1
|
Endsley MP, Moyle-Heyrman G, Karthikeyan S, Lantvit DD, Davis DA, Wei JJ, Burdette JE. Spontaneous Transformation of Murine Oviductal Epithelial Cells: A Model System to Investigate the Onset of Fallopian-Derived Tumors. Front Oncol 2015; 5:154. [PMID: 26236688 PMCID: PMC4505108 DOI: 10.3389/fonc.2015.00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most lethal ovarian cancer histotype. The fallopian tube secretory epithelial cells (FTSECs) are a proposed progenitor cell type. Genetically altered FTSECs form tumors in mice; however, a spontaneous HGSC model has not been described. Apart from a subpopulation of genetically predisposed women, most women develop ovarian cancer spontaneously, which is associated with aging and lifetime ovulations. A murine oviductal cell line (MOE(LOW)) was developed and continuously passaged in culture to mimic cellular aging (MOE(HIGH)). The MOE(HIGH) cellular model exhibited a loss of acetylated tubulin consistent with an outgrowth of secretory epithelial cells in culture. MOE(HIGH) cells proliferated significantly faster than MOE(LOW), and the MOE(HIGH) cells produced more 2D foci and 3D soft agar colonies as compared to MOE(LOW) MOE(HIGH) were xenografted into athymic female nude mice both in the subcutaneous and the intraperitoneal compartments. Only the subcutaneous grafts formed tumors that were negative for cytokeratin, but positive for oviductal markers, such as oviductal glycoprotein 1 and Pax8. These tumors were considered to be poorly differentiated carcinoma. The differential molecular profiles between MOE(HIGH) and MOE(LOW) were determined using RNA-Seq and confirmed by protein expression to uncover pathways important in transformation, like the p53 pathway, the FOXM1 pathway, WNT signaling, and splicing. MOE(HIGH) had enhanced protein expression of c-myc, Cyclin E, p53, and FOXM1 with reduced expression of p21. MOE(HIGH) were also less sensitive to cisplatin and DMBA, which induce lesions typically repaired by base-excision repair. A model of spontaneous tumorogenesis was generated starting with normal oviductal cells. Their transition to cancer involved alterations in pathways associated with high-grade serous cancer in humans.
Collapse
Affiliation(s)
- Michael P Endsley
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Georgette Moyle-Heyrman
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Subbulakshmi Karthikeyan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Daniel D Lantvit
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - David A Davis
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University , Chicago, IL , USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| |
Collapse
|
2
|
Splicing of mouse p53 pre-mRNA does not always follow the "first come, first served" principle and may be influenced by cisplatin treatment and serum starvation. Mol Biol Rep 2012; 39:9247-56. [PMID: 22740133 DOI: 10.1007/s11033-012-1798-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
Transcription of a pre-mRNA in eukaryotic cells elongates from the 5' to the 3' end, but intron removal during a pre-mRNA splicing does not always proceed in this orientation. In this study, we identified eight mouse p53 transcripts that retained one or more of introns 6, 7 and 8. The 5' part of intron 9 was also retained while the 3' part was not studied. These intron-containing transcripts, abbreviated as p53-ICTs, were detected at low abundance in many mouse embryonic fibroblasts (MEF) as well as cancer cell lines and tissues, and the highest ratio of these p53-ICTs to the mature p53 mRNA was seen in the normal pancreas. Serum starvation decreased those p53-ICTs that retained introns 6 and 7 but increased the levels of those lacking these introns while the level of the mature p53 mRNA was unaffected. Treatment of several cancer cell lines with cisplatin increased the mature p53 mRNA level but decreased these p53-ICTs. Transfection of p53(-/-) MEF with the p53 cDNA or several p53-ICT mini-genes slightly increased the cell viability and rendered the cells resistant to cisplatin. These data also suggest that p53 pre-mRNA splicing may have multiple orders of intron removal, some of which may not follow the "first come, first served" principle. It remains possible that these p53-ICTs are splicing intermediates existing as a mechanism for the cell to respond more promptly to a demand for more p53 and that p53 protein may be required for a normal life of MEF.
