1
|
Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd - stabilisation, structure, and applications of DNA triplexes. Chem Sci 2022; 13:10193-10215. [PMID: 36277639 PMCID: PMC9473520 DOI: 10.1039/d2sc01793h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is a strikingly flexible molecule and can form a variety of secondary structures, including the triple helix, which is the subject of this review. The DNA triplex may be formed naturally, during homologous recombination, or can be formed by the introduction of a synthetic triplex forming oligonucleotide (TFO) to a DNA duplex. As the TFO will bind to the duplex with sequence specificity, there is significant interest in developing TFOs with potential therapeutic applications, including using TFOs as a delivery mechanism for compounds able to modify or damage DNA. However, to combine triplexes with functionalised compounds, a full understanding of triplex structure and chemical modification strategies, which may increase triplex stability or in vivo degradation, is essential - these areas will be discussed in this review. Ruthenium polypyridyl complexes, which are able to photooxidise DNA and act as luminescent DNA probes, may serve as a suitable photophysical payload for a TFO system and the developments in this area in the context of DNA triplexes will also be reviewed.
Collapse
Affiliation(s)
- Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - Ahmad Abdullrahman
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6AD UK
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - James P Hall
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| |
Collapse
|
2
|
Comparative studies on the binding interaction of two chiral Ru(II) polypyridyl complexes with triple- and double-helical forms of RNA. J Inorg Biochem 2020; 214:111301. [PMID: 33166867 DOI: 10.1016/j.jinorgbio.2020.111301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 12/27/2022]
Abstract
Two chiral Ru(II) polypyridyl complexes, Δ-[Ru(bpy)2(6-F-dppz)]2+ (Δ-1; bpy = 2,2'-bipyridine, 6-F-dppz = 6-fluorodipyrido[3,2-a:2',3'-c]phenazine) and Λ-[Ru(bpy)2(6-F-dppz)]2+ (Λ-1), have been synthesized and characterized as binders for the RNA poly(U)•poly(A)*poly(U) triplex and poly(A)•poly(U) duplex in this work. Analysis of the UV-Vis absorption spectra and fluorescence emission spectra indicates that the binding of intercalating Δ-1 with the triplex and duplex RNA is greater than that of Λ-1, while the binding affinities of the two enantiomers to triplex structure is stronger than that of duplex structure. Fluorescence titrations show that the two enantiomers can act as molecular "light switches" for triple- and double-helical RNA. Thermal denaturation studies revealed that that the two enantiomers are more stable to Watson-Crick base-paired double strand of the triplex than the Hoogsteen base-paired third strand, but their stability and selectivity are different. For Δ-enantiomer, the increase of the thermal stability of the Watson-Crick base-paired duplex (13 °C) is slightly stronger than of the Hoogsteen base-paired strand (10 °C), displaying no obvious selectivity. However, compared to the Hoogsteen base-paired strand (5 °C), the stability of the Λ-enantiomer to the Watson-Crick base-paired duplex (13 °C) is more significant, which has obvious selectivity. The overall increase in viscosity of the RNA-(Λ-1) system and its curve shape are similar to that of the RNA-(Δ-1) system, suggesting that the binding modes of two enantiomers with RNA are intercalation. The obtained results in this work may be useful for understanding the binding differences in chiral Ru(II) polypyridyl complexes toward RNA triplex and duplex.
Collapse
|
3
|
Stabilization of an intermolecular RNA triplex by two novel binders Lys- and Arg-rich Ru(II) polypyridyl metallopeptides. J Inorg Biochem 2020; 210:111171. [DOI: 10.1016/j.jinorgbio.2020.111171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
|
4
|
Wang F, Ma S, Feng Y, Liu X, Tan L. Binding propterties of two Ru(II) polypyridyl complexes containing dppz units and fluorine groups with poly(U)·poly(A) ∗ poly(U) triplex. J Inorg Biochem 2019; 197:110705. [PMID: 31071642 DOI: 10.1016/j.jinorgbio.2019.110705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 01/14/2023]
Abstract
In this work, two Ru(II)-dppz (dppz = dipyrido[3,2-a:2',3'-c]phenazine) complexes containing fluorine substituents, [Ru(bpy)2(7-F-dppz)]2+ (Ru1, bpy = 2,2'-bipyridine, 7-F-dppz = 7-fluorodipyrido[3,2-a:2',3'-c]phenazine) and [Ru(phen)2(7-F-dppz)]2+ (Ru2, phen = 1,10-phenanthroline), have been synthesized and characterized. Binding properties of Ru1 and Ru2 with the RNA poly(U)·poly(A) ∗ poly(U) triplex have been studied by spectroscopic methods and viscosity measurements. The obtained results indicate that the binding differences of the two complexes with the triplex may be attributed to the ancillary ligand effects, implying that the better planarity and greater hydrophobicity of ancillary ligands are advantageous to the π-π stacking interaction between Ru2 and the triplex, thus Ru2 stabilizes the triplex strongly than Ru1. Denaturation of the triplex shows that both Ru1 and Ru2 can not only highly stabilize the template duplex of the triplex, but also significantly stabilize the third strand. Compared with the triplex stabilizing effects for the reported Ru(II)-dppz complexes, thermal melting experiments suggest that the fluorine substituent on the ligand dppz can probably decrease electrostatic repulsion between the three strands of the triplex, thereby Ru1 and Ru2 significantly increase the triplex stabilization. Results obtained from this work further confirm that the substituent electron effect of dppz-based ligands and the planarity and hydrophobicity of ancillary ligands play an important role in the triplex stabilizing effects by Ru(II)-dppz complexes.
