1
|
Morgan AM, LeGresley SE, Briggs K, Al-Ani G, Fischer CJ. Effects of nucleosome stability on remodeler-catalyzed repositioning. Phys Rev E 2018; 97:032422. [PMID: 29776169 DOI: 10.1103/physreve.97.032422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 06/08/2023]
Abstract
Chromatin remodelers are molecular motors that play essential roles in the regulation of nucleosome positioning and chromatin accessibility. These machines couple the energy obtained from the binding and hydrolysis of ATP to the mechanical work of manipulating chromatin structure through processes that are not completely understood. Here we present a quantitative analysis of nucleosome repositioning by the imitation switch (ISWI) chromatin remodeler and demonstrate that nucleosome stability significantly impacts the observed activity. We show how DNA damage induced changes in the affinity of DNA wrapping within the nucleosome can affect ISWI repositioning activity and demonstrate how assay-dependent limitations can bias studies of nucleosome repositioning. Together, these results also suggest that some of the diversity seen in chromatin remodeler activity can be attributed to the variations in the thermodynamics of interactions between the remodeler, the histones, and the DNA, rather than reflect inherent properties of the remodeler itself.
Collapse
Affiliation(s)
- Aaron M Morgan
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Sarah E LeGresley
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Koan Briggs
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Gada Al-Ani
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Christopher J Fischer
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| |
Collapse
|
2
|
Dehez F, Gattuso H, Bignon E, Morell C, Dumont E, Monari A. Conformational polymorphism or structural invariance in DNA photoinduced lesions: implications for repair rates. Nucleic Acids Res 2017; 45:3654-3662. [PMID: 28334906 PMCID: PMC5397166 DOI: 10.1093/nar/gkx148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/21/2017] [Indexed: 02/01/2023] Open
Abstract
DNA photolesions constitute a particularly deleterious class of molecular defects responsible for the insurgence of a vast majority of skin malignant tumors. Dimerization of two adjacent thymines or cytosines mostly gives rise to cyclobutane pyrimidine dimers (CPD) and pyrimidine(6-4)pyrimidone 64-PP as the most common defects. We perform all-atom classical simulations, up to 2 μs, of CPD and 64-PP embedded in a 16-bp duplex, which reveal the constrasted behavior of the two lesions. In particular we evidence a very limited structural deformation induced by CPD while 64-PP is characterized by a complex structural polymorphism. Our simulations also allow to unify the contrasting experimental structural results obtained by nuclear magnetic resonance or Förster Resonant Energy Transfer method, showing that both low and high bent structures are indeed accessible. These contrasting behaviors can also explain repair resistance or the different replication obstruction, and hence the genotoxicity of these two photolesions.
Collapse
Affiliation(s)
- François Dehez
- CNRS, Theory-Modeling-Simulation, SRSMC F-54506 Vandoeuvre-lès-Nancy, France.,Université de Lorraine, Theory-Modeling-Simulation, SRSMC F-54506 Vandoeuvre-lès-Nancy, France.,Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana Champaign
| | - Hugo Gattuso
- CNRS, Theory-Modeling-Simulation, SRSMC F-54506 Vandoeuvre-lès-Nancy, France.,Université de Lorraine, Theory-Modeling-Simulation, SRSMC F-54506 Vandoeuvre-lès-Nancy, France
| | - Emmanuelle Bignon
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon1 (UCBL) CNRS, ENS Lyon, Lyon, France.,Université de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F69342 Lyon, France
| | - Christophe Morell
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon1 (UCBL) CNRS, ENS Lyon, Lyon, France
| | - Elise Dumont
- Université de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F69342 Lyon, France
| | - Antonio Monari
- CNRS, Theory-Modeling-Simulation, SRSMC F-54506 Vandoeuvre-lès-Nancy, France.,Université de Lorraine, Theory-Modeling-Simulation, SRSMC F-54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
3
|
Štarha P, Vančo J, Trávníček Z. Platinum complexes containing adenine-based ligands: An overview of selected structural features. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Structural basis of pyrimidine-pyrimidone (6-4) photoproduct recognition by UV-DDB in the nucleosome. Sci Rep 2015; 5:16330. [PMID: 26573481 PMCID: PMC4648065 DOI: 10.1038/srep16330] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/13/2015] [Indexed: 11/24/2022] Open
Abstract
UV-DDB, an initiation factor for the nucleotide excision repair pathway, recognizes
6–4PP lesions through a base flipping mechanism. As genomic DNA is
almost entirely accommodated within nucleosomes, the flipping of the
6–4PP bases is supposed to be extremely difficult if the lesion occurs
in a nucleosome, especially on the strand directly contacting the histone surface.