Collapse
|
3
|
Vihma H, Pruunsild P, Timmusk T. Alternative splicing and expression of human and mouse NFAT genes. Genomics 2008; 92:279-91. [PMID: 18675896 PMCID: PMC2577130 DOI: 10.1016/j.ygeno.2008.06.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 12/30/2022]
Abstract
Four members of the nuclear factor of activated T cells (NFAT) family (NFATC1, NFATC2, NFATC3, and NFATC4) are Ca(2+)-regulated transcription factors that regulate several processes in vertebrates, including the development and function of the immune, cardiovascular, musculoskeletal, and nervous systems. Here we describe the structures and alternative splicing of the human and mouse NFAT genes, including novel splice variants for NFATC1, NFATC2, NFATC3, and NFATC4, and show the expression of different NFAT mRNAs in various mouse and human tissues and brain regions by RT-PCR. Our results show that alternatively spliced NFAT mRNAs are expressed differentially and could contribute to the diversity of functions of the NFAT proteins. Since NFAT family members are Ca(2+)-regulated and have critical roles in neuronal gene transcription in response to electrical activity, we describe the expression of NFATC1, NFATC2, NFATC3, and NFATC4 mRNAs in the adult mouse brain and in the adult human hippocampus using in situ hybridization and show that all NFAT mRNAs are expressed in the neurons of the mouse brain with specific patterns for each NFAT.
Collapse
Affiliation(s)
| | | | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn 19086, Estonia
| |
Collapse
|
4
|
Yea S, Narla G, Zhao X, Garg R, Tal-Kremer S, Hod E, Villanueva A, Loke J, Tarocchi M, Akita K, Shirasawa S, Sasazuki T, Martignetti JA, Llovet JM, Friedman SL. Ras promotes growth by alternative splicing-mediated inactivation of the KLF6 tumor suppressor in hepatocellular carcinoma. Gastroenterology 2008; 134:1521-31. [PMID: 18471523 PMCID: PMC2600656 DOI: 10.1053/j.gastro.2008.02.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 02/02/2008] [Accepted: 02/07/2008] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer worldwide and the third most lethal. Dysregulation of alternative splicing underlies a number of human diseases, yet its contribution to liver cancer has not been explored fully. The Krüppel-like factor 6 (KLF6) gene is a zinc finger transcription factor that inhibits cellular growth in part by transcriptional activation of p21. KLF6 function is abrogated in human cancers owing to increased alternative splicing that yields a dominant-negative isoform, KLF6 splice variant 1 (SV1), which antagonizes full-length KLF6-mediated growth suppression. The molecular basis for stimulation of KLF6 splicing is unknown. METHODS In human HCC samples and cell lines, we functionally link oncogenic Ras signaling to increased alternative splicing of KLF6 through signaling by phosphatidylinositol-3 kinase and Akt, mediated by the splice regulatory protein ASF/SF2. RESULTS In 67 human HCCs, there is a significant correlation between activated Ras signaling and increased KLF6 alternative splicing. In cultured cells, Ras signaling increases the expression of KLF6 SV1, relative to full-length KLF6, thereby enhancing proliferation. Abrogation of oncogenic Ras signaling by small interfering RNA (siRNA) or a farnesyl-transferase inhibitor decreases KLF6 SV1 and suppresses growth. Growth inhibition by farnesyl-transferase inhibitor in transformed cell lines is overcome by ectopic expression of KLF6 SV1. Down-regulation of the splice factor ASF/SF2 by siRNA increases KLF6 SV1 messenger RNA levels. KLF6 alternative splicing is not coupled to its transcriptional regulation. CONCLUSIONS Our findings expand the role of Ras in human HCC by identifying a novel mechanism of tumor-suppressor inactivation through increased alternative splicing mediated by an oncogenic signaling cascade.