Collapse
Affiliation(s)
- Fangfang Wang
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Shuai Ma
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Yongdeng Feng
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaohua Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
5
|
Tang W, Zhu Z, Tan L. [Ru(bpy)2(7-CH3-dppz)](2+) and [Ru(phen)2(7-CH3-dppz)](2+) as metallointercalators that affect third-strand stabilization of the poly(U)˙poly(A)*poly(U) triplex. MOLECULAR BIOSYSTEMS 2017; 12:1478-85. [PMID: 26999574 DOI: 10.1039/c6mb00094k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stable RNA triplexes play key roles in many biological processes. However, due to Hoogsteen base pairing, triplexes are thermodynamically less stable than the corresponding duplexes. To understand the factors effecting the stabilization of RNA triplexes by octahedral ruthenium(ii) complexes, two Ru(ii) complexes, [Ru(bpy)2(7-CH3-dppz)](2+) (Ru) and [Ru(phen)2(7-CH3-dppz)](2+) (Ru), have been synthesized and characterized in this work. The interactions of the two Ru(ii) complexes with the poly(U)˙poly(A)*poly(U) triplex are investigated by spectrophotometry, spectrofluorometry, circular dichroism as well as viscometry. The results demonstrate that the two complexes are able to enhance the stability of the RNA triplex and serve as molecular "light switches" for the triplex. However, Ru and Ru affecting the stabilization of the third strand are significantly weaker than that of the Watson-Crick base-paired duplex, suggesting that the binding of the two complexes with the triplex is favored by the Watson-Crick base-paired duplex to a large extent. In addition, considering the nature of Ru and Ru, we presume that their binding differences may be due to different ancillary ligand effects. This study further advances our knowledge on the interaction of RNA triple-stranded structures with metal complexes, particularly with Ru(ii) complexes.
Collapse
Affiliation(s)
- Wuzhi Tang
- College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Zhiyuan Zhu
- College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Lifeng Tan
- College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China. and Key Lab of Environmentally Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
6
|
Zhu Z, Peng M, Zhang J, Tan L. Interaction of octahedral ruthenium(II) polypyridyl complex [Ru(bpy) 2(PIP)] 2+ with poly(U)·poly(A)*poly(U) triplex: Increasing third-strand stabilization of the triplex without affecting the stability of the duplex. J Inorg Biochem 2017; 169:44-49. [PMID: 28104569 DOI: 10.1016/j.jinorgbio.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023]
Abstract
Triple-helical RNA are of interest because of possible biological roles as well as the potential therapeutic uses of these structures, while the stability of triplexes is usually weaker than that of the Watson-Crick base pairing duplex strand due to the electrostatic repulsion between three polyanionic strands. Therefore, how to increase the stability of the specific sequences of triplexes are of importance. In this paper the binding of a Ru(II) complex, [Ru(bpy)2(PIP)]2+ (bpy=2.2'-bipyridine, PIP=2-phenyl-1H-imidazo[4,5-f]- [1,10]-phenanthroline), with poly(U)·poly(A)*poly(U) triplex has been investigated by spectrophotometry, spectrofluorometry, viscosimetry and circular dichroism. The results suggest that [Ru(bpy)2(PIP)]2+ as a metallointercalator can stabilize poly(U)·poly(A)*poly(U) triplex (where · denotes the Watson-Crick base pairing and * denotes the Hoogsteen base pairing),while it stabilizes third-strand with no obvious effect on the duplex of poly(U)·poly(A), reflecting the binding of this complex with the triplex is favored by the Hoogsteen paired poly(U) third strand to a great extent.
