1
|
Guo W, Wang D, Chen W, Rao C, Tang Y, Li W. The heterogeneous expression, extraction, and purification of recombinant Caldanaerobacter subterraneus subsp. tengcongensis apurine/apyrimidine endonuclease in Escherichia coli. Protein Expr Purif 2025; 226:106621. [PMID: 39528145 DOI: 10.1016/j.pep.2024.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Thermostable apurinic/apyrimidinic (AP) endonuclease (TtAP), cloned from Caldanaerobacter subterraneus subsp. tengcongensis, is an exonuclease III (Exo III) family protein with high-heat resistance, has activities of AP site endonuclease, 3'-5' exonuclease, and 3'-nuclease, and facilitates efficient amplification of lengthy DNA fragments in PCR. However, the research of the combinant TtAP in Escherichia coli with its expression, large-scale extraction and purification of its protein was limited. In this study, we optimized the codons of TtAP gene for expression in E. coli and constructed a fusion gene encoding TtAP with a 6His tag (TtAP-6His). TtAP-6His was put into vector pET-30a(+) to form the expression vector pET-30a(+)-TtAP-6His, and was then introduced into E. coli strain Rosetta (DE3). We established a systematic process for the extraction of TtAP protein using 5 liters of bacterial suspension, including the optimization of IPTG induction time (6 h), followed by protein extraction using enzymolysis buffers, the heat treatment of temperature (70 °C) with 60 min to remove impurity, precipitation with ammonium sulfate (55 %), protein purification with Ni-affinity chromatography, and the enzyme activities finally were determined. The purification yield of TtAP-6His ranged from 73.67 to 115.25 mg/L (47 KU/mg).
Collapse
Affiliation(s)
- Wanli Guo
- Molecular Biological Engineering Lab., Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Dajin Wang
- Molecular Biological Engineering Lab., Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Wei Chen
- Molecular Biological Engineering Lab., Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Chuyang Rao
- Molecular Biological Engineering Lab., Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Yunxuan Tang
- Laboratory of Molecular Precision Diagnosis, Chengdu Base Cipher Biotechnology Co., Ltd., No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuang, China
| | - Wangfeng Li
- Laboratory of Molecular Precision Diagnosis, Chengdu Base Cipher Biotechnology Co., Ltd., No. 618, Fenghuang Road, Shuangliu District, Chengdu, Sichuang, China.
| |
Collapse
|
2
|
Biochemical and functional characterization of an endonuclease III from Thermococcus barophilus Ch5. World J Microbiol Biotechnol 2022; 38:145. [PMID: 35750964 DOI: 10.1007/s11274-022-03328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/01/2022] [Indexed: 10/17/2022]
Abstract
Endonuclease III (EndoIII) is a bifunctional DNA glycosylase that is essential to excise thymine glycol (Tg) from DNA. Although EndoIII is widespread in bacteria, eukarya and Archaea, our understanding on archaeal EndoIII function remains relatively incomplete due to the limited reports. Herein, we characterized an EndoIII from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba-EndoIII) biochemically, demonstrating that the enzyme can excise Tg from dsDNA and display maximum activity at 50 ~ 70 °C and at pH 6.0 ~ 9.0 without the requirement of a divalent metal ion. Importantly, Tba-EndoIII differs from other reported archaeal EndoIII homologues in thermostability and salt requirement. As observed in other EndoIII homologues, the conserved residues D155 and H157 in Helix-hairpin-Helix motif of Tba-EndoIII are essential for Tg excision. Intriguingly, we first dissected that the conserved residues C215 and C221 in the Fe-S cluster loop in Tba-EndoIII are involved in intermediate formation and Tg excision. Additionally, we first revealed that the conserved residue L48 is flexible for intermediate formation and AP cleavage, but plays no detectable role in Tg excision. Overall, our work has revealed additional archaeal EndoIII function and catalytic mechanism.
