1
|
Bacurio JHT, Yawson P, Thomforde J, Zhang Q, Kumar HV, Den Hartog H, Tretyakova NY, Basu AK. 5-Formylcytosine mediated DNA-peptide cross-link induces predominantly semi-targeted mutations in both Escherichia coli and human cells. J Biol Chem 2024; 300:105786. [PMID: 38401843 PMCID: PMC10966706 DOI: 10.1016/j.jbc.2024.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Histone proteins can become trapped on DNA in the presence of 5-formylcytosine (5fC) to form toxic DNA-protein conjugates. Their repair may involve proteolytic digestion resulting in DNA-peptide cross-links (DpCs). Here, we have investigated replication of a model DpC comprised of an 11-mer peptide (NH2-GGGKGLGK∗GGA) containing an oxy-lysine residue (K∗) conjugated to 5fC in DNA. Both CXG and CXT (where X = 5fC-DpC) sequence contexts were examined. Replication of both constructs gave low viability (<10%) in Escherichia coli, whereas TLS efficiency was high (72%) in HEK 293T cells. In E. coli, the DpC was bypassed largely error-free, inducing only 2 to 3% mutations, which increased to 4 to 5% with SOS. For both sequences, semi-targeted mutations were dominant, and for CXG, the predominant mutations were G→T and G→C at the 3'-base to the 5fC-DpC. In HEK 293T cells, 7 to 9% mutations occurred, and the dominant mutations were the semi-targeted G → T for CXG and T → G for CXT. These mutations were reduced drastically in cells deficient in hPol η, hPol ι or hPol ζ, suggesting a role of these TLS polymerases in mutagenic TLS. Steady-state kinetics studies using hPol η confirmed that this polymerase induces G → T and T → G transversions at the base immediately 3' to the DpC. This study reveals a unique replication pattern of 5fC-conjugated DpCs, which are bypassed largely error-free in both E. coli and human cells and induce mostly semi-targeted mutations at the 3' position to the lesion.
Collapse
Affiliation(s)
| | - Priscilla Yawson
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Jenna Thomforde
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qi Zhang
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Honnaiah Vijay Kumar
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Holly Den Hartog
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
2
|
Abstract
DNA damage by chemicals, radiation, or oxidative stress leads to a mutational spectrum, which is complex because it is determined in part by lesion structure, the DNA sequence context of the lesion, lesion repair kinetics, and the type of cells in which the lesion is replicated. Accumulation of mutations may give rise to genetic diseases such as cancer and therefore understanding the process underlying mutagenesis is of immense importance to preserve human health. Chemical or physical agents that cause cancer often leave their mutational fingerprints, which can be used to back-calculate the molecular events that led to disease. To make a clear link between DNA lesion structure and the mutations a given lesion induces, the field of single-lesion mutagenesis was developed. In the last three decades this area of research has seen much growth in several directions, which we attempt to describe in this Perspective.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, The University of Connecticut Storrs, Storrs, Connecticut 06269, United States
| | - John M Essigmann
- Departments of Chemistry, Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Abu El Asrar R, Margamuljana L, Abramov M, Bande O, Agnello S, Jang M, Herdewijn P. Enzymatic Incorporation of Modified Purine Nucleotides in DNA. Chembiochem 2017; 18:2408-2415. [PMID: 29024251 DOI: 10.1002/cbic.201700393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 01/19/2023]
Abstract
A series of nucleotide analogues, with a hypoxanthine base moiety (8-aminohypoxanthine, 1-methyl-8-aminohypoxanthine, and 8-oxohypoxanthine), together with 5-methylisocytosine were tested as potential pairing partners of N8 -glycosylated nucleotides with an 8-azaguanine or 8-aza-9-deazaguanine base moiety by using DNA polymerases (incorporation studies). The best results were obtained with the 5-methylisocytosine nucleotide followed by the 1-methyl-8-aminohypoxanthine nucleotide. The experiments demonstrated that small differences in the structure (8-azaguanine versus 8-aza-9-deazaguanine) might lead to significant differences in recognition efficiency and selectivity, base pairing by Hoogsteen recognition at the polymerase level is possible, 8-aza-9-deazaguanine represents a self-complementary base pair, and a correlation exists between in vitro incorporation studies and in vivo recognition by natural bases in Escherichia coli, but this recognition is not absolute (exceptions were observed).