Collapse
Affiliation(s)
- Zhiyuan Zhu
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Mengna Peng
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Jingwen Zhang
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
7
|
An overview on the interaction of phenazinium dye phenosafranine to RNA triple and double helices. Int J Biol Macromol 2016; 86:345-51. [DOI: 10.1016/j.ijbiomac.2016.01.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/22/2022]
|
8
|
Li J, Sun Y, Zhu Z, Zhao H, Tan L. Binding properties of ruthenium(II) complexes [Ru(bpy)2(ppn)](2+) and [Ru(phen)2(ppn)](2+) with triplex RNA: As molecular "light switches" and stabilizers for poly(U)·poly(A)*poly(U) triplex. J Inorg Biochem 2016; 161:128-33. [PMID: 27287059 DOI: 10.1016/j.jinorgbio.2016.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 01/03/2023]
Abstract
Stable RNA triplexes play key roles in many biological processes, while triplexes are thermodynamically less stable than the corresponding duplexes due to the Hoogsteen base pairing. To understand the factors affecting the stabilization of RNA triplexes by octahedral ruthenium(II) complexes, the binding of [Ru(bpy)2(ppn)](2+) (1, bpy=2,2'-bipyridine, ppn=2,4-diaminopyrimido[5,6-b]dipyrido[2,3-f:2',3'-h]quinoxaline) and [Ru(phen)2(ppn)](2+) (2, phen=1,10-phenanthroline) to poly(U)·poly(A)*poly(U) (· denotes the Watson-Crick base pairing and * denotes the Hoogsteen base pairing) has been investigated. The main results obtained here suggest that complexes 1 and 2 can serve as molecular "light switches" and stabilizers for poly(U)·poly(A)*poly(U), while the effectiveness of complex 2 are more marked, suggesting that the hydrophobicity of ancillary ligands has a significant effect on the two Ru(II) complexes binding to poly(U)·poly(A)*poly(U). This study further advances our knowledge on the binding of RNA triplexes with metal complexes, particularly with octahedral ruthenium polypyridyl complexes.
Collapse
Affiliation(s)
- Jia Li
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yanmei Sun
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Zhiyuan Zhu
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Hong Zhao
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Lifeng Tan
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Key Lab of Environmentally Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
9
|
Zhang H, Liu X, He X, Liu Y, Tan L. Experimental and density functional theory (DFT) studies on the interactions of Ru(II) polypyridyl complexes with the RAN triplex poly(U)˙poly(A)*poly(U). Metallomics 2015; 6:2148-56. [PMID: 25313017 DOI: 10.1039/c4mt00175c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is renewed interest in investigating triple helices because these novel structures have been implicated as a possible means of controlling cellular processes by endogenous or exogenous mechanisms. Due to the Hoogsteen base pairing, triple helices are, however, thermodynamically less stable than the corresponding duplexes. The poor stability of triple helices limits their practical applications under physiological conditions. In contrast to DNA triple helices, small molecules stabilizing RNA triple helices at present are less well established. Furthermore, most of these studies are limited to organic compounds and, to a far lesser extent, to metal complexes. In this work, two Ru(II) complexes, [Ru(bpy)2(btip)](2+) (Ru1) and [Ru(phen)2(btip)](2+) (Ru2), have been synthesized and characterized. The binding properties of the two metal complexes with the triple RNA poly(U)˙poly(A)*poly(U) were studied by various biophysical and density functional theory methods. The main results obtained here suggest that the slight binding difference in Ru1 and Ru2 may be attributed to the planarity of the intercalative ligand and the LUMO level of Ru(II) complexes. This study further advances our knowledge on the triplex RNA-binding by metal complexes, particularly Ru(II) complexes.
Collapse
Affiliation(s)
- Hong Zhang
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | | | | | | | | |
Collapse
|
10
|
He X, Li J, Zhang H, Tan L. Effect of a Ru(II) polypyridyl complex [Ru(bpy)2(mdpz)]2+ on the stabilization of the RNA triplex poly(U)·poly(A)*poly(U). MOLECULAR BIOSYSTEMS 2015; 10:2552-7. [PMID: 25010433 DOI: 10.1039/c4mb00304g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is renewed interest in investigating triplex nucleic acids because triplexes may be implicated in a range of cellular functions. However, the stabilization of triplex nucleic acids is essential to achieve their biological functions. In contrast to triplex DNA, little has been reported concerning the recognition of triplex RNA by transition-metal complexes at present. We report here a ruthenium(ii) polypyridyl complex, [Ru(bpy)2(mdpz)](2+) (bpy = 2,2'-bipyridine; mdpz = 7,7'-methylenedioxyphenyl-dipyrido-[3,2-a:2',3'-c]phenazine), as a sensitive luminescent probe for poly(U)·poly(A)*poly(U), which can strongly stabilize the triplex RNA from 37.5 to 53.1 °C in solution. The main results further advance our knowledge on the triplex RNA-binding by metal complexes, particularly ruthenium(ii) complexes.
