1
|
Hwu JR, Landge DR, Huang WC, Horng JC, Hu YC, Hwang KC, Lin CC, Tsay SC. Biochemical Nanotubes Containing Heterocycles as Artificial Strands for Pseudo Duplex and Triplex DNA Formation. J Phys Chem B 2025; 129:2903-2914. [PMID: 40066826 PMCID: PMC11931538 DOI: 10.1021/acs.jpcb.4c08079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/21/2025]
Abstract
This report presents our discoveries that include the successful hybridization of grafted single-walled carbon nanotubes (SWCNTs) with dsDNA to form pseudo triplex-DNA. These tubes are attached with distinctive five-membered N-containing heterocycles (i.e., imidazolidinone and triazolidindione) on their surface. In this study, the heterocycles play a crucial role as DNA binders. Consequently, three functionalized SWCNTs (f-SWCNTs) are synthesized, which are incorporated with multiple-phenoxy-triazole-(ethylene glycol)-(heterocycle) ligands. These f-SWCNTs are entwined with dsDNA to form "pseudo triplex". Notably, the dsDNA disengages from the f-SWCNTs at 85 °C and then is able to revert to triplex-DNA upon temperature reduction. Additionally, these f-SWCNTs act as a complementary strand for ssDNA to form pseudo duplex-DNA, in which the base pairings therein dissociate at 55 °C. Comprehensive analysis by use of CD spectrometer, SEM, TEM, and AFM microscopy provides substantive evidence for these phenomena. The demonstrated ability to manipulate DNA liberation from pseudo duplexes and triplexes indicates the potential versatility of f-SWCNTs as effective delivery vehicles for drugs and biomaterials in gene therapy and biotechnology.
Collapse
Affiliation(s)
- Jih Ru Hwu
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Deepa Rohidas Landge
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Chieh Huang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Jia-Cherng Horng
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Chen Hu
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Kuo Chu Hwang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chun-Cheng Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Shwu-Chen Tsay
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
2
|
Yamada K, Hattori Y, Inde T, Kanamori T, Ohkubo A, Seio K, Sekine M. Remarkable stabilization of antiparallel DNA triplexes by strong stacking effects of consecutively modified nucleobases containing thiocarbonyl groups. Bioorg Med Chem Lett 2013; 23:776-8. [DOI: 10.1016/j.bmcl.2012.11.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 10/31/2012] [Accepted: 11/20/2012] [Indexed: 11/30/2022]
|
3
|
Ghane T, Brancolini G, Varsano D, Di Felice R. Optical Properties of Triplex DNA from Time-Dependent Density Functional Theory. J Phys Chem B 2012; 116:10693-702. [DOI: 10.1021/jp304818s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tahereh Ghane
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena,
Italy
- Department of Physics, University of Modena and Reggio Emilia, Via Campi 213/A,
41125 Modena, Italy
| | - Giorgia Brancolini
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena,
Italy
| | - Daniele Varsano
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena,
Italy
- Department
of Physics, University of Rome “La Sapienza”, Piazzale
Aldo Moro 5, 00185 Rome, Italy
| | - Rosa Di Felice
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena,
Italy
| |
Collapse
|
4
|
Mukherjee A, Vasquez KM. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie 2011; 93:1197-208. [PMID: 21501652 DOI: 10.1016/j.biochi.2011.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/01/2011] [Indexed: 12/18/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | | |
Collapse
|
5
|
Torigoe H, Sasaki K, Katayama T. Thermodynamic and Kinetic Effects of Morpholino Modification on Pyrimidine Motif Triplex Nucleic Acid Formation under Physiological Condition. J Biochem 2009; 146:173-83. [DOI: 10.1093/jb/mvp059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Using an aryl phenanthroimidazole moiety as a conjugated flexible intercalator to improve the hybridization efficiency of a triplex-forming oligonucleotide. Bioorg Med Chem 2008; 16:9937-47. [PMID: 18977149 DOI: 10.1016/j.bmc.2008.10.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 10/03/2008] [Accepted: 10/12/2008] [Indexed: 11/23/2022]
Abstract
When inserting 2-phenyl or 2-naphth-1-yl-phenanthroimidazole intercalators (X and Y, respectively) as bulges into triplex-forming oligonucleotides, both intercalators show extraordinary high thermal stability of the corresponding Hoogsteen-type triplexes and Hoogsteen-type parallel duplexes with high discrimination to Hoogsteen mismatches. Molecular modeling shows that the phenyl or the naphthyl ring stacks with the nucleobases in the TFO, while the phenanthroimidazol moiety stacks with the base pairs of the dsDNA. DNA-strands containing the intercalator X show higher thermal triplex stability than DNA-strands containing the intercalator Y. The difference can be explained by a lower degree of planarity of the intercalator in the case of naphthyl. It was also observed that triplex stability was considerably reduced when the intercalators X or Y was replaced by 2-(naphthlen-1-yl)imidazole. This confirms intercalation as the important factor for triplex stabilization and it rules out an alternative complexation of protonated imidazole with two phosphate groups. The intercalating nucleic acid monomers X and Y were obtained via a condensation reaction of 9,10-phenanthrenequinone (4) with (S)-4-(2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)benzaldehyde (3a) or (S)-4-(2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)-1-naphthaldehyde (3b), respectively, in the presence of acetic acid and ammonium acetate. The required monomers for DNA synthesis using amidite chemistry were obtained by standard deprotection of the hydroxy groups followed by 4,4'-dimethoxytritylation and phosphitylation.