Collapse
Affiliation(s)
- Steven Yea
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Goutham Narla
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029, Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Xiao Zhao
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Rakhi Garg
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Sigal Tal-Kremer
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029, Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Eldad Hod
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Augusto Villanueva
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Johnny Loke
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Mirko Tarocchi
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Kunihara Akita
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Senji Shirasawa
- Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Takehiko Sasazuki
- Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Josep M Llovet
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029, BCLC Group, Liver Unit, Hospital Clinic, Barcelona
| | - Scott L Friedman
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029,Corresponding Author: Scott Friedman, 1425 Madison Ave., 11-76, New York, NY, 10029; , Phone: 212.659.9501, Fax: 212.849.2574
| |
Collapse
|
5
|
Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 2007; 13:962-72. [PMID: 16601753 DOI: 10.1038/sj.cdd.4401914] [Citation(s) in RCA: 387] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
p63, p73 and p53 compose a family of transcription factors involved in cell response to stress and development. p53 is the most frequently mutated gene in cancer (50%) and loss of p53 activity is considered to be ubiquitous to all cancers. Recent publications may have a profound impact on our understanding of p53 tumour suppressor activity. p63, p73 and p53 genes have a dual gene structure conserved in drosophila, zebrafish and man. They encode for multiple p63, p73 or p53 proteins containing different protein domains (isoforms) due to multiple splicing, alternative promoter and alternative initiation of translation. In this review, we describe the different isoforms of p63, p73, p53 and their roles in development and cancer. The changes in the interactions between p53, p63 and p73 isoforms are likely to be fundamental to our understanding in the transition between normal cell cycling and the onset of tumour formation.
Collapse
Affiliation(s)
- F Murray-Zmijewski
- Department of Surgery and Molecular Oncology, University of Dundee, Ninewells Hospital, CR-UK Cell Transformation Research Group, Dundee DD19SY, UK
| | | | | |
Collapse
|
6
|
Nasrallah JB, Liu P, Sherman-Broyles S, Schmidt R, Nasrallah ME. Epigenetic mechanisms for breakdown of self-incompatibility in interspecific hybrids. Genetics 2007; 175:1965-73. [PMID: 17237505 PMCID: PMC1855105 DOI: 10.1534/genetics.106.069393] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
As a major agent of rapid speciation, interspecific hybridization has played an important role in plant evolution. When hybridization involves species that exhibit self-incompatibility (SI), this prezygotic barrier to self-fertilization must be overcome or lost to allow selfing. How SI, a normally dominant trait, is lost in nascent hybrids is not known, however. Here we demonstrate that hybrid self-fertility can result from epigenetic changes in expression of the S-locus genes that determine specificity in the SI response. We analyzed loss of SI in synthetic hybrids produced by crossing self-fertile and self-incompatible species in each of two crucifer genera. We show that SI is lost in the stigmas of A. thaliana-lyrata hybrids and their neo-allotetraploid derivatives and in the pollen of C. rubella-grandiflora hybrids and their homoploid progenies. Aberrant processing of S-locus receptor kinase gene transcripts as detected in Arabidopsis hybrids and suppression of the S-locus cysteine-rich protein gene as observed in Capsella hybrids are two reversible mechanisms by which SI might break down upon interspecific hybridization to generate self-fertile hybrids in nature.
Collapse
Affiliation(s)
- June B Nasrallah
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
7
|
Nikoshkov A, Hurd YL. p53 splice variants generated by atypical mRNA processing confer complexity of p53 transcripts in the human brain. Biochem Biophys Res Commun 2006; 351:383-6. [PMID: 17070776 DOI: 10.1016/j.bbrc.2006.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 10/09/2006] [Indexed: 11/19/2022]
Abstract
Very limited is known about p53 expression in the normal mammalian brain and only few alternative splice variants have been reported thus far in human and rat peripheral tissues. Here, we detected eight new p53 transcripts in the human brain generated by alternative splicing, whereas two were present in the rat brain. Almost all alternative splice events occurred due to atypical splice mechanism employing direct repeats at splice sites. All discovered transcripts retain untranslated 5' area of the p53 gene and thus could be translated into peptides consisting of different functional domains.