Collapse
Affiliation(s)
- Rania Abu El Asrar
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Lia Margamuljana
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mikhail Abramov
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Omprakash Bande
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Stefano Agnello
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Present address: Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Miyeon Jang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
4
|
Manlove AH, McKibbin PL, Doyle EL, Majumdar C, Hamm ML, David SS. Structure-Activity Relationships Reveal Key Features of 8-Oxoguanine: A Mismatch Detection by the MutY Glycosylase. ACS Chem Biol 2017; 12:2335-2344. [PMID: 28723094 PMCID: PMC5603899 DOI: 10.1021/acschembio.7b00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Base excision repair
glycosylases locate and remove damaged bases
in DNA with remarkable specificity. The MutY glycosylases, unusual
for their excision of undamaged adenines mispaired to the oxidized
base 8-oxoguanine (OG), must recognize both bases of the mispair in
order to prevent promutagenic activity. Moreover, MutY must effectively
find OG:A mismatches within the context of highly abundant and structurally
similar T:A base pairs. Very little is known about the factors that
initiate MutY’s interaction with the substrate when it first
encounters an intrahelical OG:A mispair, or about the order of recognition
checkpoints. Here, we used structure–activity relationships
(SAR) to investigate the features that influence the in vitro measured parameters of mismatch affinity and adenine base excision
efficiency by E. coli MutY. We also evaluated the
impacts of the same substrate alterations on MutY-mediated repair
in a cellular context. Our results show that MutY relies strongly
on the presence of the OG base and recognizes multiple structural
features at different stages of recognition and catalysis to ensure
that only inappropriately mispaired adenines are excised. Notably,
some OG modifications resulted in more dramatic reductions in cellular
repair than in the in vitro kinetic parameters, indicating
their importance for initial recognition events needed to locate the
mismatch within DNA. Indeed, the initial encounter of MutY with its
target base pair may rely on specific interactions with the 2-amino
group of OG in the major groove, a feature that distinguishes OG:A
from T:A base pairs. These results furthermore suggest that inefficient
substrate location in human MutY homologue variants may prove predictive
for the early onset colorectal cancer phenotype known as MUTYH-Associated
Polyposis, or MAP.
Collapse
Affiliation(s)
- Amelia H. Manlove
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Paige L. McKibbin
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Emily L. Doyle
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Chandrima Majumdar
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Michelle L. Hamm
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Sheila S. David
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
5
|
Lech CJ, Cheow Lim JK, Wen Lim JM, Amrane S, Heddi B, Phan AT. Effects of site-specific guanine C8-modifications on an intramolecular DNA G-quadruplex. Biophys J 2012; 101:1987-98. [PMID: 22004753 DOI: 10.1016/j.bpj.2011.08.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 10/16/2022] Open
Abstract
Understanding the fundamentals of G-quadruplex formation is important both for targeting G-quadruplexes formed by natural sequences and for engineering new G-quadruplexes with desired properties. Using a combination of experimental and computational techniques, we have investigated the effects of site-specific substitution of a guanine with C8-modified guanine derivatives, including 8-bromo-guanine, 8-O-methyl-guanine, 8-amino-guanine, and 8-oxo-guanine, within a well-defined (3 + 1) human telomeric G-quadruplex platform. The effects of substitutions on the stability of the G-quadruplex were found to depend on the type and position of the modification among different guanines in the structure. An interesting modification-dependent NMR chemical-shift effect was observed across basepairing within a guanine tetrad. This effect was reproduced by ab initio quantum mechanical computations, which showed that the observed variation in imino proton chemical shift is largely influenced by changes in hydrogen-bond geometry within the guanine tetrad.
Collapse
|
6
|
Kaloudis P, D’Angelantonio M, Guerra M, Spadafora M, Cismaş C, Gimisis T, Mulazzani QG, Chatgilialoglu C. Comparison of Isoelectronic 8-HO-G and 8-NH2-G Derivatives in Redox Processes. J Am Chem Soc 2009; 131:15895-902. [DOI: 10.1021/ja9065464] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Panagiotis Kaloudis
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy, and Department of Chemistry, University of Athens, 15771 Panepistimiopolis, Athens, Greece
| | - Mila D’Angelantonio
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy, and Department of Chemistry, University of Athens, 15771 Panepistimiopolis, Athens, Greece
| | - Maurizio Guerra
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy, and Department of Chemistry, University of Athens, 15771 Panepistimiopolis, Athens, Greece
| | - Marie Spadafora
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy, and Department of Chemistry, University of Athens, 15771 Panepistimiopolis, Athens, Greece
| | - Crina Cismaş
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy, and Department of Chemistry, University of Athens, 15771 Panepistimiopolis, Athens, Greece
| | - Thanasis Gimisis
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy, and Department of Chemistry, University of Athens, 15771 Panepistimiopolis, Athens, Greece
| | - Quinto G. Mulazzani
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy, and Department of Chemistry, University of Athens, 15771 Panepistimiopolis, Athens, Greece
| | - Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy, and Department of Chemistry, University of Athens, 15771 Panepistimiopolis, Athens, Greece
| |
Collapse
|
7
|
Delaney JC, Essigmann JM. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem Res Toxicol 2008; 21:232-52. [PMID: 18072751 PMCID: PMC2821157 DOI: 10.1021/tx700292a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The genome and its nucleotide precursor pool are under sustained attack by radiation, reactive oxygen and nitrogen species, chemical carcinogens, hydrolytic reactions, and certain drugs. As a result, a large and heterogeneous population of damaged nucleotides forms in all cells. Some of the lesions are repaired, but for those that remain, there can be serious biological consequences. For example, lesions that form in DNA can lead to altered gene expression, mutation, and death. This perspective examines systems developed over the past 20 years to study the biological properties of single DNA lesions.