Collapse
Affiliation(s)
- Xiaojun He
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | | | | | | |
Collapse
|
11
|
Li J, Sun Y, Xie L, He X, Tan L. Effect of ancillary ligands on the interaction of ruthenium(II) complexes with the triplex RNA poly(U)·poly(A)*poly(U). J Inorg Biochem 2014; 143:56-63. [PMID: 25528478 DOI: 10.1016/j.jinorgbio.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 01/01/2023]
Abstract
Two new Ru(II) complexes with 1,8-naphthalimide group, [Ru(phen)2(pnip)](2+) (Ru1; phen=1,10-phenanthroline, pnip=2-[N-(p-phenyl)-1,8-napthalimide]imidazo[4',5'-f][1,10]phenanthroline) and [Ru(bpy)2(pnip)](2+) (Ru2; bpy=2,2'-bipyridine), have been synthesized and characterized. The interactions of Ru1 and Ru2 with the triplex RNA poly(U)•poly(A)*poly(U) (where • denotes the Watson-Crick base pairing and * denotes the Hoogsteen base pairing) were studied by various biophysical. Electronic spectra established that the binding affinity for Ru1 was greater than that for Ru2. Fluorescence and viscosity studies gave convincing evidence for a true intercalative binding of both complexes with the RNA triplex. UV melting studies confirmed that the two complexes could stabilize the triplex, whereas the effects of the two complexes on the stability of the Hoogsteen base-paired strand ploy(U) and the Watson-Crick base-paired duplex poly(U)•poly(A) of the triplex were different. In the case of Ru1, the increase of the thermal stability of the Hoogsteen base-paired strand was stronger than that of the Watson-Crick base-paired duplex. However, an opposite effect was observed in the case of Ru2. Circular dichroic studies suggested that the RNA triplex undergoes a conformational transition in the presence of Ru1, whereas the helicity of the RNA triplex still remains A-type in the presence of Ru2. The main results obtained here further advance our knowledge on the interaction of RNA triple-stranded structures with metal complexes, particularly ruthenium(II) complexes.
Collapse
Affiliation(s)
- Jia Li
- College of Chemistry, Xiangtan University, Xiangtan, PR China
| | - Yanmei Sun
- College of Chemistry, Xiangtan University, Xiangtan, PR China
| | - Lingjun Xie
- College of Chemistry, Xiangtan University, Xiangtan, PR China
| | - Xiaojun He
- College of Chemistry, Xiangtan University, Xiangtan, PR China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, PR China.
| |
Collapse
|
12
|
He XJ, Tan LF. Interactions of octahedral ruthenium(II) polypyridyl complexes with the RNA triplex poly(U)•poly(A)*poly(U) effect on the third-strand stabilization. Inorg Chem 2014; 53:11152-9. [PMID: 25272364 DOI: 10.1021/ic5017565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stable triplexes play key roles in many biological processes. Due to the Hoogsteen base pairing, triplexes are, however, thermodynamically less stable than the corresponding duplexes. The poor stabilization of these structures limits their practical applications under physiological conditions. To understand the factors effect on the stabilization of RNA triplexes by octahedral ruthenium(II) complexes, the interactions of [RuL2(uip)](2+) {where L = 2,2'-bipyridine (bpy) or 1,10-phenanthroline phen, uip = 2-(5-uracil)-1H-imidazo[4,5-f][1,10]phenanthroline} with the RNA triplex poly(U)•poly(A)*poly(U) are examined by spectrophotometry, spectrofluorometry, circular dichroism, and viscosimetry in this work. The main results obtained here suggest that the third-strand stabilization depends on the hydrophobicity effects of ancillary ligands bpy and phen.
Collapse
Affiliation(s)
- Xiao-Jun He
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University , Xiangtan 411105, PR China
| | | |
Collapse
|
13
|
Bhowmik D, Buzzetti F, Fiorillo G, Lombardi P, Suresh Kumar G. Spectroscopic studies on the binding interaction of novel 13-phenylalkyl analogs of the natural alkaloid berberine to nucleic acid triplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 120:257-264. [PMID: 24184628 DOI: 10.1016/j.saa.2013.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/13/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
In this study we have characterized the capability of six 13-phenylalkyl analogs of berberine to stabilize nucleic acid triplex structures, poly(rA)⋅2poly(rU) and poly(dA)⋅2poly(dT). Berberine analogs bind to the RNA and DNA triplexes non-cooperatively. As the chain length of the substitution increased beyond CH2, the affinity enhanced up to critical length of (CH2)4, there after which the binding affinity decreased for both the triplexes. A remarkably stronger intercalative binding of the analogs compared to berberine to the triplexes was confirmed from ferrocyanide fluorescence quenching, fluorescence polarization and viscosity results. Circular dichroism results had indicated strong conformational changes in the triplexes on binding of the analogs. The analogs enhanced the stability of the Hoogsteen base paired third strand of both the triplexes while no significant change in the high-temperature duplex-to-single strand transitions was observed. Energetics of the interaction revealed that as the alkyl chain length increased, the binding was more entropy driven. This study demonstrates that phenylalkyl substitution at the 13-position of berberine increased the triplex binding affinity of berberine but a threshold length of the side chain is critical for the strong intercalative binding to occur.