Here we report that UV-DDB binds efficiently to nucleosomal 6–4PPs that
are rotationally positioned on the solvent accessible or occluded surface. We
determined the crystal structures of nucleosomes containing 6–4PPs in
these rotational positions, and found that the 6–4PP DNA regions were
flexibly disordered, especially in the strand exposed to the solvent. This
characteristic of 6–4PP may facilitate UV-DDB binding to the damaged
nucleosome. We present the first atomic-resolution pictures of the detrimental DNA
cross-links of neighboring pyrimidine bases within the nucleosome, and provide the
mechanistic framework for lesion recognition by UV-DDB in chromatin.
Collapse
|
5
|
Chiba J, Aoki S, Yamamoto J, Iwai S, Inouye M. Deformable nature of various damaged DNA duplexes estimated by an electrochemical analysis on electrodes. Chem Commun (Camb) 2015; 50:11126-8. [PMID: 25105179 DOI: 10.1039/c4cc04513k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We report bending flexibility of damaged duplexes possessing an apurinic/apyrimidinic (AP) site analogue, a cyclobutane pyrimidine dimer (CPD), and a pyrimidine(6-4)pyrimidone photoproduct (6-4PP). Based on the electrochemical evaluation on electrodes, the duplex flexibilities of the lesions increased in the following order: CPD < AP < 6-4PP. We discussed the possibility that the emerging local flexibility might be a good sign for UV-damaged DNA-binding proteins on duplexes.
Collapse
Affiliation(s)
- J Chiba
- Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | |
Collapse
|
6
|
Fujita M, Watanabe S, Yoshizawa M, Yamamoto J, Iwai S. Analysis of structural flexibility of damaged DNA using thiol-tethered oligonucleotide duplexes. PLoS One 2015; 10:e0117798. [PMID: 25679955 PMCID: PMC4332495 DOI: 10.1371/journal.pone.0117798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 12/31/2014] [Indexed: 11/18/2022] Open
Abstract
Bent structures are formed in DNA by the binding of small molecules or proteins. We developed a chemical method to detect bent DNA structures. Oligonucleotide duplexes in which two mercaptoalkyl groups were attached to the positions facing each other across the major groove were prepared. When the duplex contained the cisplatin adduct, which was proved to induce static helix bending, interstrand disulfide bond formation under an oxygen atmosphere was detected by HPLC analyses, but not in the non-adducted duplex, when the two thiol-tethered nucleosides were separated by six base pairs. When the insert was five and seven base pairs, the disulfide bond was formed and was not formed, respectively, regardless of the cisplatin adduct formation. The same reaction was observed in the duplexes containing an abasic site analog and the (6-4) photoproduct. Compared with the cisplatin case, the disulfide bond formation was slower in these duplexes, but the reaction rate was nearly independent of the linker length. These results indicate that dynamic structural changes of the abasic site- and (6-4) photoproduct-containing duplexes could be detected by our method. It is strongly suggested that the UV-damaged DNA-binding protein, which specifically binds these duplexes and functions at the first step of global-genome nucleotide excision repair, recognizes the easily bendable nature of damaged DNA.
Collapse
Affiliation(s)
- Masashi Fujita
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Shun Watanabe
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Mariko Yoshizawa
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
- * E-mail:
| |
Collapse
|
7
|
Pakuła S, Orłowski M, Rymarczyk G, Krusiński T, Jakób M, Zoglowek A, Ożyhar A, Dobryszycki P. Conformational changes in the DNA-binding domains of the ecdysteroid receptor during the formation of a complex with the hsp27 response element. J Biomol Struct Dyn 2012; 30:379-93. [PMID: 22694217 DOI: 10.1080/07391102.2012.682215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The ecdysone receptor (EcR) and the ultraspiracle protein (Usp) form the functional receptor for ecdysteroids that initiates metamorphosis in insects. The Usp and EcR DNA-binding domains (UspDBD and EcRDBD, respectively) form a heterodimer on the natural pseudopalindromic element from the hsp27 gene promoter. The conformational changes in the protein-DNA during the formation of the UspDBD-EcRDBD-hsp27 complex were analyzed. Recombined UspDBD and EcRDBD proteins were purified and fluorescein labeled (FL) using the intein method at the C-ends of both proteins. The changes in the distances from the respective C-ends of EcRDBD and/or UspDBD to the 5'- and/or 3'-end of the response element were measured using fluorescence resonance energy transfer (FRET) methodology. The binding of EcRDBD induced a strong conformational change in UspDBD and caused the C-terminal fragment of the UspDBD molecule to move away from both ends of the regulatory element. UspDBD also induced a significant conformational change in the EcRDBD molecule. The EcRDBD C-terminus moved away from the 5'-end of the regulatory element and moved close to the 3'-end. An analysis was also done on the effect that DHR38DBD, the Drosophila ortholog of the mammalian NGFI-B, had on the interaction of UspDBD and EcRDBD with hsp27. FRET analysis demonstrated that hsp27 bending was induced by DHR38DBD. Fluorescence data revealed that hsp27 had a shorter end-to-end distance both in the presence of EcRDBD as well as in the presence of EcRDBD together with DHR38DBD, with DNA bend angles of about 36.2° and 33.6°, respectively. A model of how DHR38DBD binds to hsp27 in the presence of EcRDBD is presented.