Collapse
Affiliation(s)
- James C. Delaney
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - John M. Essigmann
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
8
|
Meneni SR, D'Mello R, Norigian G, Baker G, Gao L, Chiarelli MP, Cho BP. Sequence effects of aminofluorene-modified DNA duplexes: thermodynamic and circular dichroism properties. Nucleic Acids Res 2006; 34:755-63. [PMID: 16449208 PMCID: PMC1356535 DOI: 10.1093/nar/gkj480] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/14/2005] [Accepted: 01/14/2005] [Indexed: 11/12/2022] Open
Abstract
Circular dichroism (CD) and UV-melting experiments were conducted with 16 oligodeoxynucleotides modified by the carcinogen 2-aminofluorene, whose sequence around the lesion was varied systematically [d(CTTCTNG[AF]NCCTC), N = G, A, C, T], to gain insight into the factors that determine the equilibrium between base-displaced stacked (S) and external B-type (B) duplex conformers. Differing stabilities among the duplexes can be attributed to different populations of S and B conformers. The AF modification always resulted in sequence-dependent thermal (T(m)) and thermodynamic (-DeltaG degrees ) destabilization. The population of B-type conformers derived from eight selected duplexes (i.e. -AG*N- and -CG*N-) was inversely proportional to the -DeltaG degrees and T(m) values, which highlights the importance of carcinogen/base stacking in duplex stabilization even in the face of disrupted Watson-Crick base pairing in S-conformation. CD studies showed that the extent of the adduct-induced negative ellipticities in the 290-350 nm range is correlated linearly with -DeltaG degrees and T(m), but inversely with the population of B-type conformations. Taken together, these results revealed a unique interplay between the extent of carcinogenic interaction with neighboring base pairs and the thermodynamic properties of the AF-modified duplexes. The sequence-dependent S/B heterogeneities have important implications in understanding how arylamine-DNA adducts are recognized in nucleotide excision repair.
Collapse
Affiliation(s)
- Srinivasa Rao Meneni
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode IslandKingston, RI 02881, USA
- Department of Chemistry, Loyola UniversityChicago, IL 60626, USA
| | - Rhijuta D'Mello
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode IslandKingston, RI 02881, USA
- Department of Chemistry, Loyola UniversityChicago, IL 60626, USA
| | - Gregory Norigian
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode IslandKingston, RI 02881, USA
- Department of Chemistry, Loyola UniversityChicago, IL 60626, USA
| | - Gregory Baker
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode IslandKingston, RI 02881, USA
- Department of Chemistry, Loyola UniversityChicago, IL 60626, USA
| | - Lan Gao
- Department of Chemistry, Loyola UniversityChicago, IL 60626, USA
| | | | - Bongsup P. Cho
- To whom correspondence should be addressed at Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA. Tel: +1 401 874 5024; Fax: +1 401 874 5766;
| |
Collapse
|
9
|
López de la Osa J, González C, Gargallo R, Rueda M, Cubero E, Orozco M, Aviñó A, Eritja R. Destabilization of Quadruplex DNA by 8-Aminoguanine. Chembiochem 2005; 7:46-8. [PMID: 16292787 DOI: 10.1002/cbic.200500281] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Chen HJC, Chang CM, Chen YM. Hemoprotein-mediated reduction of nitrated DNA bases in the presence of reducing agents. Free Radic Biol Med 2003; 34:254-68. [PMID: 12521607 DOI: 10.1016/s0891-5849(02)01246-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA damages by reactive nitrogen oxide species may contribute to the multistage carcinogenesis processes associated with chronic infections and inflammation. The nitrated DNA adducts 8-nitroguanine (8NG) and 8-nitroxanthine (8NX) have been shown to derive from these reactive nitrogen oxide species, but they are not stable in DNA since they undergo spontaneous depurination. We herein report that hemin and hemoproteins, including hemoglobin and cytochrome c, mediate reduction of 8NG and 8NX to their corresponding amino analogues in the presence of reducing agents under physiologically relevant conditions. This reaction is believed to involve the reduced heme moiety produced from the reduction of oxidized hemoglobin or cytochrome c by reducing agents. The combination of hemoglobin and dihydrolipoic acid generated the reduced products in high yields. Ascorbate, quercetin, and glutathione are also capable of reducing these nitrated DNA adducts. The hemoglobin macromolecule reduces 8NG and 8NX formed in nitryl chloride-treated calf thymus DNA, as evidenced by the formation of the amino adducts using reversed-phase HPLC with photodiode array detection. Hemin is more efficient than equal molar of heme on hemoglobin in reducing 8NG-containing DNA, indicating the role of protein in impeding the reaction. Furthermore, we also show that the reduction product 8-aminoguanine is persistent on DNA. These findings suggest that reduction of nitrated DNA by the heme/antioxidant system might represent a possible in vivo pathway to modify DNA nitration.