Collapse
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Franco Buzzetti
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Gaetano Fiorillo
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Paolo Lombardi
- Naxopharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese (MI), Italy
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
14
|
Wei MT, Walter A, Gabrielian A, Schütz H, Birch-Hirschfeld E, Lin SB, Lin WC, Fritzsche H, Kan LS. Studies on the Extension of Sequence-independence and the Enhancement of DNA Triplex Formation. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200500056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Bhowmik D, Kumar GS. Interaction of 9-O-(ω-amino) alkyl ether berberine analogs with poly(dT)·poly(dA)*poly(dT) triplex and poly(dA)·poly(dT) duplex: a comparative study. Mol Biol Rep 2013; 40:5439-50. [PMID: 23666107 DOI: 10.1007/s11033-013-2642-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
Abstract
Isoquinoline alkaloids and their analogs represent an important class of molecules for their broad range of clinical and pharmacological utility. These compounds are of current interest owing to their low toxicity and excellent chemo preventive properties. These alkaloids can play important role in stabilising the nucleic acid triple helices. The present study has focused on the interaction of five 9-O-(ω-amino) alkyl ether berberine analogs with the DNA triplex poly(dT)·poly(dA)*poly(dT) and the parent duplex poly(dA)·poly(dT) studied using various biophysical techniques. Scatchard analysis of the spectral data indicated that the analogs bind both to the duplex and triplex in a non-cooperative manner in contrast to the cooperative binding of berberine to the DNA triplex. Strong intercalative binding to the DNA triplex structure was revealed from ferrocyanide quenching, fluorescence polarization and viscosity results. Thermal melting studies demonstrated higher stabilization of the Hoogsteen base paired third strand of the DNA triplex compared to the Watson-Crick strand. Circular dichroism studies suggested a stronger perturbation of the DNA triplex conformation by the alkaloid analogs compared to the duplex. The binding was entropy-driven in each case and the entropy contribution to free energy increased as the length of the alkyl side chain increased. The analogs exhibited stronger binding affinity to the triple helical structure compared to the parent double helical structure.
Collapse
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | | |
Collapse
|
16
|
Lozano HJ, García B, Busto N, Leal JM. Interaction of Thionine with Triple-, Double-, and Single-Stranded RNAs. J Phys Chem B 2012. [DOI: 10.1021/jp307840c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Begoña García
- Chemistry Department, University of Burgos, 09001 Burgos, Spain
| | - Natalia Busto
- Chemistry Department, University of Burgos, 09001 Burgos, Spain
| | - José M. Leal
- Chemistry Department, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
17
|
Tan L, Xie L, Sun X, Zeng L, Yang G. Biophysical insights into the interaction of Ru(II) polypyridyl complexes with the RNA triplex poly(U)•poly(A)*poly(U). Intercalative ligand shape effect on third-strand stabilization. J Inorg Biochem 2012; 120:32-8. [PMID: 23268790 DOI: 10.1016/j.jinorgbio.2012.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 01/14/2023]
Abstract
To explore the correlating thermodynamic factors to the structural aspects that account for the stability of the RNA triplex, two functional Ru(II) complexes containing the same ancillary ligands and different intercalative ligands, [Ru(bpy)(2)(mip)](2+) (bpy=2,2'-bipyridine, mip=2'-(3",4"-methylene-dioxyphenyl)imidazo[4',5'-f][1,10]phenanthroline) and [Ru(bpy)(2)(bdip)](2+) (bdip=2-(1,3-benzodioxol-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) have been synthesized. The binding properties of [Ru(bpy)(2)(mip)](2+) and [Ru(bpy)(2)(bdip)](2+) to the RNA triplex poly(U)•poly(A)*poly(U) have been investigated by various biophysical techniques and quantum chemistry calculations. Compared with [Ru(bpy)(2)(bdip)](2+), remarkably higher binding and stabilization of the triplex RNA structure by [Ru(bpy)(2)(mip)](2+) is achieved upon changing the substituent positions on the intercalative ligand. The result reveals that the intercalative ligand shape plays a critical role in third-strand stabilization.
