1
|
Tutukina MN, Dakhnovets AI, Kaznadzey AD, Gelfand MS, Ozoline ON. Sense and antisense RNA products of the uxuR gene can affect motility and chemotaxis acting independent of the UxuR protein. Front Mol Biosci 2023; 10:1121376. [PMID: 36936992 PMCID: PMC10016265 DOI: 10.3389/fmolb.2023.1121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Small non-coding and antisense RNAs are widespread in all kingdoms of life, however, the diversity of their functions in bacteria is largely unknown. Here, we study RNAs synthesised from divergent promoters located in the 3'-end of the uxuR gene, encoding transcription factor regulating hexuronate metabolism in Escherichia coli. These overlapping promoters were predicted in silico with rather high scores, effectively bound RNA polymerase in vitro and in vivo and were capable of initiating transcription in sense and antisense directions. The genome-wide correlation between in silico promoter scores and RNA polymerase binding in vitro and in vivo was higher for promoters located on the antisense strands of the genes, however, sense promoters within the uxuR gene were more active. Both regulatory RNAs synthesised from the divergent promoters inhibited expression of genes associated with the E. coli motility and chemotaxis independent of a carbon source on which bacteria had been grown. Direct effects of these RNAs were confirmed for the fliA gene encoding σ28 subunit of RNA polymerase. In addition to intracellular sRNAs, promoters located within the uxuR gene could initiate synthesis of transcripts found in the fraction of RNAs secreted in the extracellular medium. Their profile was also carbon-independent suggesting that intragenic uxuR transcripts have a specific regulatory role not directly related to the function of the protein in which gene they are encoded.
Collapse
Affiliation(s)
- Maria N. Tutukina
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Lab of Functional Genomics and Cellular Stress, Institute of Cell Biophysics RAS, FRC PRCBR, Pushchino, Russia
- RTC “Bioinformatics”, A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russia
- *Correspondence: Maria N. Tutukina, , Olga N. Ozoline,
| | - Artemiy I. Dakhnovets
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Department of Biotechnology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Anna D. Kaznadzey
- RTC “Bioinformatics”, A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russia
| | - Mikhail S. Gelfand
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- RTC “Bioinformatics”, A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russia
| | - Olga N. Ozoline
- Lab of Functional Genomics and Cellular Stress, Institute of Cell Biophysics RAS, FRC PRCBR, Pushchino, Russia
- *Correspondence: Maria N. Tutukina, , Olga N. Ozoline,
| |
Collapse
|
2
|
Ishiguro A, Katayama A, Ishihama A. Different recognition modes of G-quadruplex RNA between two ALS/FTLD-linked proteins TDP-43 and FUS. FEBS Lett 2020; 595:310-323. [PMID: 33269497 DOI: 10.1002/1873-3468.14013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis/frontotemporal lobar degeneration-linked proteins, TDP-43 and fused in sarcoma (FUS), bind to G-quadruplex-containing mRNAs and transport them to distal neurites for local translation. The specificity and mechanism of G4-RNA binding, however, remain largely unsolved. Using purified full-length TDP-43 and FUS and a set of seven G4-DNA/RNA, we compared their recognition properties of G4-RNAs. Both TDP-43 and FUS recognized and bound to G4-DNA/RNAs, but the target selectivity differed between two proteins. TDP-43 recognized only parallel-stranded G4-DNA/RNAs, leading to stabilize the G4 conformation. In contrast, FUS bound to all three types, parallel, hybrid, and antiparallel, of G4-DNA/RNAs, resulting in deformation of the G4 structure. We then concluded that the target selectivity and the influence on G4 RNA structure differed between TDP-43 and FUS.