Collapse
|
3
|
Zhang L, Wang L, Wu L, Jiang D, Tang C, Wu Y, Wu M, Chen M. Biochemical characterization and mutational studies of a thermostable endonuclease III from Sulfolobus islandicus REY15A. Int J Biol Macromol 2021; 193:856-865. [PMID: 34743941 DOI: 10.1016/j.ijbiomac.2021.10.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Endonuclease III (EndoIII), which is ubiquitous in bacteria, Archaea and eukaryotes, plays an important role in excising thymine glycol (Tg) from DNA. Herein, we present evidence that an EndoIII from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A (Sis-EndoIII) is capable of removing Tg from DNA at high temperature. Biochemical data show that the optimal temperature and pH of Sis-EndoIII are ca.70 °C and ca.7.0-8.0, respectively. Furthermore, the recombinant Sis-EndoIII retains relative weak activity without a divalent metal ion, and displays maximum activity in the presence of Mg2+ or Ca2+. Additionally, we first revealed the activation energy (Ea) of 39.7 ± 4.2 kcal/mol for Sis-EndoIII to remove Tg from dsDNA. As a bifunctional glycosylase, Sis-EndoIII possesses AP lyase activity in addition to glycosylase activity. Additionally, a covalent intermediate is formed between Sis-EndoIII and Tg-containing dsDNA. Mutational studies demonstrate that residues D50, K133 and D151 in Sis-EndoIII are responsible for removal of Tg from dsDNA and K133 and D151 are essential for formation of the covalent intermediate. To our knowledge, it is the first report of Tg excision by crenarchaeal EndoIII, thus augmenting our understanding on archaeal EndoIII function.
Collapse
Affiliation(s)
- Likui Zhang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China; Guangling College, Yangzhou University, China.
| | - Lei Wang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Leilei Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Chengxuan Tang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Ying Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Mai Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Min Chen
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| |
Collapse
|
4
|
Shiraishi M, Mizutani K, Yamamoto J, Iwai S. Mutational analysis of Thermococcus kodakarensis Endonuclease III reveals the roles of evolutionarily conserved residues. DNA Repair (Amst) 2020; 90:102859. [PMID: 32408140 DOI: 10.1016/j.dnarep.2020.102859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Endonuclease III (EndoIII) is nearly ubiquitous in all three domains of life. EndoIII family proteins exhibit a bifunctional (glycosylase/lyase) activity on oxidative/saturated pyrimidine bases, such as thymine glycol. Previous studies on EndoIII homologs have reported the presence of important residues involved in substrate binding and catalytic activity. However, a biochemical clarification of the roles of these residues as well as details of their evolutionary conservation is still lacking. This is particularly true for archaeal orthologs. The current study demonstrated the roles of the evolutionarily conserved residues of euryarchaeon Thermococcus kodakarensis EndoIII (TkoEndoIII). We utilized amino acid sequence analysis and homology modeling to identify highly conserved regions with potential key residues in the EndoIII proteins. Using Ala-substituted TkoEndoIII mutant proteins, residues of interest were quantitatively examined via DNA binding, glycosylase/AP lyase/bifunctional activity, and DNA trapping assays. The obtained results allowed us to determine the roles, as well as the significance of these roles in Schiff base formation (Lys140 as a nucleophile and Asp158), Tg recognition (His160), substrate binding (Arg59, Leu101, Trp102, and Gly136), β-elimination activities (Ser57 and Asp62), and [4Fe-4S] cluster formation (Cys208 and Cys215). Interestingly, a critical role played by the highly conserved Lys105 (predicted as being away from the catalytic site) in substrate binding, accompanied by a significant indirect effect on catalytic activity, were detected. Our results suggest that these particular residues play conserved roles among EndoIII orthologs across the domains. In addition to identifying the critical role of the highly conserved Lys105, the study provides a comprehensive understanding of the functions attributable to the evolutionarily conserved residues found in the EndoIII family, from Escherichia coli to humans.