Collapse
|
7
|
Globisch D, Bomholt N, Filichev V, Pedersen E. Stability ofHoogsteen-Type Triplexes – Electrostatic Attraction between Duplex Backbone and Triplex-Forming Oligonucleotide (TFO) Using an Intercalating Conjugate. Helv Chim Acta 2008. [DOI: 10.1002/hlca.200890082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Jain A, Wang G, Vasquez KM. DNA triple helices: biological consequences and therapeutic potential. Biochimie 2008; 90:1117-30. [PMID: 18331847 DOI: 10.1016/j.biochi.2008.02.011] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/08/2008] [Indexed: 01/25/2023]
Abstract
DNA structure is a critical element in determining its function. The DNA molecule is capable of adopting a variety of non-canonical structures, including three-stranded (i.e. triplex) structures, which will be the focus of this review. The ability to selectively modulate the activity of genes is a long-standing goal in molecular medicine. DNA triplex structures, either intermolecular triplexes formed by binding of an exogenously applied oligonucleotide to a target duplex sequence, or naturally occurring intramolecular triplexes (H-DNA) formed at endogenous mirror repeat sequences, present exploitable features that permit site-specific alteration of the genome. These structures can induce transcriptional repression and site-specific mutagenesis or recombination. Triplex-forming oligonucleotides (TFOs) can bind to duplex DNA in a sequence-specific fashion with high affinity, and can be used to direct DNA-modifying agents to selected sequences. H-DNA plays important roles in vivo and is inherently mutagenic and recombinogenic, such that elements of the H-DNA structure may be pharmacologically exploitable. In this review we discuss the biological consequences and therapeutic potential of triple helical DNA structures. We anticipate that the information provided will stimulate further investigations aimed toward improving DNA triplex-related gene targeting strategies for biotechnological and potential clinical applications.
Collapse
Affiliation(s)
- Aklank Jain
- Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park--Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957, USA
| | | | | |
Collapse
|
9
|
Abramova TV, Kassakin MF, Lomzov AA, Pyshnyi DV, Silnikov VN. New oligonucleotide analogues based on morpholine subunits joined by oxalyl diamide tether. Bioorg Chem 2007; 35:258-75. [PMID: 17303213 DOI: 10.1016/j.bioorg.2006.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/08/2006] [Accepted: 12/15/2006] [Indexed: 10/23/2022]
Abstract
We report on the design, synthesis and some of the properties of the new oligonucleotide analogues based on morpholine nucleoside (MorB) subunits joined by an oxalyl diamide tether instead of a phosphate group. The synthetic strategy and oligomer design are optimized to easily obtain target substances without using protective groups. The dimers HOMorU-Ox-NHMorU, HOMorU-Ox-NHMorA, and uracil containing the hexamer HOMorU-(Ox-NHMorU)5 were synthesized. The structures of all substances were confirmed by 1H, 13C, NMR, and mass spectroscopy. Base stacking interactions in dimers were revealed by CD-spectra data.
