1
|
Huo H, He Y, Chen W, Wu L, Yi X, Wang J. Simultaneously monitoring UVC-induced DNA damage and photoenzymatic repair of cyclobutane pyrimidine dimers by electrochemical impedance spectroscopy. Talanta 2021; 239:123081. [PMID: 34823862 DOI: 10.1016/j.talanta.2021.123081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Cyclobutane pyrimidine dimers (CPDs) are the major DNA photoproducts of thymine-thymine dinucleotides upon ultraviolet (UV) irradiation. Failure in the repair of damaged DNA may lead to DNA replication errors, DNA mutations, and even cell death. Photoreactivation can mediate the repair of UV-induced DNA lesions by photolyases upon UVA (315-400 nm) or blue light (400-500 nm) irradiation. Herein, the UVC (254 nm)-induced DNA damage and photoenzymatic repair of the CPD products were simultaneously monitored by electrochemical impedance spectroscopy (EIS). The UVC-damaged dT20 was first immobilized on the gold electrode, and the specific recognition by the anti-CPD antibody leads to significantly increased EIS signals. The electron transfer resistance (Ret) values were linearly proportional to the concentrations of damaged dT20 ranging from 0.005 to 0.1 μM, and a detection limit of 3.06 nM was achieved. Using surface plasmon resonance, the equilibrium dissociation constant (KD) between the CPDs in dT20 and anti-CPD antibody was estimated to be (3.32 ± 0.31) × 10-12 M, indicating the strong binding affinity. Evidenced by EIS, the CPDs in the damaged dT20 could be repaired by the attached DNA photolyase under UVA (365 nm) photoexcitation, and the detachment of the photolyase from the DNA strand was accomplished after completion of the repair process. The repair efficiency was calculated to be 70.0% by EIS, being consistent with that of 71.4% by UV spectroscopy. The electrochemical method is simple, sensitive and straightforward, holding great potential for assaying other types of DNA lesions and their repair processes.
Collapse
Affiliation(s)
- Huan Huo
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Yuhan He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Wenchao Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Ling Wu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410004, PR China
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China.
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China.
| |
Collapse
|
2
|
Liu C, Kobashigawa Y, Yamauchi S, Toyota Y, Teramoto M, Ikeguchi Y, Fukuda N, Sato T, Sato Y, Kimura H, Morioka H. Preparation of single-chain Fv antibodies in the cytoplasm of Escherichia coli by simplified and systematic chaperone optimization. J Biochem 2019; 166:455-462. [DOI: 10.1093/jb/mvz059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/13/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
A single-chain variable fragment (scFv) antibody is a recombinant protein in which a peptide linker connects the variable regions of the heavy chain and light chain. Due to its smaller molecular size, an scFv can be expressed using Escherichia coli. The presence of two disulphide bonds in the molecule often prevents expression of correctly folded scFv in the E. coli cytoplasm, making a refolding process necessary to regenerate scFv activity. The refolding process is time-consuming and requires large amounts of expensive reagents, such as guanidine hydrochloride, l-arginine and glutathione. Here, to conveniently obtain scFv proteins, we devised a simple and systematic method to optimize the co-expression of chaperone proteins and to combine them with specially engineered E. coli strains that permit the formation of stable disulphide bonds within the cytoplasm. Several scFv proteins were successfully obtained in a soluble form from E. coli cytoplasm. Thermal denaturation experiments and/or surface plasmon resonance measurements revealed that the thus-obtained scFvs possessed a stable tertiary structure and antigen-binding activity. The combined use of engineered E. coli with the simplified and systematic chaperone optimization can be useful for the production of scFv proteins.