Collapse
Affiliation(s)
- Akira Ishiguro
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Akira Katayama
- Department of Molecular Analysis Laboratory, Nippon Medical School, Bunkyo-ku, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| |
Collapse
|
3
|
Masulis IS, Sukharycheva NA, Kiselev SS, Andreeva ZS, Ozoline ON. Between computational predictions and high-throughput transcriptional profiling: in depth expression analysis of the OppB trans-membrane subunit of Escherichia coli OppABCDF oligopeptide transporter. Res Microbiol 2020; 171:55-63. [PMID: 31704256 DOI: 10.1016/j.resmic.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Bacterial oligopeptide transporters encoded by arrays of opp genes are implicated in a wide variety of physiological functions including nutrient acquisition, cell-to-cell communication, host-pathogen interaction. Combining the five opp genes in one oppABCDF operon of Escherichia coli assumes unified principle of their transcriptional regulation, which should provide a comparable amounts of translated products. This, however, contradicts the experimentally detected disproportion in the abundance of periplasmic OppA and the trans-membrane subunits OppB and OppC. As a first step towards understanding differential regulation of intraoperonic genes we examined genomic region proximal to oppB for its competence to initiate RNA synthesis using in silico promoter predictions, data of high-throughput RNA sequencing and targeted transcription assay. A number of transcription start sites (TSSs), whose potency depends on the presence of cationic oligopeptide protamine in cultivation medium, was found at the end of oppA and in the early coding part of oppB. We also show that full-size OppB conjugated with EGFP is produced under the control of its own genomic regulatory region and may be detected in analytical quantities of bacterial cell culture.
Collapse
Affiliation(s)
- Irina S Masulis
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Natalia A Sukharycheva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Sergey S Kiselev
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Zaira Sh Andreeva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Olga N Ozoline
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| |
Collapse
|
4
|
Kaznadzey A, Shelyakin P, Belousova E, Eremina A, Shvyreva U, Bykova D, Emelianenko V, Korosteleva A, Tutukina M, Gelfand MS. The genes of the sulphoquinovose catabolism in Escherichia coli are also associated with a previously unknown pathway of lactose degradation. Sci Rep 2018; 8:3177. [PMID: 29453395 PMCID: PMC5816610 DOI: 10.1038/s41598-018-21534-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/06/2018] [Indexed: 12/29/2022] Open
Abstract
Comparative genomics analysis of conserved gene cassettes demonstrated resemblance between a recently described cassette of genes involved in sulphoquinovose degradation in Escherichia coli K-12 MG1655 and a Bacilli cassette linked with lactose degradation. Six genes from both cassettes had similar functions related to carbohydrate metabolism, namely, hydrolase, aldolase, kinase, isomerase, transporter, and transcription factor. The Escherichia coli sulphoglycolysis cassette was thus predicted to be associated with lactose degradation. This prediction was confirmed experimentally: expression of genes coding for aldolase (yihT), isomerase (yihS), and kinase (yihV) was dramatically increased during growth on lactose. These genes were previously shown to be activated during growth on sulphoquinovose, so our observation may indicate multi-functional capabilities of the respective proteins. Transcription starts for yihT, yihV and yihW were mapped in silico, in vitro and in vivo. Out of three promoters for yihT, one was active only during growth on lactose. We further showed that switches in yihT transcription are controlled by YihW, a DeoR-family transcription factor in the Escherichia coli cassette. YihW acted as a carbon source-dependent dual regulator involved in sustaining the baseline growth in the absence of lac-operon, with function either complementary, or opposite to a global regulator of carbohydrate metabolism, cAMP-CRP.
Collapse
Affiliation(s)
- Anna Kaznadzey
- A. A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127051, Russia
| | - Pavel Shelyakin
- A. A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127051, Russia
- N. I. Vavilov Institute of General Genetics, RAS, ul. Gubkina 3, Moscow, 119991, Russia
| | - Evgeniya Belousova
- M. V. Lomonosov Moscow State University, Vorobievy Gory 1-73, Moscow, 119991, Russia
| | - Aleksandra Eremina
- The University of Edinburgh, Alexander Crum Brown Rd, Edinburgh, Scotland, EH9 3FF, UK
| | - Uliana Shvyreva
- Institute of Cell Biophysics, RAS, Institutskaya 3, Pushchino, 142290, Russia
| | - Darya Bykova
- M. V. Lomonosov Moscow State University, Vorobievy Gory 1-73, Moscow, 119991, Russia
| | - Vera Emelianenko
- M. V. Lomonosov Moscow State University, Vorobievy Gory 1-73, Moscow, 119991, Russia
| | | | - Maria Tutukina
- Institute of Cell Biophysics, RAS, Institutskaya 3, Pushchino, 142290, Russia.