Collapse
Affiliation(s)
- Tatiana V Abramova
- The Institute of Chemical Biology and Fundamental Medicine, Lavrent'ev Ave 8, Novosibirsk 630090, Russia.
| | | | | | | | | |
Collapse
|
10
|
Mahato RI, Cheng K, Guntaka RV. Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA. Expert Opin Drug Deliv 2006; 2:3-28. [PMID: 16296732 DOI: 10.1517/17425247.2.1.3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antisense oligodeoxynucleotides, triplex-forming oligodeoxynucleotides and double-stranded small interfering RNAs have great potential for the treatment of many severe and debilitating diseases. Concerted efforts from both industry and academia have made significant progress in turning these nucleic acid drugs into therapeutics, and there is already one FDA-approved antisense drug in the clinic. Despite the success of one product and several other ongoing clinical trials, challenges still exist in their stability, cellular uptake, disposition, site-specific delivery and therapeutic efficacy. The principles, strategies and delivery consideration of these nucleic acids are reviewed. Furthermore, the ways to overcome the biological barriers are also discussed so that therapeutic concentrations at their target sites can be maintained for a desired period.
Collapse
MESH Headings
- Animals
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- Drug Carriers
- Gene Expression Regulation
- Gene Silencing
- Gene Targeting/methods
- Genetic Therapy/methods
- Humans
- Nucleic Acid Conformation/drug effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Biosynthesis/drug effects
- RNA Interference
- RNA Splicing/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Ram I Mahato
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, 26 South Dunlap Street, Feurt Bldg RM 406, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
11
|
Marx C, Berger C, Xu F, Amend C, Scott GK, Hann B, Park JW, Benz CC. Validated high-throughput screening of drug-like small molecules for inhibitors of ErbB2 transcription. Assay Drug Dev Technol 2006; 4:273-84. [PMID: 16834533 DOI: 10.1089/adt.2006.4.273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A whole cell high-throughput screening assay was developed and tested against > 2,000 structurally and functionally diverse drug-like small molecules to identify lead compounds capable of cell permeability and selective silencing of ErbB2 transcription. Screening employed reporter sublines clonally selected from ErbB2-negative MCF7 breast cancer cells after stable genomic integration of the ErbB2 proximal promoter driving a luciferase reporter; anti-ErbB2 activities (50% inhibitory concentration values) were compared to inhibition of control MCF7 sublines bearing integrated reporters driven by either a mutated ErbB2 promoter or the cyclin D1 promoter. Of the seven resulting lead compounds, four emerged from the National Cancer Institute (NCI)/ Developmental Therapeutics Program (DTP) Structural Diversity Set (NSC-131547, NSC-176328, NSC-259968, and NSC-321237); three others emerged from a panel of anticancer compounds with known mechanistic actions and included a minor groove DNA-binding antibiotic (NSC-58514, chromomycin A3), a hydroxamic acid inhibitor of histone deacetylases (NSC-709238, trichostatin A), and a tripeptide aldehyde proteasome inhibitor (MG-132). For optimization, 58 scaffold analogs of the four NCI/DTP structural leads and nine functional analogs of the mechanistic leads were secondarily screened to identify seven compounds with comparable or superior activity relative to the leads, including an approved anticancer drug, PS-341 (bortezomib). PS-341 activity was validated against cultured ErbB2-positive breast cancer cell lines (SKBr3 and BT474) and a trastuzumab-resistant ErbB2-positive breast cancer xenograft model (B585), in which PS-341 antitumor activity correlated with selective down-regulation of ErbB2 mRNA and protein levels, confirming the ErbB2- silencing potential of proteasome inhibitors.
Collapse
Affiliation(s)
- Corina Marx
- Program of Cancer and Development Therapeutics, Buck Institute for Age Research, Novato, CA 94945, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
We present a theoretical study of the self-complementary single-stranded 30-mer d(TC*TTC*C*TTTTCCTTCTC*CCGAGAAGGTTTT) (PDB ID: 1b4y) that was designed to form an intramolecular triplex by folding back twice on itself. At neutral pH the molecule exists in a duplex hairpin conformation, whereas at acidic pH the cytosines labeled by an asterisk (*) are protonated, forming Hoogsteen hydrogen bonds with guanine of a GC Watson-Crick basepair to generate a triplex. As a first step in an investigation of the energetics of the triplex-hairpin transition, we applied the Bashford-Karplus multiple site model of protonation to calculate the titration curves for the two conformations. Based on these data, a two-state model is used to study the equilibrium properties of transition. Although this model properly describes the thermodynamics of the protonation-deprotonation steps that drive the folding-unfolding of the oligomer, it cannot provide insight into the time-dependent mechanism of the process. A series of molecular dynamics simulations using the ff94 force field of the AMBER 6.0 package was therefore run to explore the dynamics of the folding/unfolding pathway. The molecular dynamics method was combined with Poisson-Boltzmann calculations to determine when a change in protonation state was warranted during a trajectory. This revealed a sequence of elementary protonation steps during the folding/unfolding transition and suggests a strong coupling between ionization and folding in cytosine-rich triple-helical triplexes.