Collapse
Affiliation(s)
- Andrej Nikoshkov
- Section of Psychiatry, Department of Clinical Neuroscience, Karolinska Institutet, S-171 76 Stockholm, Sweden.
| | | |
Collapse
|
8
|
Marques AT, Antunes A, Fernandes PA, Ramos MJ. Comparative evolutionary genomics of the HADH2 gene encoding Abeta-binding alcohol dehydrogenase/17beta-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10). BMC Genomics 2006; 7:202. [PMID: 16899120 PMCID: PMC1559703 DOI: 10.1186/1471-2164-7-202] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 08/09/2006] [Indexed: 11/17/2022] Open
Abstract
Background The Aβ-binding alcohol dehydrogenase/17β-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10) is an enzyme involved in pivotal metabolic processes and in the mitochondrial dysfunction seen in the Alzheimer's disease. Here we use comparative genomic analyses to study the evolution of the HADH2 gene encoding ABAD/HSD10 across several eukaryotic species. Results Both vertebrate and nematode HADH2 genes showed a six-exon/five-intron organization while those of the insects had a reduced and varied number of exons (two to three). Eutherian mammal HADH2 genes revealed some highly conserved noncoding regions, which may indicate the presence of functional elements, namely in the upstream region about 1 kb of the transcription start site and in the first part of intron 1. These regions were also conserved between Tetraodon and Fugu fishes. We identified a conserved alternative splicing event between human and dog, which have a nine amino acid deletion, causing the removal of the strand βF. This strand is one of the seven strands that compose the core β-sheet of the Rossman fold dinucleotide-binding motif characteristic of the short chain dehydrogenase/reductase (SDR) family members. However, the fact that the substrate binding cleft residues are retained and the existence of a shared variant between human and dog suggest that it might be functional. Molecular adaptation analyses across eutherian mammal orthologues revealed the existence of sites under positive selection, some of which being localized in the substrate-binding cleft and in the insertion 1 region on loop D (an important region for the Aβ-binding to the enzyme). Interestingly, a higher than expected number of nonsynonymous substitutions were observed between human/chimpanzee and orangutan, with six out of the seven amino acid replacements being under molecular adaptation (including three in loop D and one in the substrate binding loop). Conclusion Our study revealed that HADH2 genes maintained a reasonable conserved organization across a large evolutionary distance. The conserved noncoding regions identified among mammals and between pufferfishes, the evidence of an alternative splicing variant conserved between human and dog, and the detection of positive selection across eutherian mammals, may be of importance for further research on ABAD/HSD10 function and its implication in the Alzheimer's disease.
Collapse
Affiliation(s)
- Alexandra T Marques
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Maria J Ramos
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
9
|
Takagi M, Ohashi K, Morimura T, Sugimoto C, Onuma M. The presence of the p53 transcripts with truncated open reading frames in Marek's disease tumor-derived cell lines. Leuk Res 2006; 30:987-92. [PMID: 16448698 DOI: 10.1016/j.leukres.2005.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 09/27/2005] [Accepted: 12/20/2005] [Indexed: 11/21/2022]
Abstract
Several kinds of the p53 transcripts in which their open reading frames (ORFs) were truncated (ranging from 101 to 765 bp) were identified in Marek's disease (MD)-derived tumor cell lines as well as avian leukosis- and reticuloendotheliosis-derived ones, detected by nested RT-PCR and subsequent nucleotide sequence analysis. In these ORFs, regions encoding the proline-rich and DNA-binding domains of the p53 protein were frequently deleted, and many of these deletions were found to cause frame shift. Western blot analysis using anti-p53 monoclonal antibodies revealed that multiple p53 isoform proteins with various molecular weights including 45-46, 35 and 28 kDa were expressed in these tumor cell lines, though the p53 protein with a molecular weight of 49 kDa was detected in chicken embryo fibroblasts transformed by the SV40 T antigen as a control. Since no deletions were found in the p53 gene of these MD tumor cell lines, truncations in the p53 ORFs observed in this study might result from alternative splicing of the p53 gene.
