1
|
Hoose A, Vellacott R, Storch M, Freemont PS, Ryadnov MG. DNA synthesis technologies to close the gene writing gap. Nat Rev Chem 2023; 7:144-161. [PMID: 36714378 PMCID: PMC9869848 DOI: 10.1038/s41570-022-00456-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/24/2023]
Abstract
Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.
Collapse
Affiliation(s)
- Alex Hoose
- National Physical Laboratory, Teddington, Middlesex UK
| | | | - Marko Storch
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Paul S. Freemont
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
2
|
Flamme M, Katkevica D, Pajuste K, Katkevics M, Sabat N, Hanlon S, Marzuoli I, Püntener K, Sladojevich F, Hollenstein M. Benzoyl and pivaloyl as efficient protecting groups for controlled enzymatic synthesis of DNA and XNA oligonucleotides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marie Flamme
- Institut Pasteur Structrual Biology and Chemistry FRANCE
| | - Dace Katkevica
- Latvian Institute of Organic Synthesis: Latvijas Organiskas sintezes instituts Chemistry LATVIA
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis: Latvijas Organiskas sintezes instituts Chemistry LATVIA
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis: Latvijas Organiskas sintezes instituts Chemistry LATVIA
| | - Nazarii Sabat
- Institut Pasteur Structural Biology and Chemistry FRANCE
| | - Steven Hanlon
- Hoffmann-La Roche Ltd Synthetic Molecules Technical Development SWITZERLAND
| | - Irene Marzuoli
- Hoffmann-La Roche Ltd Synthetic Molecules Technical Development SWITZERLAND
| | - Kurt Püntener
- Hoffmann-La Roche Ltd Synthetic Molecules Technical Development SWITZERLAND
| | | | - Marcel Hollenstein
- Institut Pasteur Department of Structural Biology and Chemistry 28 Rue du Dr. Roux 75015 Paris FRANCE
| |
Collapse
|
3
|
Flamme M, Hanlon S, Marzuoli I, Püntener K, Sladojevich F, Hollenstein M. Evaluation of 3'-phosphate as a transient protecting group for controlled enzymatic synthesis of DNA and XNA oligonucleotides. Commun Chem 2022; 5:68. [PMID: 36697944 PMCID: PMC9814670 DOI: 10.1038/s42004-022-00685-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/12/2022] [Indexed: 01/28/2023] Open
Abstract
Chemically modified oligonucleotides have advanced as important therapeutic tools as reflected by the recent advent of mRNA vaccines and the FDA-approval of various siRNA and antisense oligonucleotides. These sequences are typically accessed by solid-phase synthesis which despite numerous advantages is restricted to short sequences and displays a limited tolerance to functional groups. Controlled enzymatic synthesis is an emerging alternative synthetic methodology that circumvents the limitations of traditional solid-phase synthesis. So far, most approaches strived to improve controlled enzymatic synthesis of canonical DNA and no potential routes to access xenonucleic acids (XNAs) have been reported. In this context, we have investigated the possibility of using phosphate as a transient protecting group for controlled enzymatic synthesis of DNA and locked nucleic acid (LNA) oligonucleotides. Phosphate is ubiquitously employed in natural systems and we demonstrate that this group displays most characteristics required for controlled enzymatic synthesis. We have devised robust synthetic pathways leading to these challenging compounds and we have discovered a hitherto unknown phosphatase activity of various DNA polymerases. These findings open up directions for the design of protected DNA and XNA nucleoside triphosphates for controlled enzymatic synthesis of chemically modified nucleic acids.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, Paris, France
| | - Steven Hanlon
- Pharmaceutical Devision, Synthetic Molecules Technical Development, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland
| | - Irene Marzuoli
- Pharmaceutical Devision, Synthetic Molecules Technical Development, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland
| | - Kurt Püntener
- Pharmaceutical Devision, Synthetic Molecules Technical Development, F. Hoffmann-La Roche Ltd, 4070, Basel, Switzerland
| | - Filippo Sladojevich
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, Paris, France.