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143028, Russia.
| | - Mikhail S Gelfand
- A. A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127051, Russia
- M. V. Lomonosov Moscow State University, Vorobievy Gory 1-73, Moscow, 119991, Russia
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143028, Russia
- Faculty of Computer Science, Higher School of Economics, Kochnovsky pr. 3, Moscow, 125319, Russia
| |
Collapse
|
5
|
Tutukina MN, Potapova AV, Cole JA, Ozoline ON. Control of hexuronate metabolism in Escherichia coli by the two interdependent regulators, ExuR and UxuR: derepression by heterodimer formation. Microbiology (Reading) 2016; 162:1220-1231. [DOI: 10.1099/mic.0.000297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Maria N. Tutukina
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russia
| | - Anna V. Potapova
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russia
| | - Jeffrey A. Cole
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Olga N. Ozoline
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
6
|
Positive autoregulation of mrkHI by the cyclic di-GMP-dependent MrkH protein in the biofilm regulatory circuit of Klebsiella pneumoniae. J Bacteriol 2015; 197:1659-67. [PMID: 25733612 DOI: 10.1128/jb.02615-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/22/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Klebsiella pneumoniae is an important cause of nosocomial infections, primarily through the formation of surface-associated biofilms to promote microbial colonization on host tissues. Expression of type 3 fimbriae by K. pneumoniae facilitates surface adherence, a process strongly activated by the cyclic di-GMP (c-di-GMP)-dependent transcriptional activator MrkH. In this study, we demonstrated the critical importance of MrkH in facilitating K. pneumoniae attachment on a variety of medically relevant materials and demonstrated the mechanism by which bacteria activate expression of type 3 fimbriae to colonize these materials. Sequence analysis revealed a putative MrkH recognition DNA sequence ("MrkH box"; TATCAA) located in the regulatory region of the mrkHI operon. Mutational analysis, electrophoretic mobility shift assay, and quantitative PCR experiments demonstrated that MrkH binds to the cognate DNA sequence to autoregulate mrkHI expression in a c-di-GMP-dependent manner. A half-turn deletion, but not a full-turn deletion, between the MrkH box and the -35 promoter element rendered MrkH ineffective in activating mrkHI expression, implying that a direct interaction between MrkH and RNA polymerase exists. In vivo analyses showed that residues L260, R265, N268, C269, E273, and I275 in the C-terminal domain of the RNA polymerase α subunit are involved in the positive control of mrkHI expression by MrkH and revealed the regions of MrkH required for DNA binding and transcriptional activation. Taken together, the data suggest a model whereby c-di-GMP-dependent MrkH recruits RNA polymerase to the mrkHI promoter to autoactivate mrkH expression. Increased MrkH production subsequently drives mrkABCDF expression when activated by c-di-GMP, leading to biosynthesis of type 3 fimbriae and biofilm formation. IMPORTANCE Bacterial biofilms can cause persistent infections that are refractory to antimicrobial treatments. This study investigated how a commonly encountered hospital-acquired pathogen, Klebsiella pneumoniae, controls the expression of MrkH, the principal regulator of type 3 fimbriae and biofilm formation. We discovered a regulatory circuit whereby MrkH acts as a c-di-GMP-dependent transcriptional activator of both the gene cluster of type 3 fimbriae and the mrkHI operon. In this positive-feedback loop, whereby MrkH activates its own production, K. pneumoniae has evolved a mechanism to ensure rapid MrkH production, expression of type 3 fimbriae, and subsequent biofilm formation under favorable conditions. Deciphering the molecular mechanisms of biofilm formation by bacterial pathogens is important for the development of innovative treatment strategies for biofilm infections.
Collapse
|
7
|
Kondrat’ev MS, Kabanov AV, Komarov VM, Khechinashvili NN, Samchenko AA. Experience in simulating the structural and dynamic features of small proteins using table supercomputers. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911060108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Comparative genomic analysis of the hexuronate metabolism genes and their regulation in gammaproteobacteria. J Bacteriol 2011; 193:3956-63. [PMID: 21622752 DOI: 10.1128/jb.00277-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hexuronate metabolism in Escherichia coli is regulated by two related transcription factors from the FadR subfamily of the GntR family, UxuR and ExuR. UxuR controls the d-glucuronate metabolism, while ExuR represses genes involved in the metabolism of all hexuronates. We use a comparative genomics approach to reconstruct the hexuronate metabolic pathways and transcriptional regulons in gammaproteobacteria. We demonstrate differences in the binding motifs of UxuR and ExuR, identify new candidate members of the UxuR/ExuR regulons, and describe the links between the UxuR/ExuR regulons and the adjacent regulons UidR, KdgR, and YjjM. We provide experimental evidence that two predicted members of the UxuR regulon, yjjM and yjjN, are the subject of complex regulation by this transcription factor in E. coli.