Collapse
Affiliation(s)
- Michihiro Takagi
- Department of Microbiology and Immunology, Faculty of Agriculture, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
11
|
Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, Shagin D, Nazarenko S, Geraymovych E, Litvin O, Tiunova A, Born TL, Usman N, Staroverov D, Lukyanov S, Panchin Y. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 2004; 83:706-16. [PMID: 15028292 DOI: 10.1016/j.ygeno.2003.09.025] [Citation(s) in RCA: 367] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 09/16/2003] [Accepted: 09/18/2003] [Indexed: 11/20/2022]
Abstract
We have cloned the genes PANX1, PANX2 and PANX3, encoding putative gap junction proteins homologous to invertebrate innexins, which constitute a new family of mammalian proteins called pannexins. Phylogenetic analysis revealed that pannexins are highly conserved in worms, mollusks, insects and mammals, pointing to their important function. Both innexins and pannexins are predicted to have four transmembrane regions, two extracellular loops, one intracellular loop and intracellular N and C termini. Both the human and mouse genomes contain three pannexin-encoding genes. Mammalian pannexins PANX1 and PANX3 are closely related, with PANX2 more distant. The human and mouse pannexin-1 mRNAs are ubiquitously, although disproportionately, expressed in normal tissues. Human PANX2 is a brain-specific gene; its mouse orthologue, Panx2, is also expressed in certain cell types in developing brain. In silico evaluation of Panx3 expression predicts gene expression in osteoblasts and synovial fibroblasts. The apparent conservation of pannexins between species merits further investigation.
Collapse
Affiliation(s)
- Ancha Baranova
- Vavilov Institute of General Genetics RAS, Gubkina str., 3 GSP-1, Moscow 119991, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Suzuki M, Hayashizaki Y. Mouse-centric comparative transcriptomics of protein coding and non-coding RNAs. Bioessays 2004; 26:833-43. [PMID: 15273986 DOI: 10.1002/bies.20084] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The largest transcriptome reported so far comprises 60,770 mouse full-length cDNA clones, and is an effective reference data set for comparative transcriptomics. The number of mouse cDNAs identified greatly exceeds the number of genes predicted from the sequenced human and mouse genomes. This is largely because of extensive alternative splicing and the presence of many non-coding RNAs (ncRNAs), which are difficult to predict from genomic sequences. Notably, ncRNAs are a major component of the transcriptomes of higher organisms, and many sense-antisense pairs have been identified. The ncRNAs function in a range of regulatory mechanisms for gene expression and other biological processes. They might also have contributed to the increased functional diversification of genomes during evolution. In this review, we discuss aspects of the transcriptome of various organisms in relation to the mouse data, in order to shed light on the regulatory mechanisms and physiological significance of these abundant RNAs.