| |
Collapse
|
4
|
Deng S, Yan J, Wang F, Su Y, Zhang X, Li Q, Liu G, Fan C, Pei H, Wan Y. In situ terminus-regulated DNA hydrogelation for ultrasensitive on-chip microRNA assay. Biosens Bioelectron 2019; 137:263-270. [DOI: 10.1016/j.bios.2019.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
|
5
|
Tauraitė D, Jakubovska J, Dabužinskaitė J, Bratchikov M, Meškys R. Modified Nucleotides as Substrates of Terminal Deoxynucleotidyl Transferase. Molecules 2017; 22:molecules22040672. [PMID: 28441732 PMCID: PMC6154577 DOI: 10.3390/molecules22040672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 11/30/2022] Open
Abstract
The synthesis of novel modified nucleotides and their incorporation into DNA sequences opens many possibilities to change the chemical properties of oligonucleotides (ONs), and, therefore, broaden the field of practical applications of modified DNA. The chemical synthesis of nucleotide derivatives, including ones bearing thio-, hydrazino-, cyano- and carboxy groups as well as 2-pyridone nucleobase-containing nucleotides was carried out. The prepared compounds were tested as substrates of terminal deoxynucleotidyl transferase (TdT). The nucleotides containing N4-aminocytosine, 4-thiouracil as well as 2-pyridone, 4-chloro- and 4-bromo-2-pyridone as a nucleobase were accepted by TdT, thus allowing enzymatic synthesis of 3’-terminally modified ONs. The successful UV-induced cross-linking of 4-thiouracil-containing ONs to TdT was carried out. Enzymatic post-synthetic 3’-modification of ONs with various photo- and chemically-reactive groups opens novel possibilities for future applications, especially in analysis of the mechanisms of polymerases and the development of photo-labels, sensors, and self-assembling structures.
Collapse
Affiliation(s)
- Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius LT-10257, Lithuania.
| | - Jevgenija Jakubovska
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius LT-10257, Lithuania.
| | - Julija Dabužinskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius LT-10257, Lithuania.
| | - Maksim Bratchikov
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio g. 21, Vilnius LT-03101, Lithuania.
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius LT-10257, Lithuania.
| |
Collapse
|
6
|
Okholm AH, Aslan H, Besenbacher F, Dong M, Kjems J. Monitoring patterned enzymatic polymerization on DNA origami at single-molecule level. NANOSCALE 2015; 7:10970-3. [PMID: 26061114 DOI: 10.1039/c5nr01945a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
DNA origami has been used to orchestrate reactions with nano-precision using a variety of biomolecules. Here, the dynamics of albumin-assisted, localized single-molecule DNA polymerization by terminal deoxynucleotidyl transferase on a 2D DNA origami are monitored using AFM in liquid. Direct visualization of the surface activity revealed the mechanics of growth.
Collapse
Affiliation(s)
- A H Okholm
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Møllers Allé 3, 8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
7
|
Berdis AJ. DNA Polymerases That Perform Template-Independent DNA Synthesis. NUCLEIC ACID POLYMERASES 2014. [DOI: 10.1007/978-3-642-39796-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
8
|
Tailing DNA aptamers with a functional protein by two-step enzymatic reaction. J Biosci Bioeng 2013; 116:660-5. [PMID: 23806788 DOI: 10.1016/j.jbiosc.2013.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 11/23/2022]
Abstract
An efficient, quantitative synthetic strategy for aptamer-enzyme conjugates was developed by using a two-step enzymatic reaction. Terminal deoxynucleotidyl transferase (TdT) was used to first incorporate a Z-Gln-Gly (QG) modified nucleotide which can act as a glutamine donor for a subsequent enzymatic reaction, to the 3'-OH of a DNA aptamer. Microbial transglutaminase (MTG) then catalyzed the cross-linking between the Z-QG modified aptamers and an enzyme tagged with an MTG-reactive lysine containing peptide. The use of a Z-QG modified dideoxynucleotide (Z-QG-ddUTP) or a deoxyuridine triphosphate (Z-QG-dUTP) in the TdT reaction enables the controlled introduction of a single or multiple MTG reactive residues. This leads to the preparation of enzyme-aptamer and (enzyme)n-aptamer conjugates with different detection limits of thrombin, a model analyte, in a sandwich enzyme-linked aptamer assay (ELAA). Since the combination of two enzymatic reactions yields high site-specificity and requires only short peptide substrates, the methodology should be useful for the labeling of DNA/RNA aptamers with proteins.