Collapse
Affiliation(s)
- Szymon Pakuła
- Faculty of Chemistry, Division of Biochemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Renodon-Cornière A, Takizawa Y, Conilleau S, Tran V, Iwai S, Kurumizaka H, Takahashi M. Structural analysis of the human Rad51 protein-DNA complex filament by tryptophan fluorescence scanning analysis: transmission of allosteric effects between ATP binding and DNA binding. J Mol Biol 2008; 383:575-87. [PMID: 18761348 DOI: 10.1016/j.jmb.2008.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 07/30/2008] [Accepted: 08/14/2008] [Indexed: 12/25/2022]
Abstract
Human Rad51 (HsRad51) catalyzes the strand exchange reaction, a crucial step in homologous recombination, by forming a filamentous complex with DNA. The structure of this filament is modified by ATP, which is required and hydrolyzed for the reaction. We analyzed the structure and the ATP-promoted conformational change of this filament. We systematically replaced aromatic residues in the protein, one at a time, with tryptophan, a fluorescent probe, and examined its effect on the activities (DNA binding, ATPase, ATP-promoted conformational change, and strand exchange reaction) and the fluorescence changes upon binding of ATP and DNA. Some residues were also replaced with alanine. We thus obtained structural information about various positions of the protein in solution. All the proteins conserved, at least partially, their activities. However, the replacement of histidine at position 294 (H294) and phenylalanine at 129 (F129) affected the ATP-induced conformational change of the DNA-HsRad51 filament, although it did not prevent DNA binding. F129 is considered to be close to the ATP-binding site and to H294 of a neighboring subunit. ATP probably modifies the structure around F129 and affects the subunit/subunit contact around H294 and the structure of the DNA-binding site. The replacement also reduced the DNA-dependent ATPase activity, suggesting that these residues are also involved in the transmission of the allosteric effect of DNA to the ATP-binding site, which is required for the stimulation of ATPase activity by DNA. The fluorescence analyses supported the structural change of the DNA-binding site by ATP and that of the ATP-binding site by DNA. This information will be useful to build a molecular model of the Rad51-DNA complex and to understand the mechanism of activation of Rad51 by ATP and that of the Rad51-promoted strand exchange reaction.
Collapse
Affiliation(s)
- Axelle Renodon-Cornière
- UMR 6204, Centre National de la Recherche Scientifique and Université de Nantes, 44322 Nantes cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Park CJ, Lee JH, Choi BS. Functional insights gained from structural analyses of DNA duplexes that contain UV-damaged photoproducts. Photochem Photobiol 2007; 83:187-95. [PMID: 16802860 DOI: 10.1562/2006-02-28-ir-820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ultraviolet photolesions endow DNA with distinct structural and dynamic properties. Biophysical studies of photoproduct-containing DNA have shown that these lesions affect the mutagenic properties of DNA and damage recognition by DNA repair systems. Recently obtained high-resolution cocrystal structures of damaged DNA bound to either DNA polymerase or DNA repair enzymes have enriched our understanding of the mechanisms by which DNA lesions are bypassed or recognized by DNA metabolizing proteins. Here, we summarize the results of these structural studies and discuss their implications for DNA metabolism.
Collapse
Affiliation(s)
- Chin-Ju Park
- Department of Chemistry, National Creative Initiative Center, KAIST (Korea Advanced Institute of Science and Technology), Guseong-dong, Yuseong-gu, Daejon, Korea
| | | | | |
Collapse
|
10
|
Wahlroos R, Toivonen J, Tirri M, Hänninen P. Two-photon excited fluorescence energy transfer: a study based on oligonucleotide rulers. J Fluoresc 2006; 16:379-86. [PMID: 16791502 DOI: 10.1007/s10895-006-0084-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/21/2006] [Indexed: 11/29/2022]
Abstract
The use of two-photon excitation of fluorescence for detection of fluorescence resonance energy transfer (FRET) was studied for a selected fluorescent donor-acceptor pair. A method based on labeled DNA was developed for controlling the distance between the donor and the acceptor molecules. The method consists of hybridization of fluorescent oligonucleotides to a complementary single-stranded target DNA. As the efficiency of FRET is strongly distance dependent, energy transfer does not occur unless the fluorescent oligonucleotides and the target DNA are hybridized. A high degree of DNA hybridization and an excellent FRET efficiency were verified with one-photon excited fluorescence studies. Excitation spectra of fluorophores are usually wider in case of two-photon excitation than in the case of one-photon excitation. This makes the selective excitation of donor difficult and might cause errors in detection of FRET with two-photon excited fluorescence. Different techniques to analyze the FRET efficiency from two-photon excited fluorescence data are discussed. The quenching of the donor fluorescence intensity turned to be the most consistent way to detect the FRET efficiency. The two-photon excited FRET is shown to give a good response to the distance between the donor and the acceptor molecules.