Collapse
Affiliation(s)
- Masanori Suzuki
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Kanagawa, Japan
| | | |
Collapse
|
13
|
Kerr NCH, Holmes FE, Wynick D. Novel isoforms of the sodium channels Nav1.8 and Nav1.5 are produced by a conserved mechanism in mouse and rat. J Biol Chem 2004; 279:24826-33. [PMID: 15047701 PMCID: PMC2726572 DOI: 10.1074/jbc.m401281200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated sodium channel Na(v)1.8 is only expressed in subsets of neurons in dorsal root ganglia (DRG) and trigeminal and nodose ganglia. We have isolated mouse partial length Na(v)1.8 cDNA clones spanning the exon 17 sequence, which have 17 nucleotide substitutions and 12 predicted amino acid differences from the published sequence. The absence of a mutually exclusive alternative exon 17 was confirmed by sequencing 4.1 kilobases of genomic DNA spanning exons 16-18 of Scn10a. A novel cDNA isoform was identified, designated Na(v)1.8c, which results from alternative 3'-splice site selection at a CAG/CAG motif to exclude the codon for glutamine 1031 within the interdomain cytoplasmic loop IDII/III. The ratio of Na(v)1.8c (CAG-skipped) to Na(v)1.8 (CAG-inclusive) mRNA in mouse is approximately 2:1 in adult DRG, trigeminal ganglion, and neonatal DRG. A Na(v)1.8c isoform also occurs in rat DRG, but is less common. Of the two other tetrodotoxin-resistant channels, no analogous alternative splicing of mouse Na(v)1.9 was detected, whereas rare alternative splicing of Na(v)1.5 at a CAG/CAG motif resulted in the introduction of a CAG trinucleotide. This isoform, designated Na(v)1.5c, is conserved in rat and encodes an additional glutamine residue that disrupts a putative CK2 phosphorylation site. In summary, novel isoforms of Na(v)1.8 and Na(v)1.5 are each generated by alternative splicing at CAG/CAG motifs, which result in the absence or presence of predicted glutamine residues within the interdomain cytoplasmic loop IDII/III. Mutations of sodium channels within this cytoplasmic loop have previously been demonstrated to alter electrophysiological properties and cause cardiac arrhythmias and epilepsy.
Collapse
Affiliation(s)
- Niall C. H. Kerr
- Laboratories for Integrated Neuroscience and Endocrinology (LINE), Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
- NeuroTargets Ltd., Surrey Technology Centre, Occam Road, Surrey Research Park, Guilford, Surrey GU2 7YG, United Kingdom
| | - Fiona E. Holmes
- Laboratories for Integrated Neuroscience and Endocrinology (LINE), Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - David Wynick
- Laboratories for Integrated Neuroscience and Endocrinology (LINE), Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
- NeuroTargets Ltd., Surrey Technology Centre, Occam Road, Surrey Research Park, Guilford, Surrey GU2 7YG, United Kingdom
- To whom correspondence should be addressed: LINE, Dorothy Hodgkin Building, Whitson St., Bristol BS1 3NY, UK. Tel.: 44-0-117-3313085; Fax: 44-0-117-3313084;
| |
Collapse
|
14
|
Courtois S, Caron de Fromentel C, Hainaut P. p53 protein variants: structural and functional similarities with p63 and p73 isoforms. Oncogene 2004; 23:631-8. [PMID: 14737098 DOI: 10.1038/sj.onc.1206929] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Since its discovery in 1979, many studies have reported that the p53 tumour suppressor protein could be expressed in the form of products smaller than those predicted by the full-length amino-acid sequence. These products differ from full-length p53 in their N- or C-terminal regions, but generally conserve the central, DNA-binding domain. They appear to be expressed at rather low levels and to be restricted to particular cell types and/or physiological circumstances, suggesting that they play very narrow and specific roles. Several mechanisms have been proposed to explain their timely occurrence, including alternative splicing, internal initiation of translation or proteolytic cleavage. A precise assessment of the various 'p53 isoforms' reveals striking similarities with several isoforms of the p53 homologous proteins p63 or p73, suggesting that regulated production of specific, N- or C-terminal variants may be a 'trademark' of all family members. In this review, we summarize the published evidence on the structure, mode of production, expression and function of the p53 isoforms, and discuss their properties in the light of recent data on the structure and function of p63/p73 isoforms.