Collapse
|
9
|
Ramsden DA, Asagoshi K. DNA polymerases in nonhomologous end joining: are there any benefits to standing out from the crowd? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:741-751. [PMID: 22987211 DOI: 10.1002/em.21725] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
Chromosome breaks, often with damaged or missing DNA flanking the break site, are an important threat to genome stability. They are repaired in vertebrates primarily by nonhomologous end joining (NHEJ). NHEJ is unique among the major DNA repair pathways in that a continuous template cannot be used by DNA polymerases to instruct replacement of damaged or lost DNA. Nevertheless, at least 3 out of the 17 mammalian DNA polymerases are specifically employed by NHEJ. Biochemical and structural studies are further revealing how each of the polymerases employed by NHEJ possesses distinct and sophisticated means to overcome the barriers this pathway presents to polymerase activity. Still unclear, though, is how the resulting network of overlapping and nonoverlapping polymerase activities contributes to repair in cells.
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA.
| | | |
Collapse
|
10
|
Visualization of enzymatic DNA extension by surface plasmon resonance imaging. BIOCHIP JOURNAL 2011. [DOI: 10.1007/s13206-011-5403-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Chisholm C, Cockerell CJ. Functions and uses of immunohistochemical stains in cutaneous infiltrates of hematopoietic origin: a review for the practicing dermatologist. J Cutan Med Surg 2011; 15:65-83. [PMID: 21477554 DOI: 10.2310/7750.2011.10024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Immunohistochemical stains, particularly those for cutaneous lymphomas, have similar-sounding names, which may lead to confusion among dermatologists who are not well versed in the terminology of the tools used for pathologic diagnosis. Also aiding in this is the fact that some familiar stains are constantly investigated for novel utility in different tumors, and a plethora of new stains regularly emerge in the peer-reviewed literature. OBJECTIVE To review the major stains encountered in dermatopathologic reports for cutaneous lymphomas. A select number of other stains are reviewed that are either new and under investigation in several cutaneous processes or have a new use described in recent reports. METHODS The peer-reviewed literature was searched and analyzed for the accepted purposes of using these markers. RESULTS All pertinent findings for these immunostains are reported with the purpose of educating the dermatology community. CONCLUSION This review serves as a reference to clarify potentially confusing immunohistochemical stains.
Collapse
Affiliation(s)
- Cary Chisholm
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
12
|
Motea EA, Berdis AJ. Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1151-66. [PMID: 19596089 DOI: 10.1016/j.bbapap.2009.06.030] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/27/2009] [Accepted: 06/30/2009] [Indexed: 01/06/2023]
Abstract
Nearly every DNA polymerase characterized to date exclusively catalyzes the incorporation of mononucleotides into a growing primer using a DNA or RNA template as a guide to direct each incorporation event. There is, however, one unique DNA polymerase designated terminal deoxynucleotidyl transferase that performs DNA synthesis using only single-stranded DNA as the nucleic acid substrate. In this chapter, we review the biological role of this enigmatic DNA polymerase and the biochemical mechanism for its ability to perform DNA synthesis in the absence of a templating strand. We compare and contrast the molecular events for template-independent DNA synthesis catalyzed by terminal deoxynucleotidyl transferase with other well-characterized DNA polymerases that perform template-dependent synthesis. This includes a quantitative inspection of how terminal deoxynucleotidyl transferase binds DNA and dNTP substrates, the possible involvement of a conformational change that precedes phosphoryl transfer, and kinetic steps that are associated with the release of products. These enzymatic steps are discussed within the context of the available structures of terminal deoxynucleotidyl transferase in the presence of DNA or nucleotide substrate. In addition, we discuss the ability of proteins involved in replication and recombination to regulate the activity of the terminal deoxynucleotidyl transferase. Finally, the biomedical role of this specialized DNA polymerase is discussed focusing on its involvement in cancer development and its use in biomedical applications such as labeling DNA for detecting apoptosis.