Collapse
Affiliation(s)
- Miyako Shiraishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 5608531, Japan.
| | - Kento Mizutani
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 5608531, Japan
| | - Junpei Yamamoto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 5608531, Japan
| | - Shigenori Iwai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 5608531, Japan
| |
Collapse
|
5
|
The mesophilic archaeon Methanosarcina acetivorans counteracts uracil in DNA with multiple enzymes: EndoQ, ExoIII, and UDG. Sci Rep 2018; 8:15791. [PMID: 30361558 PMCID: PMC6202378 DOI: 10.1038/s41598-018-34000-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/25/2018] [Indexed: 02/04/2023] Open
Abstract
Cytosine deamination into uracil is one of the most prevalent and pro-mutagenic forms of damage to DNA. Base excision repair is a well-known process of uracil removal in DNA, which is achieved by uracil DNA glycosylase (UDG) that is found in all three domains of life. However, other strategies for uracil removal seem to have been evolved in Archaea. Exonuclease III (ExoIII) from the euryarchaeon Methanothermobacter thermautotrophicus has been described to exhibit endonuclease activity toward uracil-containing DNA. Another uracil-acting protein, endonuclease Q (EndoQ), was recently identified from the euryarchaeon Pyrococcus furiosus. Here, we describe the uracil-counteracting system in the mesophilic euryarchaeon Methanosarcina acetivorans through genomic sequence analyses and biochemical characterizations. Three enzymes, UDG, ExoIII, and EndoQ, from M. acetivorans exhibited uracil cleavage activities in DNA with a distinct range of substrate specificities in vitro, and the transcripts for these three enzymes were detected in the M. acetivorans cells. Thus, this organism appears to conduct uracil repair using at least three distinct pathways. Distribution of the homologs of these uracil-targeting proteins in Archaea showed that this tendency is not restricted to M. acetivorans, but is prevalent and diverse in most Archaea. This work further underscores the importance of uracil-removal systems to maintain genome integrity in Archaea, including 'UDG lacking' organisms.
Collapse
|
6
|
Base excision repair in Archaea: back to the future in DNA repair. DNA Repair (Amst) 2014; 21:148-57. [PMID: 25012975 DOI: 10.1016/j.dnarep.2014.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 11/22/2022]
Abstract
Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account.
Collapse
|
7
|
Hua X, Xu X, Li M, Wang C, Tian B, Hua Y. Three nth homologs are all required for efficient repair of spontaneous DNA damage in Deinococcus radiodurans. Extremophiles 2012; 16:477-84. [PMID: 22527041 DOI: 10.1007/s00792-012-0447-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 04/02/2012] [Indexed: 11/27/2022]
Abstract
Deinococcus radiodurans is a bacterium that can survive extreme DNA damage. To understand the role of endonuclease III (Nth) in oxidative repair and mutagenesis, we constructed nth single, double and triple mutants. The nth mutants showed no significant difference with wild type in both IR resistance and H(2)O(2) resistance. We characterized these strains with regard to mutation rates and mutation spectrum using the rpoB/Rif(r) system. The Rif(r) frequency of mutant MK1 (△dr0289) was twofold higher than that of wild type. The triple mutant of nth (ME3)generated a mutation frequency 34.4-fold, and a mutation rate 13.8-fold higher than the wild type. All strains demonstrated specific mutational hotspots. Each single mutant had higher spontaneous mutation frequency than wild type at base substitution (G:C → A:T). The mutational response was further increased in the double and triple mutants. The higher mutation rate and mutational response in ME3 suggested that the three nth homologs had non-overlapped and overlapped substrate spectrum in endogenous oxidative DNA repair.
Collapse
Affiliation(s)
- Xiaoting Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China.