Collapse
Affiliation(s)
- Chenjiang Liu
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoshihiro Kobashigawa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Soichiro Yamauchi
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuya Toyota
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Manaka Teramoto
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuka Ikeguchi
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Natsuki Fukuda
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takashi Sato
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
3
|
Cyclization of Single-Chain Fv Antibodies Markedly Suppressed Their Characteristic Aggregation Mediated by Inter-Chain VH-VL Interactions. Molecules 2019; 24:molecules24142620. [PMID: 31323851 PMCID: PMC6681014 DOI: 10.3390/molecules24142620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
Single-chain Fv (scFv) antibodies are recombinant proteins in which the variable regions of the heavy chain (VH) and light chain (VL) are connected by a short flexible polypeptide linker. ScFvs have the advantages of easy genetic manipulation and low-cost production using Escherichia coli compared with monoclonal antibodies, and are thus expected to be utilized as next-generation medical antibodies. However, the practical use of scFvs has been limited due to low homogeneity caused by their aggregation propensity mediated by inter-chain VH-VL interactions. Because the interactions between the VH and VL domains of antibodies are generally weak, individual scFvs are assumed to be in equilibrium between a closed state and an open state, in which the VH and VL domains are assembled and disassembled, respectively. This dynamic feature of scFvs triggers the formation of dimer, trimer, and larger aggregates caused by the inter-chain VH-VL interactions. To overcome this problem, the N-terminus and C-terminus were herein connected by sortase A-mediated ligation to produce a cyclic scFv. Open-closed dynamics and aggregation were markedly suppressed in the cyclic scFv, as judged from dynamic light scattering and high-speed atomic force microscopy analyses. Surface plasmon resonance and differential scanning fluorometry analysis revealed that neither the affinity for antigen nor the thermal stability was disrupted by the scFv cyclization. Generality was confirmed by applying the present method to several scFv proteins. Based on these results, cyclic scFvs are expected to be widely utilized in industrial and therapeutic applications.
Collapse
|
4
|
Kato K, Yamaguchi T. Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides. Glycoconj J 2015; 32:505-13. [PMID: 26050258 DOI: 10.1007/s10719-015-9599-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/19/2015] [Accepted: 05/25/2015] [Indexed: 12/21/2022]
Abstract
Paramagnetism-assisted nuclear magnetic resonance (NMR) techniques have recently been applied to a wide variety of biomolecular systems, using sophisticated immobilization methods to attach paramagnetic probes, such as spin labels and lanthanide-chelating groups, at specific sites of the target biomolecules. This is also true in the field of carbohydrate NMR spectroscopy. NMR analysis of oligosaccharides is often precluded by peak overlap resulting from the lack of variability of local chemical structures, by the insufficiency of conformational restraints from nuclear Overhauser effect (NOE) data due to low proton density, and moreover, by the inherently flexible nature of carbohydrate chains. Paramagnetic probes attached to the reducing ends of oligosaccharides cause paramagnetic relaxation enhancements (PREs) and/or pseudocontact shifts (PCSs) resolve the peak overlap problem. These spectral perturbations can be sources of long-range atomic distance information, which complements the local conformational information derived from J couplings and NOEs. Furthermore, paramagnetic NMR approaches, in conjunction with computational methods, have opened up possibilities for the description of dynamic conformational ensembles of oligosaccharides in solution. Several applications of paramagnetic NMR techniques are presented to demonstrate their utility for characterizing the conformational dynamics of oligosaccharides and for probing the carbohydrate-recognition modes of proteins. These techniques can be applied to the characterization of transient, non-stoichiometric interactions and will contribute to the visualization of dynamic biomolecular processes involving sugar chains.
Collapse
Affiliation(s)
- Koichi Kato
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tababe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
- The Glycoscience Institute, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.
| | - Takumi Yamaguchi
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tababe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
5
|
Mitchell D, Brooks B. Antibodies and DNA Photoproducts: Applications, Milestones and Reference Guide. Photochem Photobiol 2010; 86:2-17. [DOI: 10.1111/j.1751-1097.2009.00673.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Mabruk MJEMF, Toh LK, Murphy M, Leader M, Kay E, Murphy GM. Investigation of the effect of UV irradiation on DNA damage: comparison between skin cancer patients and normal volunteers. J Cutan Pathol 2009; 36:760-5. [PMID: 19519607 DOI: 10.1111/j.1600-0560.2008.01164.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Susceptibility to environmental carcinogenesis is the consequence of a complex interplay between intrinsic hereditary factors and actual exposure to potential carcinogenic agents. Exposure to sunlight is the primary etiological agent for basal cell carcinoma (BCC). AIM The aim of this study was to determine the effects of different ultraviolet (UV) doses on DNA damage in epidermal keratinocytes in vivo and to elucidate if patients with BCC are more susceptible to UV-induced DNA damage in comparison with normal healthy volunteers in response to solar simulator radiation (SSR). MATERIALS AND METHODS Skin biopsies obtained post-UV irradiation from both normal healthy volunteers and BCC patients were analyzed for DNA damage, using immunohistochemical approach with TDM-2 antibody, which binds specifically to cyclobutane pyrimidine dimmers (CPDs). RESULTS In both normal volunteers and BCC patients, the peak of CPD-positive cells occurred at 4.5 h post-SSR. There was a statistically significant difference in CPD positivity between BCC patients and normal volunteers, at time points (from 4.5 h to 48 h post-SSR). For a given dose of SSR based on each individual minimal erythema dose (MED), a greater number of CPD-positive cells could be shown. CONCLUSIONS This study has shown for the first time and in vivo in human volunteers that BCC patients are more susceptible to UV-induced DNA damage in comparison with normal healthy volunteers.