Collapse
Affiliation(s)
- Edward A Motea
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
13
|
Matyugina ES, Alexandrova LA, Jas'ko MV, Ivanov AV, Vasil'ev IA, Lapteva VL, Khandazhinskaya AL, Kukhanova MK. [Structure-functional analysis of interactions of terminal deoxynucleotidyl transferase with new non-nucleoside substrates]. BIOORGANICHESKAIA KHIMIIA 2009; 35:376-383. [PMID: 19621053 DOI: 10.1134/s1068162009030091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
New non-nucleoside esters of phosphoric acid containing various hydrophobic groups, namely (1) N-(2-tripticencarbonyl)-4-aminobutyl; (2) 5-phenylsubstituted N-(2,4-dinitrophenyl)-4-aminobutyl; (3) N-(4-phenylbenzoyl)- and N-(4-(N-benzylamino)benzoyl)-2-aminoethyl groups, as well as (4) diphenylmethyl and fluorenyl groups were synthesized and studied as substrates of terminal deoxynucleotidyl transferase. With the exception of the two latter derivatives, all the analogues displayed substrate properties and could incorporate into the deoxyoligonucleotide 3'-end. As it was shown in biochemical experiments and by computer modeling, a linker joining the triphosphate and hydrophobic fragments of the molecule was necessary for these compounds to display substrate properties.
Collapse
Affiliation(s)
- E S Matyugina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov ul. 32, Moscow, 119991 Russia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Alexandrova LA, Ivanov MA, Victorova LS, Kukhanova MK. Furano- and pyrrolo [2,3-d] pyrimidine nucleosides and their 5'-O-triphospates: synthesis and enzymatic activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:1083-6. [PMID: 18058541 DOI: 10.1080/15257770701516250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A series of bicyclic [2,3-d]furano- and pyrrolopyrimidine ribonucleosides were synthesized and converted chemically into corresponding 5'-O-triphosphates. Substrate properties of the triphosphates toward some RNA and DNA polymerases are reported.
Collapse
Affiliation(s)
- L A Alexandrova
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia.
| | | | | | | |
Collapse
|
15
|
Khandazhinskaya AL, Matyugina ES, Alexandrova LA, Shirokova EA, Kukhanova MK, Jasko MV. Aryl-containing esters of triphosphoric acid as substrates of terminal deoxynucleotidyl transferase. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:641-4. [PMID: 18066871 DOI: 10.1080/15257770701490480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new group of terminal deoxynucleotidyltransferase (TDT) substrates, namely, non-nucleoside triphosphates (NNTP) bearing 5-substituted 2,4-dinitrophenyl fragments instead of nucleoside residues was synthesized.
Collapse
Affiliation(s)
- A L Khandazhinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
16
|
Li P, Sergueeva ZA, Dobrikov M, Shaw BR. Nucleoside and Oligonucleoside Boranophosphates: Chemistry and Properties. Chem Rev 2007; 107:4746-96. [DOI: 10.1021/cr050009p] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ping Li
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Zinaida A. Sergueeva
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Mikhail Dobrikov
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Barbara Ramsay Shaw
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| |
Collapse
|
17
|
Fowler JD, Suo Z. Biochemical, structural, and physiological characterization of terminal deoxynucleotidyl transferase. Chem Rev 2007; 106:2092-110. [PMID: 16771444 DOI: 10.1021/cr040445w] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jason D Fowler
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
18
|
Jasko M, Khandazhinskaya A, Alexandrova L, Shirokova E, Ivanov A, Kukhanova M. Synthesis of novel alkyl triphosphates and their substrate properties toward terminal deoxynucleotidyltransferase. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2007; 26:323-334. [PMID: 17479429 DOI: 10.1080/15257770701296713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Novel triphosphate derivatives bearing bulky or small groups at alpha-position attached to the triphosphate residue through linkers of different structures and lengths were synthesized and studied as substrates toward terminal deoxynucleotidyltransferase. The substrate efficacy depends on the structure of substituents, linker length, and nature of metal activator. The replacement of hydrophobic groups by small substituents decreased the substrate efficacy by about 20 times in respect to hydrophobic residues. The dependence on metal activator is the following: Co(2+) > Mn(2+) >> Mg(2+). The model of interaction of alkyl triphosphates with linkers of different lengths bearing TdT active site is presented.