Collapse
|
9
|
Tutukina MN, Shavkunov KS, Masulis IS, Ozoline ON. Antisense transcription within the hns locus of Escherichia coli. Mol Biol 2010; 44:439-46. [DOI: 10.1134/s002689331003012x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Nucleotide's bilinear indices: novel bio-macromolecular descriptors for bioinformatics studies of nucleic acids. I. Prediction of paromomycin's affinity constant with HIV-1 Psi-RNA packaging region. J Theor Biol 2009; 259:229-41. [PMID: 19272394 DOI: 10.1016/j.jtbi.2009.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 02/03/2023]
Abstract
A new set of nucleotide-based bio-macromolecular descriptors are presented. This novel approach to bio-macromolecular design from a linear algebra point of view is relevant to nucleic acids quantitative structure-activity relationship (QSAR) studies. These bio-macromolecular indices are based on the calculus of bilinear maps on Re(n)[b(mk)(x (m),y (m)):Re(n) x Re(n)-->Re] in canonical basis. Nucleic acid's bilinear indices are calculated from kth power of non-stochastic and stochastic nucleotide's graph-theoretic electronic-contact matrices, M(m)(k) and (s)M(m)(k), respectively. That is to say, the kth non-stochastic and stochastic nucleic acid's bilinear indices are calculated using M(m)(k) and (s)M(m)(k) as matrix operators of bilinear transformations. Moreover, biochemical information is codified by using different pair combinations of nucleotide-base properties as weightings (experimental molar absorption coefficient epsilon(260) at 260 nm and pH=7.0, first (Delta E(1)) and second (Delta E(2)) single excitation energies in eV, and first (f(1)) and second (f(2)) oscillator strength values (of the first singlet excitation energies) of the nucleotide DNA-RNA bases. As example of this approach, an interaction study of the antibiotic paromomycin with the packaging region of the HIV-1 Psi-RNA have been performed and it have been obtained several linear models in order to predict the interaction strength. The best linear model obtained by using non-stochastic bilinear indices explains about 91% of the variance of the experimental Log K (R=0.95 and s=0.08 x 10(-4)M(-1)) as long as the best stochastic bilinear indices-based equation account for 93% of the Log K variance (R=0.97 and s=0.07 x 10(-4)M(-1)). The leave-one-out (LOO) press statistics, evidenced high predictive ability of both models (q(2)=0.86 and s(cv)=0.09 x 10(-4)M(-1) for non-stochastic and q(2)=0.91 and s(cv)=0.08 x 10(-4)M(-1) for stochastic bilinear indices). The nucleic acid's bilinear indices-based models compared favorably with other nucleic acid's indices-based approaches reported nowadays. These models also permit the interpretation of the driving forces of the interaction process. In this sense, developed equations involve short-reaching (k<or=3), middle-reaching (4<k<9), and far-reaching (k=10 or greater) nucleotide's bilinear indices. This situation points to electronic and topologic nucleotide's backbone interactions control of the stability profile of paromomycin-RNA complexes. Consequently, the present approach represents a novel and rather promising way to theoretical-biology studies.