Collapse
|
7
|
Chapter 6 Application of New Methods for Detection of DNA Damage and Repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:217-51. [DOI: 10.1016/s1937-6448(09)77006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Morioka H, Kurihara M, Kobayashi H, Satou K, Komatsu Y, Uchida M, Ohtsuka E, Torizawa T, Kato K, Shimada I, Matsunaga T, Nikaido O. DNA-binding properties of the antibody specific for the Dewar photoproduct of thymidylyl-(3-5')-thymidine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:667-79. [PMID: 16838854 DOI: 10.1080/15257770600686469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A monoclonal antibody (DEM-1) specific for the Dewar photoproduct is used for detection and quantification of photolesions in DNA. To help understand the molecular recognition of damaged DNA by the antibody protein, we have cloned and sequenced the variable region genes of DEM-1. We have also prepared Fab fragments of DEM-1 (DEM1Fab), and synthesized two kinds of 3'-biotinylated oligonucleotides of different lengths containing a central Dewar photoproduct of TpT to analyze the effects of the antigen size on the binding rates by means of surface plasmon resonance (SPR). Results obtained from SPR analyses suggest that DEM1Fab may recognize tetranucleotide unit as the epitope.
Collapse
Affiliation(s)
- Hiroshi Morioka
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Skene WG, Berl V, Risler H, Khoury R, Lehn JM. Selective product amplification of thymine photodimer by recognition-directed supramolecular assistance. Org Biomol Chem 2006; 4:3652-63. [PMID: 16990941 DOI: 10.1039/b605658j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two symmetric ditopic supramolecular templates (1 and 2) each presenting two hydrogen bonding recognition subunits were synthesized. Each such subunit comprises the same donor and acceptor pattern, capable of binding a substrate molecule with complementary hydrogen bonding groups to form a supramolecular complex. Substrate molecules, such as thymine or uracil derivatives, yield 2 : 1 complexes with the acceptors involving two hydrogen bonds to each subunit with ideal orientation for subsequent [2 + 2] dimerization upon photoirradiation. Selective syn photoproduct formation and concomitant suppression of the trans isomer are favored by orientation of the two guest nucleobases within the template cleft. Complementary donor and acceptor hydrogen bonding induced positioning of the two substrates and steric hindrance within the template clefts are responsible for the selective product formation.
Collapse
Affiliation(s)
- W G Skene
- Laboratoire de Chimie Supramoléculaire, ISIS-Université Louis Pasteur, 8, allée Gaspard Monge, BP 70028, 67083, Strasbourg cedex, France
| | | | | | | | | |
Collapse
|
10
|
Torizawa T, Ueda T, Kuramitsu S, Hitomi K, Todo T, Iwai S, Morikawa K, Shimada I. Investigation of the cyclobutane pyrimidine dimer (CPD) photolyase DNA recognition mechanism by NMR analyses. J Biol Chem 2004; 279:32950-6. [PMID: 15169780 DOI: 10.1074/jbc.m404536200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclobutane pyrimidine dimer (CPD) is one of the major forms of DNA damage caused by irradiation with ultraviolet (UV) light. CPD photolyases recognize and repair UV-damaged DNA. The DNA recognition mechanism of the CPD photolyase has remained obscure because of a lack of structural information about DNA-CPD photolyase complexes. In order to elucidate the CPD photolyase DNA binding mode, we performed NMR analyses of the DNA-CPD photolyase complex. Based upon results from (31)P NMR measurements, in combination with site-directed mutagenesis, we have demonstrated the orientation of CPD-containing single-stranded DNA (ssDNA) on the CPD photolyase. In addition, chemical shift perturbation analyses, using stable isotope-labeled DNA, revealed that the CPD is buried in a cavity within CPD photolyase. Finally, NMR analyses of a double-stranded DNA (dsDNA)-CPD photolyase complex indicated that the CPD is flipped out of the dsDNA by the enzyme, to gain access to the active site.
Collapse
Affiliation(s)
- Takuya Torizawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
We have compiled a comprehensive list of the articles published in the year 2000 that describe work employing commercial optical biosensors. Selected reviews of interest for the general biosensor user are highlighted. Emerging applications in areas of drug discovery, clinical support, food and environment monitoring, and cell membrane biology are emphasized. In addition, the experimental design and data processing steps necessary to achieve high-quality biosensor data are described and examples of well-performed kinetic analysis are provided.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|