Biopolymers 2002; 61:52-60. [PMID: 11891628 DOI: 10.1002/1097-0282(2001)61:1<52::aid-bip10046>3.0.co;2-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of remote amino groups in the H-bonding of complementary bases of duplex and triplex DNA has been investigated in the gas phase by means of density functional theory. It is found that amino groups incorporated in regions of the purine that are distant from the H-bonding sites might have a notable influence on the stability of H-bonded dimers. The results show that, in addition to primary and secondary interactions, polarization effects can be relevant for the determination of hydrogen bonding in nucleobases.
Collapse
Affiliation(s)
- M Rueda
- Departament de Bioquímica, i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | | | | |
Collapse
|
28
|
Abstract
Hydrogen-bonded base pairs are an important determinant of nucleic acid structure and function. However, other interactions such as base-base stacking, base-backbone, and backbone-backbone interactions as well as effects exerted by the solvent and by metal or NH(4)(+) ions also have to be taken into account. In addition, hydrogen-bonded base complexes involving more than two bases can occur. With the rapidly increasing number and structural diversity of nucleic acid structures known at atomic detail higher-order hydrogen-bonded base complexes, base polyads, have attracted much interest. This review provides an overview on the occurrence of base polyads in nucleic acid structures and describes computational studies on these nucleic acid building blocks.
Collapse
Affiliation(s)
- J Sühnel
- Biocomputing Group, Institut für Molekulare Biotechnologie, Postfach 100813, D-07708 Jena, Germany
| |
Collapse
|
29
|
Cubero E, Aviñó A, de la Torre BG, Frieden M, Eritja R, Luque FJ, González C, Orozco M. Hoogsteen-based parallel-stranded duplexes of DNA. Effect of 8-amino-purine derivatives. J Am Chem Soc 2002; 124:3133-42. [PMID: 11902902 DOI: 10.1021/ja011928+] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure of parallel-stranded duplexes of DNA-containing a mixture of guanines (G) and adenines (A) is studied by means of molecular dynamics (MD) simulation, as well as NMR and circular dichroism (CD) spectroscopy. Results demonstrate that the structure is based on the Hoogsteen motif rather than on the reverse Watson-Crick one. Molecular dynamics coupled to thermodynamic integration (MD/TI) calculations and melting experiments allowed us to determine the effect of 8-amino derivatives of A and G and of 8-amino-2'-deoxyinosine on the stability of parallel-stranded duplexes. The large stabilization of the parallel-stranded helix upon 8-amino substitution agrees with a Hoogsteen pairing, confirming MD, NMR, and CD data, and suggests new methods to obtain DNA triplexes for antigene and antisense purposes.
Collapse
Affiliation(s)
- Elena Cubero
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Aviñó A, Morales JC, Frieden M, de la Torre BG, García RG, Cubero E, Luque FJ, Orozco M, Azorín F, Eritja R. Parallel-stranded hairpins containing 8-aminopurines. Novel efficient probes for triple-helix formation. Bioorg Med Chem Lett 2001; 11:1761-3. [PMID: 11425555 DOI: 10.1016/s0960-894x(01)00295-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We describe novel oligomers with a greater propensity to form triplexes than oligomers containing only natural bases. They consist of a polypyrimidine sequence linked head-to-head with a polypurine sequence carrying one or several 8-aminoadenine or 8-aminoguanines. The presence of 8-aminopurines also stabilised the parallel-stranded duplex structure.
Collapse
Affiliation(s)
- A Aviñó
- Cygene Spain S.L., Parc Científic de Barcelona, Baldiri i Reixac, 10-12, E-08028, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cubero E, Güimil-García R, Luque FJ, Eritja R, Orozco M. The effect of amino groups on the stability of DNA duplexes and triplexes based on purines derived from inosine. Nucleic Acids Res 2001; 29:2522-34. [PMID: 11410660 PMCID: PMC55742 DOI: 10.1093/nar/29.12.2522] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of amino groups attached at positions 2 and 8 of the hypoxanthine moiety in the structure, reactivity and stability of DNA duplexes and triplexes is studied by means of quantum mechanical calculations, as well as extended molecular dynamics (MD) and thermodynamic integration (MD/TI) simulations. Theoretical estimates of the change in stability related to 2'-deoxyguanosine (G) --> 2'-deoxyinosine (I) --> 8-amino-2'-deoxyinosine (8AI) mutations have been experimentally verified, after synthesis of the corresponding compounds. An amino group placed at position 2 stabilizes the duplex, as expected, and surprisingly also the triplex. The presence of an amino group at position 8 of the hypoxanthine moiety stabilizes the triplex but, surprisingly, destabilizes the duplex. The subtle electronic redistribution occurring upon the introduction of an amino group on the purine seems to be responsible for this surprising behavior. Interesting 'universal base' properties are found for 8AI.
Collapse
Affiliation(s)
- E Cubero
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franques 1, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
32
|
Rueda M, Luque FJ, López JM, Orozco M. Amino−Imino Tautomerism in Derivatives of Cytosine: Effect on Hydrogen-Bonding and Stacking Properties. J Phys Chem A 2001. [DOI: 10.1021/jp010838o] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuel Rueda
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, and Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal s/n, Barcelona 08028, Spain
| | - F. Javier Luque
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, and Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal s/n, Barcelona 08028, Spain
| | - Josep Maria López
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, and Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal s/n, Barcelona 08028, Spain
| | - Modesto Orozco
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, and Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal s/n, Barcelona 08028, Spain
| |
Collapse
|