Collapse
Affiliation(s)
- Hauh Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, Taiwan.
| | | | | |
Collapse
|
11
|
Chen HJC, Chen YM, Chang CM. Lipoyl dehydrogenase catalyzes reduction of nitrated DNA and protein adducts using dihydrolipoic acid or ubiquinol as the cofactor. Chem Biol Interact 2002; 140:199-213. [PMID: 12204577 DOI: 10.1016/s0009-2797(02)00019-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflamed tissues generate reactive nitrogen oxide species (RNO(x)), such as peroxynitrite (ONOO-)and nitryl chloride (NO2Cl), which lead to formation of nitrated DNA and protein adducts, including 8-nitroguanine (8NG), 8-nitroxanthine (8NX), and 3-nitrotyrosine (3NT). Once formed, the two nitrated DNA adducts are not stable in DNA and undergo spontaneous depurination. Nitration of protein tyrosine leads to inactivation of protein functions and 3NT has been detected in various disease states. We herein report that reduction of these nitro adducts to their corresponding amino analogues can be catalyzed by lipoyl dehydrogenases (EC 1.8.1.4) from Clostridium kluyveri (ck) and from porcine heart (ph) using NAD(P)H as the cofactor. We also found that dihydrolipoic acid (DHLA) and ubiquinol can be used as effective cofactors for reduction of 8NG, 8NX, and 3NT by these lipoyl dehydrogenases. The reduction efficiency of the mammalian enzyme is higher than the bacterial isozyme. The preference of cofactors by both lipoyl dehydrogenases is DHLA>NAD(P)H>ubiquinol. In all the systems examined, the nitrated purines are reduced to a greater extent than 3NT under the same conditions. We also demonstrate that this lipoyl dehydrogenase/antioxidant system is effective in reducing nitrated purine on NO2Cl-treated double stranded calf thymus DNA, and thus decreases apurinic site formation. The nitroreductase activity for lipoyl dehydrogenase might represent a possible metabolic pathway to reverse the process of biological nitration.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry, National Chung Cheng University, 160 San-Hsing, Ming-Hsiung, Chia-Yi, Taiwan, ROC.
| | | | | |
Collapse
|
12
|
Aviñó A, Frieden M, Morales JC, García de la Torre B, Güimil García R, Azorín F, Gelpí JL, Orozco M, González C, Eritja R. Properties of triple helices formed by parallel-stranded hairpins containing 8-aminopurines. Nucleic Acids Res 2002; 30:2609-19. [PMID: 12060677 PMCID: PMC117286 DOI: 10.1093/nar/gkf374] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parallel-stranded hairpins with a polypyrimidine sequence linked to a complementary purine carrying 8-aminopurines such as 8-aminoadenine, 8-aminoguanine and 8-aminohypoxanthine bind polypyrimidine sequences complementary (in an antiparallel sense) to the purine part by a triple helix. The relative stabilities of triplexes were assessed by UV-absorption melting experiments as a function of pH and salt concentration. Hairpins carrying 8-aminopurines give very stable triple helical structures even at neutral pH, as confirmed by gel-shift experiments, circular dichroism and nuclear magnetic resonance spectroscopy. The modified hairpins may be redesigned to cope with small interruptions in the polypyrimidine target sequence.
Collapse
Affiliation(s)
- Anna Aviñó
- Cygene Spain S.L., Parc Científic de Barcelona, Baldiri i Reixac 10-12, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|