Collapse
Affiliation(s)
- Lifeng Tan
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| | | | | | | | | |
Collapse
|
18
|
Binding properties of Ru(II) polypyridyl complexes with poly(U)·poly(A)*poly(U) triplex: the ancillary ligand effect on third-strand stabilization. J Biol Inorg Chem 2012; 18:71-80. [PMID: 23111627 DOI: 10.1007/s00775-012-0950-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
The binding properties of [RuL(2)(mip)](2+) {where L is 1,10-phenanthroline (phen) or 4,7-dimethyl-1,10-phenanthrollne (4,7-dmp) and mip is 2'-(3",4"-methylenedioxyphenyl)imidazo[4',5'-f][1,10]phenanthroline} with regard to the triplex RNA poly(U)·poly(A)*poly(U) were investigated using various biophysical techniques and quantum chemistry calculations. In comparison with [Ru(4,7-dmp)(2)(mip)](2+), remarkably higher binding affinity of [Ru(phen)(2)(mip)](2+) for the triplex RNA poly(U)·poly(A)*poly(U) was achieved by changing the ancillary ligands. The stabilization of the Hoogsteen-base-paired third strand was improved by about 10.9 °C by [Ru(phen)(2)(mip)](2+) against 6.6 °C by [Ru(4,7-dmp)(2)(mip)](2+). To the best of our knowledge, [Ru(phen)(2)(mip)](2+) is the first metal complex able to raise the third-strand stabilization of poly(U)·poly(A)*poly(U) from 37.5 to 48.4 °C. The results reveal that the ancillary ligands have an important effect on third-strand stabilization of the triplex RNA poly(U)·poly(A)*poly(U) when metal complexes contain the same intercalative ligands.
Collapse
|
19
|
Tan LF, Liu J, Shen JL, Liu XH, Zeng LL, Jin LH. First ruthenium(II) polypyridyl complex as a true molecular "light switch" for triplex RNA structure: [Ru(phen)2(mdpz)]2+ enhances the stability of Poly(U)·Poly(A)*Poly(U). Inorg Chem 2012; 51:4417-9. [PMID: 22462534 DOI: 10.1021/ic300093h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stabilization of triple helical structures is extremely important for carrying out their biological functions. Nucleic acid triple helices may be formed with DNA or RNA strands. In contrast to many studies in DNA, little has been reported concerning the recognition of the RNA triplex by transition-metal complexes. In this article, [Ru(phen)(2)(mdpz)](2+) (Ru1) is the first metal complex able to enhance the stability of the RNA triplex Poly(U)·Poly(A)*Poly(U) and serve as a prominent molecular "light switch" for the RNA triplex.
Collapse
Affiliation(s)
- Li-Feng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
20
|
Kaluzhny DN, Timoshin VV, Borisova OF, Zhurkin VB, Florentiev VL, Shchyolkina AK. Intramolecular recombination R-triplex in solution: stabilization by bis-intercalator YOYO. J Biomol Struct Dyn 2008; 26:301-6. [PMID: 18808196 PMCID: PMC4807166 DOI: 10.1080/07391102.2008.10507245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Recognition of double-stranded DNA with a mixed nucleotide sequence by oligonucleotide is a long-term challenge. This aim can be achieved via formation of the recombination R-triplex, accommodating two identical DNA strands in parallel orientation, and antiparallel complementary strand. In the absence of proteins the R-triplex stability is low, however, so that intermolecular R-triplex is not formed by three DNA strands in a ligand-free system. Recently, recognition of DNA with mixed base sequence by single-stranded oligonucleotide in the presence of bis-intercalator YOYO was reported. Here, we describe thermodynamic characteristics of YOYO complexes with the model oligonucleotides 5'-GT-2AP-GACTGAG TTTT CTCAGTCTACGC GAA GCGTAGACTGAG-3' (R(2AP)CW) bearing a single reporting 2-aminopurine (2AP) in place of adenine and 5'-CTCAGTCTACGC GAA GCGTAGACTGAG-3' (CW). We found that each oligonucleotide is able to bind two YOYO molecules via intercalation mode in 0.5 M LiCl. Fluorescence intensity of YOYO intercalated in triplex R(2AP)CW and in CW hairpin increased 40-fold compared to the free YOYO. Remarkably, the melting temperature of the triplex (determined using temperature dependence of the 2AP fluorescence) increased from 19 degrees C to 33 degrees C upon binding two YOYO molecules. Further increase in the YOYO concentration resulted in binding of up to five YOYO molecules to R(2AP)CW triplex and up to six YOYO molecules to CW hairpin.