Collapse
Affiliation(s)
- Rina Wahlroos
- Laboratory of Biophysics, Institute of Biomedicine, University of Turku, P.O. Box 123, 20521 Turku, Finland.
| | | | | | | |
Collapse
|
11
|
Wittschieben BØ, Iwai S, Wood RD. DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. J Biol Chem 2005; 280:39982-9. [PMID: 16223728 DOI: 10.1074/jbc.m507854200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DDB protein complex, comprising the subunits DDB1 and DDB2, binds tightly to UV light-irradiated DNA. Mutations in DDB2 are responsible for xeroderma pigmentosum group E, a disorder with defects in nucleotide excision repair of DNA. Both subunits are also components of a complex involved in ubiquitin-mediated proteolysis. Cellular defects in DDB2 disable repair of the major UV radiation photoproduct in DNA, a cyclobutane pyrimidine dimer, but no significant direct binding of DDB to this photoproduct in DNA has ever been demonstrated. Thus, it has been uncertain how DDB could play a specific role in DNA repair of such damage. We investigated DDB function using highly purified proteins. Co-purified DDB1-DDB2 or DDB reconstituted with individual DDB1 and DDB2 subunits binds to damaged DNA as a ternary complex. We found that DDB can indeed recognize a cyclobutane pyrimidine dimer in DNA with an affinity (K(app)a) 6-fold higher than that of nondamaged DNA. The DDB1-DDB2 complex also bound with high specificity to a UV radiation-induced (6-4) photoproduct and to an apurinic site in DNA. Unexpectedly, DDB also bound avidly to DNA containing a 2- or 3-bp mismatch (and does not bind well to DNA containing larger mismatches). These data indicate that DDB does not detect lesions per se. It instead recognizes other structural features of damaged DNA, acting as a sensor that probes DNA for a subset of conformational changes. Lesions recognized may include those arising when translesion polymerases such as POLH incorporate bases across from DNA lesions caused by UV radiation.
Collapse
|
12
|
Inase A, Kodama TS, Sharif J, Xu Y, Ayame H, Sugiyama H, Iwai S. Binding of Distamycin A to UV-Damaged DNA. J Am Chem Soc 2004; 126:11017-23. [PMID: 15339187 DOI: 10.1021/ja048851k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have found that distamycin A can bind to DNA duplexes containing the (6-4) photoproduct, one of the major UV lesions in DNA, despite the changes, caused by photoproduct formation, in both the chemical structure of the base moiety and the local tertiary structure of the helix. A 20-mer duplex containing the target site, AATT.AATT, was designed, and then one of the TT sequences was changed to the (6-4) photoproduct. Distamycin binding to the photoproduct-containing duplex was detected by CD spectroscopy, whereas specific binding did not occur when the TT site was changed to a cyclobutane pyrimidine dimer, another type of UV lesion. Distamycin binding was analyzed in detail using 14-mer duplexes. Curve fitting of the CD titration data and induced CD difference spectra revealed that the binding stoichiometry changed from 1:1 to 2:1 with photoproduct formation. Melting curves of the drug-DNA complexes also supported this stoichiometry.
Collapse
Affiliation(s)
- Aki Inase
- Contribution from the Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Kawai K, Kawabata K, Tojo S, Majima T. Synthesis of ODNs containing 4-methylamino-1,8-naphthalimide as a fluorescence probe in DNA. Bioorg Med Chem Lett 2002; 12:2363-6. [PMID: 12161134 DOI: 10.1016/s0960-894x(02)00404-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and fluorescence properties of oligodeoxynucleotides containing 4-methylamino-1,8-naphthalimide (NI) have been described. NI was successfully incorporated into DNA without significant destabilization of DNA whilst retaining its high fluorescence quantum yield. The attachment site of the NI greatly affected its property as an energy acceptor in FRET analysis.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, Japan.
| | | | | | | |
Collapse
|