| | | | | | | | | | | |
Collapse
|
8
|
Uracil-DNA glycosylase of Thermoplasma acidophilum directs long-patch base excision repair, which is promoted by deoxynucleoside triphosphates and ATP/ADP, into short-patch repair. J Bacteriol 2011; 193:4495-508. [PMID: 21665970 DOI: 10.1128/jb.00233-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hydrolytic deamination of cytosine to uracil in DNA is increased in organisms adapted to high temperatures. Hitherto, the uracil base excision repair (BER) pathway has only been described in two archaeons, the crenarchaeon Pyrobaculum aerophilum and the euryarchaeon Archaeoglobus fulgidus, which are hyperthermophiles and use single-nucleotide replacement. In the former the apurinic/apyrimidinic (AP) site intermediate is removed by the sequential action of a 5'-acting AP endonuclease and a 5'-deoxyribose phosphate lyase, whereas in the latter the AP site is primarily removed by a 3'-acting AP lyase, followed by a 3'-phosphodiesterase. We describe here uracil BER by a cell extract of the thermoacidophilic euryarchaeon Thermoplasma acidophilum, which prefers a similar short-patch repair mode as A. fulgidus. Importantly, T. acidophilumcell extract also efficiently executes ATP/ADP-stimulated long-patch BER in the presence of deoxynucleoside triphosphates, with a repair track of ∼15 nucleotides. Supplementation of recombinant uracil-DNA glycosylase (rTaUDG; ORF Ta0477) increased the formation of short-patch at the expense of long-patch repair intermediates, and additional supplementation of recombinant DNA ligase (rTalig; Ta1148) greatly enhanced repair product formation. TaUDG seems to recruit AP-incising and -excising functions to prepare for rapid single-nucleotide insertion and ligation, thus excluding slower and energy-costly long-patch BER.
Collapse
|
9
|
Watanabe T, Blaisdell JO, Wallace SS, Bond JP. Engineering functional changes in Escherichia coli endonuclease III based on phylogenetic and structural analyses. J Biol Chem 2005; 280:34378-84. [PMID: 16096281 DOI: 10.1074/jbc.m504916200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli endonuclease III (EcoNth) plays an important cellular role by removing premutagenic pyrimidine damages produced by reactive oxygen species. EcoNth is a bifunctional enzyme that has DNA glycosylase and apurinic/apyrimidinic lyase activities. Using a phylogeny of natural sequences, we selected to study EcoNth serine 39, aspartate 44, and arginine 184, which are presumed to be in the vicinity of the damaged base in the glycosylase-substrate complex. These three amino acids are highly conserved among Nth orthologs, although not among homologous glycosylases, such as MutY, that have different base specificities and no lyase activity. To examine the role of these amino acids in catalysis, we constructed three mutants of EcoNth, in which Ser39 was replaced with leucine (S39L), Asp44 was replaced with valine (D44V), and Arg184 was replaced with alanine (R184A), which are the corresponding residues in EcoMutY. We showed that EcoNth S39L does not have significant glycosylase activity for oxidized pyrimidines, although it maintained AP lyase activity. In contrast, EcoNth D44V retained glycosylase activity against oxidized pyrimidines, but the apparent rate constant for the lyase activity of EcoNth D44V was significantly lower than that of EcoNth, indicating that Asp44 in EcoNth is required for beta-elimination. Finally, EcoNth R184A maintained lyase activity but exhibited glycosylase specificity different from that of EcoNth. The functional consequences of each of these three substitutions can be rationalized in the context of high resolution protein structures. Thus phylogeny-based scanning mutagenesis has allowed us to identify novel roles for amino acids in the substrate binding pocket of EcoNth in base recognition and/or catalysis.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Microbiology and Molecular Genetics, The University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
10
|
Sartori AA, Lingaraju GM, Hunziker P, Winkler FK, Jiricny J. Pa-AGOG, the founding member of a new family of archaeal 8-oxoguanine DNA-glycosylases. Nucleic Acids Res 2004; 32:6531-9. [PMID: 15604455 PMCID: PMC545463 DOI: 10.1093/nar/gkh995] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidative damage represents a major threat to genomic stability, as the major product of DNA oxidation, 8-oxoguanine (GO), frequently mispairs with adenine during replication. In order to prevent these mutagenic events, organisms have evolved GO-DNA glycosylases that remove this oxidized base from DNA. We were interested to find out how GO is processed in the hyperthermophilic archaeon Pyrobaculum aerophilum, which lives at temperatures around 100 degrees C. To this end, we searched its genome for open reading frames (ORFs) bearing the principal hallmark of GO-DNA glycosylases: a helix-hairpin-helix motif and a glycine/proline-rich sequence followed by an absolutely conserved aspartate (HhH-GPD motif). Interestingly, although the P.aerophilum genome encodes three such ORFs, none of these encodes the potent GO-processing activity detected in P.aerophilum extracts. Fractionation of the extracts, followed by analysis of the active fractions by denaturing polyacrylamide gel electrophoresis, showed that the GO-processing enzyme has a molecular size of approximately 30 kDa. Mass spectrometric analysis of proteins in this size range identified several peptides originating from P.aerophilum ORF PAE2237. We now show that PAE2237 encodes AGOG (Archaeal GO-Glycosylase), the founding member of a new family of DNA glycosylases, which can remove GO from single- and double-stranded substrates with great efficiency.