Collapse
|
11
|
Shavkunov KS, Masulis IS, Tutukina MN, Deev AA, Ozoline ON. Gains and unexpected lessons from genome-scale promoter mapping. Nucleic Acids Res 2009; 37:4919-31. [PMID: 19528070 PMCID: PMC2731890 DOI: 10.1093/nar/gkp490] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Potential promoters in the genome of Escherichia coli were searched by pattern recognition software PlatProm and classified on the basis of positions relative to gene borders. Beside the expected promoters located in front of the coding sequences we found a considerable amount of intragenic promoter-like signals with a putative ability to drive either antisense or alternative transcription and revealed unusual genomic regions with extremely high density of predicted transcription start points (promoter ‘islands’), some of which are located in coding sequences. PlatProm scores converted into probability of RNA polymerase binding demonstrated certain correlation with the enzyme retention registered by ChIP-on-chip technique; however, in ‘dense’ regions the value of correlation coefficient is lower than throughout the entire genome. Experimental verification confirmed the ability of RNA polymerase to interact and form multiple open complexes within promoter ‘island’ associated with appY, yet transcription efficiency was lower than might be expected. Analysis of expression data revealed the same tendency for other promoter ‘islands’, thus assuming functional relevance of non-productive RNA polymerase binding. Our data indicate that genomic DNA of E. coli is enriched by numerous unusual promoter-like sites with biological role yet to be understood.
Collapse
Affiliation(s)
- K S Shavkunov
- Institute of Cell Biophysics, of Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation
| | | | | | | | | |
Collapse
|
12
|
Marrero Ponce Y, Castillo Garit JA, Nodarse D. Linear indices of the 'macromolecular graph's nucleotides adjacency matrix' as a promising approach for bioinformatics studies. Part 1: prediction of paromomycin's affinity constant with HIV-1 psi-RNA packaging region. Bioorg Med Chem 2005; 13:3397-404. [PMID: 15848751 DOI: 10.1016/j.bmc.2005.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 03/01/2005] [Accepted: 03/02/2005] [Indexed: 10/25/2022]
Abstract
The design of novel anti-HIV compounds has now become a crucial area for scientists around the world. In this paper a new set of macromolecular descriptors (that are calculated from the macromolecular graph's nucleotide adjacency matrix) of relevance to nucleic acid QSAR/QSPR studies, nucleic acids' linear indices. A study of the interaction of the antibiotic Paromomycin with the packaging region of the HIV-1 psi-RNA has been performed as example of this approach. A multiple linear regression model predicted the local binding affinity constants [Log K (10(-4) M(-1))] between a specific nucleotide and the aforementioned antibiotic. The linear model explains more than 87% of the variance of the experimental Log K (R = 0.93 and s = 0.102 x 10(-4) M(-1)) and leave-one-out press statistics evidenced its predictive ability (q2 = 0.82 and s(cv) = 0.108 x 10(-4) M(-1)). The comparison with other approaches (macromolecular quadratic indices, Markovian Negentropies and 'stochastic' spectral moments) reveals a good behavior of our method.
Collapse
Affiliation(s)
- Yovani Marrero Ponce
- Department of Pharmacy, Faculty of Chemical-Pharmacy, Chemical Bioactive Center, Central University of Las Villas, Santa Clara 54830, Villa Clara, Cuba.
| | | | | |
Collapse
|
13
|
Nucleic Acid Quadratic Indices of the “Macromolecular Graph’s Nucleotides Adjacency Matrix”. Modeling of Footprints after the Interaction of Paromomycin with the HIV-1 Ψ-RNA Packaging Region. Int J Mol Sci 2004. [DOI: 10.3390/i5110276] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Lee DJ, Busby SJW, Lloyd GS. Exploitation of a Chemical Nuclease to Investigate the Location and Orientation of the Escherichia coli RNA Polymerase α Subunit C-terminal Domains at Simple Promoters That Are Activated by Cyclic AMP Receptor Protein. J Biol Chem 2003; 278:52944-52. [PMID: 14530288 DOI: 10.1074/jbc.m308300200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal domain of the alpha subunit (alphaCTD) of bacterial RNA polymerase plays an important role in promoter recognition. It is known that alphaCTD binds to the DNA minor groove at different locations at different promoters via a surface-exposed determinant, the 265 determinant. Here we describe experiments that permit us to determine the location and orientation of binding of alphaCTD at any promoter. In these experiments, a DNA cleavage reagent is attached to specific locations on opposite faces of the RNA polymerase alpha subunit. After incorporation of the tagged alpha subunits into holo-RNA polymerase, patterns of DNA cleavage due to the reagent are determined in open complexes. The locations of DNA cleavage due to the reagent attached at different positions allow the position and orientation of alphaCTD to be deduced. Here we present data from experiments with simple Escherichia coli promoters that are activated by the cyclic AMP receptor protein.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, the University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|