Collapse
Affiliation(s)
- Maxim Jasko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
19
|
Streletskiĭ AV, Kozlova AI, Esipov DS, Kaiushin AL, Korosteleva MD, Esipov SE. [Determination of oligonucleotide molecular masses by MS-MALDI]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2005; 31:151-8. [PMID: 15889789 DOI: 10.1007/s11171-005-0019-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MALDI mass spectrometry (MS) of 14- to 42-mer homogeneous oligonucleotides and their mixtures was carried out using a Vision 2000 instrument (Thermo BioAnalysis, Finnigan, United States). Conditions for the determination of oligonucleotide molecular masses were optimized by applying various matrices and operation modes. The most reproducible results with minimal uncontrolled decomposition of the oligonucleotides including their apurinization during the MALDI MS registration were obtained using 2,4,6-trihydroxyacetophenone as a matrix instead of 3-hydroxypicolinic acid, usually employed in the mass spectrometry of oligonucleotides. Our approach allows the determination of molecular masses of oligonucleotides obtained by chemical synthesis and the evaluation of their component composition and purity. It was applied to the mass spectrometric analysis of oligonucleotides containing a 3'-(methyl-C-phosphonate) group or a modified 1,N6-ethenodeoxyadenosine unit.
Collapse
|
20
|
Crespan E, Zanoli S, Khandazhinskaya A, Shevelev I, Jasko M, Alexandrova L, Kukhanova M, Blanca G, Villani G, Hübscher U, Spadari S, Maga G. Incorporation of non-nucleoside triphosphate analogues opposite to an abasic site by human DNA polymerases beta and lambda. Nucleic Acids Res 2005; 33:4117-27. [PMID: 16043633 PMCID: PMC1180669 DOI: 10.1093/nar/gki723] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/05/2005] [Accepted: 07/05/2005] [Indexed: 11/14/2022] Open
Abstract
A novel class of non-nucleoside triphosphate analogues, bearing hydrophobic groups sterically similar to nucleosides linked to the alpha-phosphate but lacking the chemical functional groups of nucleic acids, were tested against six different DNA polymerases (polymerases). Human polymerases alpha, beta and lambda, and Saccharomyces cerevisiae polymerase IV, were inhibited with different potencies by these analogues. On the contrary, Escherichia coli polymerase I and HIV-1 reverse transcriptase were not. Polymerase beta incorporated these derivatives in a strictly Mn++-dependent manner. On the other hand, polymerase lambda could incorporate some alkyltriphosphate derivatives with both Mg++ and Mn++, but only opposite to an abasic site on the template strand. The active site mutant polymerase lambda Y505A showed an increased ability to incorporate the analogues. These results show for the first time that neither the base nor the sugar moieties of nucleotides are required for incorporation by family X DNA polymerases.
Collapse
Affiliation(s)
- Emmanuele Crespan
- Istituto di Genetica Molecolare IGM-CNRvia Abbiategrasso 207, I-27100 Pavia, Italy
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
- Institute of Veterinary Biochemistry and Molecular Biology University of Zürich–IrchelWinterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique205 route de Narbonne, 31077 Toulouse Cedex, France
| | - Samantha Zanoli
- Istituto di Genetica Molecolare IGM-CNRvia Abbiategrasso 207, I-27100 Pavia, Italy
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
- Institute of Veterinary Biochemistry and Molecular Biology University of Zürich–IrchelWinterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique205 route de Narbonne, 31077 Toulouse Cedex, France
| | - Anastasiya Khandazhinskaya
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
| | - Igor Shevelev
- Institute of Veterinary Biochemistry and Molecular Biology University of Zürich–IrchelWinterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Maxim Jasko
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
| | - Ludmila Alexandrova
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
| | - Marina Kukhanova
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
| | - Giuseppina Blanca
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique205 route de Narbonne, 31077 Toulouse Cedex, France
| | - Giuseppe Villani
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique205 route de Narbonne, 31077 Toulouse Cedex, France
| | - Ulrich Hübscher
- Institute of Veterinary Biochemistry and Molecular Biology University of Zürich–IrchelWinterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Silvio Spadari
- Istituto di Genetica Molecolare IGM-CNRvia Abbiategrasso 207, I-27100 Pavia, Italy
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
- Institute of Veterinary Biochemistry and Molecular Biology University of Zürich–IrchelWinterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique205 route de Narbonne, 31077 Toulouse Cedex, France