Collapse
Affiliation(s)
- Anton S Petrov
- Department of Chemistry, University of Louisville, Louisville, Kentucky
| | | | | |
Collapse
|
13
|
Michel T, Debart F, Vasseur JJ, Geinguenaud F, Taillandier E. FTIR and UV spectroscopy studies of triplex formation between alpha-oligonucleotides with non-ionic phoshoramidate linkages and DNA targets. J Biomol Struct Dyn 2004; 21:435-45. [PMID: 14616038 DOI: 10.1080/07391102.2003.10506938] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The triplexes formed by pyrimidine alpha-oligodeoxynucleotides, 15mers alpha dT(15) or 12mers alpha dCT having dimethoxyethyl (PNHdiME), morpholino (PMOR) or propyl (PNHPr) non-ionic phosphoramidate linkages with DNA duplex targets have been investigated by UV and FTIR spectroscopy. Due to the decrease in the electrostatic repulsion between partner strands of identical lengths all modifications result in triplexes more stable than those formed with unmodified phosphodiester beta-oligodeoxynucleotides (beta-ODNs). Among the alpha-ODN third strands having C and T bases and non-ionic phosphoramidate linkages (alpha dCTPN) the most efficient modification is (PNHdiME). The enhanced third strand stability of the alpha dCTPN obtained as diastereoisomeric mixtures is attenuated by the steric hindrance of the PMOR linkages or by the hydrophobicity of the PNHPr linkages. All alpha dCTPN strands form triplexes even at neutral pH. In the most favorable case (PNHdiME), we show by FTIR spectroscopy that the triplex formed at pH 7 is held by Hoogsteen T*A.T triplets and in addition by an hydrogen bond between O6 of G and C of the third strand (Tm = 30 degrees C). The detection of protonated cytosines is correlated at pH 6 with a high stabilization of the triplex (Tm = 65 degrees C). While unfavorable steric effects are overcome with alpha anomers, the limitation of the pH dependence is not completely suppressed. Different triplexes are evidenced for non pH dependent phosphoramidate alpha-thymidilate strands (alpha dT(15)PN) interacting with a target duplex of identical length. At low ionic strength and DNA concentration we observe the binding to beta dA(15) either of alpha dT(15)PN as duplex strand and beta dT(15) as third strand, or of two hydrophobic alpha dT(15)PNHPr strands. An increase in the DNA and counterion concentration stabilizes the anionic target duplex and then the alpha dT(15)PN binds as Hoogsteen third strand.
Collapse
Affiliation(s)
- Thibault Michel
- Laboratoire de Chimie Organique Biomoléculaire de Synthese, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex, France
| | | | | | | | | |
Collapse
|
14
|
Guntaka RV, Varma BR, Weber KT. Triplex-forming oligonucleotides as modulators of gene expression. Int J Biochem Cell Biol 2003; 35:22-31. [PMID: 12467644 DOI: 10.1016/s1357-2725(02)00165-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) have gained prominence in the recent years because of their potential applications in antigene therapy. In particular they have been used as (i) inducers of site-specific mutations, (ii) reagents that selectively and specifically cleave target DNA, and (iii) as modulators of gene expression. In this mini-review, we have made an attempt to highlight the characteristics of these TFOs and the effects of various modifications in the phosphate backbone as well as in the purine and pyrimidine moieties, which contribute to the stability and efficiency of triplex formation. Studies to explore the mechanism of down-regulation of transcription of various genes suggest that at least some TFOs exert their effect by inhibiting binding of specific transcription factors to their cognate cis-acting elements. Recent reports indicate the presence of these potential triplex-forming DNA structures in the genomes of prokaryotes and eukaryotes that may play a major role in target site selection and chromosome segregation as well as in the cause of heritable diseases. Finally, some potential problems in the development of these TFOs as antigene therapeutic agents have also been discussed.
Collapse
Affiliation(s)
- Ramareddy V Guntaka
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA.
| | | | | |
Collapse
|