Collapse
Affiliation(s)
- Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology RASc, Vavilova 32, 119991 Moscow, Russia
| | | | - Olga F. Borisova
- Engelhardt Institute of Molecular Biology RASc, Vavilova 32, 119991 Moscow, Russia
| | | | | | - Anna K. Shchyolkina
- Engelhardt Institute of Molecular Biology RASc, Vavilova 32, 119991 Moscow, Russia
| |
Collapse
|
21
|
Garcia B, Leal JM, Paiotta V, Ibeas S, Ruiz R, Secco F, Venturini M. Intercalation of ethidium into triple-strand poly(rA).2poly(rU): a thermodynamic and kinetic study. J Phys Chem B 2007; 110:16131-8. [PMID: 16898771 DOI: 10.1021/jp0613283] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetics and equilibria of the interaction of ethidium bromide (EB) with the triple-stranded RNA, poly(rA).2poly(rU), have been investigated by stopped-flow, absorption, fluorescence, and circular dichroism methods; to properly assess the effect of the third strand on the polymer molar properties, molar volumes, adiabatic compressibilities, and heats of melting have also been measured for both poly(rA).2poly(rU) and poly(rA).poly(rU). The melting experiments reveal that ethidium tends to destabilize the triplex, whereas it stabilizes the duplex; however, the triplex/ethidium system in 0.1 M NaCl is stable below 37 degrees C. The static titrations reveal that one ethidium ion binds every three base triplets of the polymer; on the basis of the excluded-site model, this feature suggests intercalation, as in the duplex, but the binding affinity for the triplex is weaker compared to that for the duplex. The kinetic experiments displayed a two-phase behavior, which was rationalized assuming the sequence D + S right arrow over left arrow DS(I), DS(I) + S right arrow over left arrow DS(II) + S (D = drug, S = site), the second step involving direct transfer of the drug between strands. Comparison with the duplex/EB system reveals that the additional strand of poly(U), present in the triplex, hinders the formation of the intermediate complex DS(I), while stabilizing the structure of the final DS(II) complex by hampering the partial slipping out of the dye from the triplex cavity.
Collapse
Affiliation(s)
- B Garcia
- Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Shchyolkina AK, Kaluzhny DN, Arndt-Jovin DJ, Jovin TM, Zhurkin VB. Recombination R-triplex: H-bonds contribution to stability as revealed with minor base substitutions for adenine. Nucleic Acids Res 2006; 34:3239-45. [PMID: 16798913 PMCID: PMC1500870 DOI: 10.1093/nar/gkl431] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 01/29/2023] Open
Abstract
Several cellular processes involve alignment of three nucleic acids strands, in which the third strand (DNA or RNA) is identical and in a parallel orientation to one of the DNA duplex strands. Earlier, using 2-aminopurine as a fluorescent reporter base, we demonstrated that a self-folding oligonucleotide forms a recombination-like structure consistent with the R-triplex. Here, we extended this approach, placing the reporter 2-aminopurine either in the 5'- or 3'-strand. We obtained direct evidence that the 3'-strand forms a stable duplex with the complementary central strand, while the 5'-strand participates in non-Watson-Crick interactions. Substituting 2,6-diaminopurine or 7-deazaadenine for adenine, we tested and confirmed the proposed hydrogen bonding scheme of the A*(T.A) R-type triplet. The adenine substitutions expected to provide additional H-bonds led to triplex structures with increased stability, whereas the substitutions consistent with a decrease in the number of H-bonds destabilized the triplex. The triplex formation enthalpies and free energies exhibited linear dependences on the number of H-bonds predicted from the A*(T.A) triplet scheme. The enthalpy of the 10 nt long intramolecular triplex of -100 kJ x mol(-1) demonstrates that the R-triplex is relatively unstable and thus an ideal candidate for a transient intermediate in homologous recombination, t-loop formation at the mammalian telomere ends, and short RNA invasion into a duplex. On the other hand, the impact of a single H-bond, 18 kJ x mol(-1), is high compared with the overall triplex formation enthalpy. The observed energy advantage of a 'correct' base in the third strand opposite the Watson-Crick base pair may be a powerful mechanism for securing selectivity of recognition between the single strand and the duplex.