| | - Giovanni Maga
- To whom correspondence should be addressed. Tel: +39 0382546354; Fax: +39 0382422286;
| |
Collapse
|
21
|
Khandazhinskaya AL, Kukhanova MK, Jasko MV. New Nonnucleoside Substrates for Terminal Deoxynucleotidyl Transferase: Synthesis and Dependence of Substrate Properties on Structure. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2005. [DOI: 10.1007/s11171-005-0048-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Ikeda Y, Kawahara SI, Yoshinari K, Fujita S, Taira K. Specific 3′-Terminal Modification of DNA with a Novel Nucleoside Analogue that Allows a Covalent Linkage of a Nuclear Localization Signal and Enhancement of DNA Stability. Chembiochem 2005; 6:297-303. [PMID: 15678421 DOI: 10.1002/cbic.200400142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a straightforward method for the site-specific modification of long double-stranded DNA by using a maleimide adduct of deoxycytidine. This novel nucleoside analogue was efficiently incorporated at the 3'-termini of DNA by terminal deoxynucleotidyl transferase (TdT). Thiol-containing compounds can be covalently linked to the maleimide moieties. We added a nuclear localization signal peptide to the 3'-terminal of a 350 bp-long DNA that encoded short-hairpin RNA, and these modifications resulted in the enhancement of silencing activity by RNA interference. This enhancement is mainly attributed to increased stability of the template DNA.
Collapse
Affiliation(s)
- Yutaka Ikeda
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | | | | | | | | |
Collapse
|
23
|
Abstract
Cells have high-fidelity polymerases whose task is to accurately replicate the genome, and low-fidelity polymerases with specialized functions. Although some of these low-fidelity polymerases are exceptional in their ability to replicate damaged DNA and restore the undamaged sequence, they are error prone on undamaged DNA. In fact, these error-prone polymerases are sometimes used in circumstances where the capacity to make errors has a selective advantage. The mutagenic potential of the error-prone polymerases requires that their expression, activity, and access to undamaged DNA templates be regulated. Here we review these specialized polymerases with an emphasis on their biological roles.
Collapse
Affiliation(s)
- Alison J Rattray
- Gene Regulation and Chromosome Biology Laboratory, NCI-Frederick, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA.
| | | |
Collapse
|
24
|
Abstract
DNA polymerases are defined as such because they use deoxynucleotides instead of ribonucleotides with high specificity. We show here that polymerase mu (pol mu), implicated in the nonhomologous end-joining pathway for repair of DNA double-strand breaks, incorporates both ribonucleotides and deoxynucleotides in a template-directed manner. pol mu has an approximately 1,000-fold-reduced ability to discriminate against ribonucleotides compared to that of the related pol beta, although pol mu's substrate specificity is similar to that of pol beta in most other respects. Moreover, pol mu more frequently incorporates ribonucleotides when presented with nucleotide concentrations that approximate cellular pools. We therefore addressed the impact of ribonucleotide incorporation on the activities of factors required for double-strand break repair by nonhomologous end joining. We determined that the ligase required for this pathway readily joined strand breaks with terminal ribonucleotides. Most significantly, pol mu frequently introduced ribonucleotides into the repair junctions of an in vitro nonhomologous end-joining reaction, an activity that would be expected to have important consequences in the context of cellular double-strand break repair.
Collapse
Affiliation(s)
- Stephanie A Nick McElhinny
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
25
|
Arzumanov AA, Victorova LS, Jasko MV. Synthesis of non-nucleoside triphosphate analogues, a new type of substrates for terminal deoxynucleotidyl transferase. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:1787-93. [PMID: 11200273 DOI: 10.1080/15257770008045460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A series of non-nucleoside triphosphate analogues were synthesized. In place of the nucleoside fragment, substituents bearing aromatic groups were introduced; the triphosphate component was replaced at alpha, beta, or gamma-positions by phosphonates. Alpha-[2-N-(9-Fluorenylmethoxycarbonyl)aminoethylphosphonyl]-beta,gamma-difluoromethylenediphosphonate (IIc) revealed the best substrate properties toward terminal deoxynucleotidyl transferase.
Collapse
Affiliation(s)
- A A Arzumanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia Federation
| | | | | |
Collapse
|