Collapse
Affiliation(s)
- Stéphanie Courtois
- Unit of Molecular Carcinogenesis, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | | | | |
Collapse
|
15
|
Zhuo Y, Hoyle GW, Zhang J, Morris G, Lasky JA. A novel murine PDGF-D splicing variant results in significant differences in peptide expression and function. Biochem Biophys Res Commun 2003; 308:126-32. [PMID: 12890490 DOI: 10.1016/s0006-291x(03)01346-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Platelet-derived growth factor (PDGF) is a potent mesenchymal cell mitogen and chemoattractant involved in the pathogenesis of fibroproliferative diseases. There are four known PDGF ligand isoforms designated A-D, two of which, C and D, were only recently discovered. We have identified a splicing variant in the PDGF-D isoform that occurs in mice, but not in humans. The presence of the splicing variant in murine PDGF-D appears to be due to an aberration in the splicing site at the junction of exons 5 and 6. The splicing variant results in a deletion predicted to have significant effects on peptide activity since it results in the deletion of bases within the cysteine knot domain that are important for peptide dimerization and receptor binding. It is important to appreciate differences between murine and human PDGF gene expression because PDGF is a key mitogen in the pathogenesis of fibrosis and mice are commonly employed as models for human disease.
Collapse
Affiliation(s)
- Ying Zhuo
- Tulane University Health Sciences Center, Departments of Medicine and Pathology, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | | | | | | | | |
Collapse
|
16
|
Langheinrich U, Hennen E, Stott G, Vacun G. Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol 2002; 12:2023-8. [PMID: 12477391 DOI: 10.1016/s0960-9822(02)01319-2] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
p53 and its main negative regulator, Mdm2, are key players in mammalian cancer development. Activation of the transcription factor p53 through DNA damage or other stresses can result in cell cycle arrest, apoptosis, or both. Because of the absence of characterized p53 signaling in zebrafish (Danio rerio), we have studied the roles of Mdm2 and p53 in zebrafish by generating early embryonic knockdowns and examined the involvement of p53 in DNA damage-induced apoptosis. p53-deficient embryos, induced by injection of antisense morpholinos, were morphologically indistinguishable from control embryos, when unperturbed, whereas Mdm2 knockdown embryos were severely apoptotic and arrested very early in development. Double knockdowns showed that p53 deficiency rescued Mdm2-deficient embryos completely, similar to observations in mice. p53 deficiency also markedly decreased DNA damage-induced apoptosis, elicited by ultraviolet irradiation or by the anti-cancer compound camptothecin. p21/Waf/Cip-1 appeared to be a downstream target of zebrafish p53, as revealed relative p21 mRNA levels determined via TaqMan analysis. In contrast to mammals, zebrafish may regulate p53 activity by using an internal polyA signal site. We conclude that zebrafish represents a promising model organism for future compound-based and genetic screens and believe that it will help to identify and characterize new anticancer drugs and new targets for cancer treatment.
Collapse
|
17
|
Takahara T, Kasahara D, Mori D, Yanagisawa S, Akanuma H. The trans-spliced variants of Sp1 mRNA in rat. Biochem Biophys Res Commun 2002; 298:156-62. [PMID: 12379234 DOI: 10.1016/s0006-291x(02)02419-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
trans-Splicing is the biological reaction that generates a mature mRNA from separate strands of pre-mRNAs. Previously, we reported that the trans-splicing between the two Sp1 pre-mRNA strands produced an mRNA with the exon 3-2-3 alignment in human HepG2 cells. Here we describe the rat counterpart as well as a newly identified variant with the exon 3-3 alignment in cultured rat cells. A qualitative evaluation of such alignments in poly(A)(+) RNA-rich preparation showed that both alignments arose from trans-splicing rather than circularization of a single strand. The identification of the trans-spliced products in both rat and human raises the possibility that trans-splicing on Sp1 pre-mRNA is rather common to mammals. It was observed that the level of the trans-spliced variants varies in different rat organs.
Collapse
Affiliation(s)
- Terunao Takahara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
| | | | | | | | | |
Collapse
|