Collapse
Affiliation(s)
- Anna K. Shchyolkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences119991 Moscow, Russia
- Department of Molecular Biology, Max Planck Institute for Biophysical ChemistryD-37070 Goettingen, Germany
- Laboratory of Cell Biology, National Cancer InstituteNIH, Bethesda, MD 20892, USA
| | - Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences119991 Moscow, Russia
- Department of Molecular Biology, Max Planck Institute for Biophysical ChemistryD-37070 Goettingen, Germany
- Laboratory of Cell Biology, National Cancer InstituteNIH, Bethesda, MD 20892, USA
| | - Donna J. Arndt-Jovin
- Department of Molecular Biology, Max Planck Institute for Biophysical ChemistryD-37070 Goettingen, Germany
| | - Thomas M. Jovin
- Department of Molecular Biology, Max Planck Institute for Biophysical ChemistryD-37070 Goettingen, Germany
| | - Victor B. Zhurkin
- Laboratory of Cell Biology, National Cancer InstituteNIH, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Shchyolkina AK, Kaluzhny DN, Borisova OF, Hawkins ME, Jernigan RL, Jovin TM, Arndt-Jovin DJ, Zhurkin VB. Formation of an intramolecular triple-stranded DNA structure monitored by fluorescence of 2-aminopurine or 6-methylisoxanthopterin. Nucleic Acids Res 2004; 32:432-40. [PMID: 14739235 PMCID: PMC373315 DOI: 10.1093/nar/gkh158] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The parallel (recombination) 'R-triplex' can accommodate any nucleotide sequence with the two identical DNA strands in parallel orientation. We have studied oligonucleotides able to fold back into such a recombination-like structure. We show that the fluorescent base analogs 2-aminopurine (2AP) and 6-methylisoxanthopterin (6MI) can be used as structural probes for monitoring the integrity of the triple-stranded conformation and for deriving the thermodynamic characteristics of these structures. A single adenine or guanine base in the third strand of the triplex-forming and the control oligonucleotides, as well as in the double-stranded (ds) and single-stranded (ss) reference molecules, was substituted with 2AP or 6MI. The 2AP*(T.A) and 6MI*(C.G) triplets were monitored by their fluorescence emission and the thermal denaturation curves were analyzed with a quasi-two-state model. The fluorescence of 2AP introduced into an oligonucleotide sequence unable to form a triplex served as a negative control. We observed a remarkable similarity between the thermodynamic parameters derived from melting of the secondary structures monitored through absorption of all bases at 260 nm or from fluorescence of the single base analog. The similarity suggests that fluorescence of the 2AP and 6MI base analogs may be used to monitor the structural disposition of the third strand. We consider the data in the light of alternative 'branch migration' and 'strand exchange' structures and discuss why these are less likely than the R-type triplex.
Collapse
Affiliation(s)
- Anna K Shchyolkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kato M, Hokabe S, Itakura S, Minoshima S, Lyubchenko YL, Gurkov TD, Okawara H, Nagayama K, Shimizu N. Interarm interaction of DNA cruciform forming at a short inverted repeat sequence. Biophys J 2003; 85:402-8. [PMID: 12829494 PMCID: PMC1303095 DOI: 10.1016/s0006-3495(03)74484-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel interarm interaction of DNA cruciform forming at inverted repeat sequence was characterized using an S1 nuclease digestion, permanganate oxidation, and microscopic imaging. An inverted repeat consisting of 17 bp complementary sequences was isolated from the bluegill sunfish Lepomis macrochirus (Perciformes) and subcloned into the pUC19 plasmid, after which the supercoiled recombinant plasmid was subjected to enzymatic and chemical modification. In high salt conditions (200 mM NaCl, or 100-200 mM KCl), S1 nuclease cut supercoiled DNA at the center of palindromic symmetry, suggesting the formation of DNA cruciform. On the other hand, S1 nuclease in the presence of 150 mM NaCl or less cleaved mainly the 3'-half of the repeat, thereby forming an unusual structure in which the 3'-half of the inverted repeat, but not the 5'-half, was retained as an unpaired strand. Permanganate oxidation profiles also supported the presence of single-stranded part in the 3'-half of the inverted repeat in addition to the center of the symmetry. Both electron microscopy and atomic force microscopy have detected a thick protrusion on the supercoiled DNA harboring the inverted repeat. We hypothesize that the cruciform hairpins at conditions favoring triplex formation adopt a parallel side-by-side orientation of the arms allowing the interaction between them supposedly stabilized by hydrogen bonding of base triads.
Collapse
Affiliation(s)
- Mikio Kato
- Department of Life Sciences, Osaka Prefecture University College of Integrated Arts and Sciences, Sakai 599-8531, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
An alternative model to the Watson & Crick (W&C) double DNA-spiral and the Pauling & Corey (P&C) triple spiral is presented. In this model: (1). the rotation axis of the polynucleotide chain is in the ribose ring; (2). there is a -H- bond or direct covalent bond between the O2 (PO(4) and C2(') (in ribose) which makes the nucleic acid strands 'stiff'; (3). when there is a covalent bond between O2 and C2('), the unit of the DNA is the ribonucleoside 2('), 3(')-cyclic monophosphate, an intermediate form between DNA and RNA; (4). the bases point outwards from the rotation axis and may interact with each other to connect 2-4 strands together through complementary base pairs; (5). two strands may, but do not necessarily, form a helical structure and if they do, the interacting strands do not turn around each other. The architecture of this model, termed the Homulus DNA model is open (in contrast to the inverted W&C model) and using it might help us to understand the nature of some specific DNA-protein interactions, ordered chromatin formation (coiling and de-coiling), specific gene-to-gene interaction (gene targeting). It is possible that a small portion of the total DNA, the transcribed, 'working DNA', might be built by this way.
Collapse
Affiliation(s)
- Jan Charles Biro
- Karolinska Institute and Homulus Informatics, Karlaplan, Sweden.
| |
Collapse
|