Collapse
Affiliation(s)
- Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zürich, August Forel-Strasse 7, CH-8008 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Sartori AA, Jiricny J. Enzymology of base excision repair in the hyperthermophilic archaeon Pyrobaculum aerophilum. J Biol Chem 2003; 278:24563-76. [PMID: 12730226 DOI: 10.1074/jbc.m302397200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA of all living organisms is constantly modified by exogenous and endogenous reagents. The mutagenic threat of modifications such as methylation, oxidation, and hydrolytic deamination of DNA bases is counteracted by base excision repair (BER). This process is initiated by the action of one of several DNA glycosylases, which removes the aberrant base and thus initiates a cascade of events that involves scission of the DNA backbone, removal of the baseless sugar-phosphate residue, filling in of the resulting single nucleotide gap, and ligation of the remaining nick. We were interested to find out how the BER process functions in hyperthermophiles, organisms growing at temperatures around 100 degrees C, where the rates of these spontaneous reactions are greatly accelerated. In our previous studies, we could show that the crenarchaeon Pyrobaculum aerophilum has at least three uracil-DNA glycosylases, Pa-UDGa, Pa-UDGb, and Pa-MIG, that can initiate the BER process by catalyzing the removal of uracil residues arising through the spontaneous deamination of cytosines. We now report that the genome of P. aerophilum encodes also the remaining functions necessary for BER and show that a system consisting of four P. aerophilum encoded enzymes, Pa-UDGb, AP endonuclease IV, DNA polymerase B2, and DNA ligase, can efficiently repair a G.U mispair in an oligonucleotide substrate to a G.C pair. Interestingly, the efficiency of the in vitro repair reaction was stimulated by Pa-PCNA1, the processivity clamp of DNA polymerases.
Collapse
Affiliation(s)
- Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zürich, August Forel-Strasse 7, Switzerland
| | | |
Collapse
|
12
|
Fitz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci U S A 2002; 99:984-9. [PMID: 11792869 PMCID: PMC117417 DOI: 10.1073/pnas.241636498] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2001] [Indexed: 11/18/2022] Open
Abstract
We determined and annotated the complete 2.2-megabase genome sequence of Pyrobaculum aerophilum, a facultatively aerobic nitrate-reducing hyperthermophilic (T(opt) = 100 degrees C) crenarchaeon. Clues were found suggesting explanations of the organism's surprising intolerance to sulfur, which may aid in the development of methods for genetic studies of the organism. Many interesting features worthy of further genetic studies were revealed. Whole genome computational analysis confirmed experiments showing that P. aerophilum (and perhaps all crenarchaea) lack 5' untranslated regions in their mRNAs and thus appear not to use a ribosome-binding site (Shine-Dalgarno)-based mechanism for translation initiation at the 5' end of transcripts. Inspection of the lengths and distribution of mononucleotide repeat-tracts revealed some interesting features. For instance, it was seen that mononucleotide repeat-tracts of Gs (or Cs) are highly unstable, a pattern expected for an organism deficient in mismatch repair. This result, together with an independent study on mutation rates, suggests a "mutator" phenotype.
Collapse
Affiliation(s)
- Sorel T Fitz-Gibbon
- Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | |
Collapse
|