1
|
El Fatimy R, Zhang Y, Deforzh E, Ramadas M, Saravanan H, Wei Z, Rabinovsky R, Teplyuk NM, Uhlmann EJ, Krichevsky AM. A nuclear function for an oncogenic microRNA as a modulator of snRNA and splicing. Mol Cancer 2022; 21:17. [PMID: 35033060 PMCID: PMC8760648 DOI: 10.1186/s12943-022-01494-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND miRNAs are regulatory transcripts established as repressors of mRNA stability and translation that have been functionally implicated in carcinogenesis. miR-10b is one of the key onco-miRs associated with multiple forms of cancer. Malignant gliomas exhibit particularly striking dependence on miR-10b. However, despite the therapeutic potential of miR-10b targeting, this miRNA's poorly investigated and largely unconventional properties hamper the clinical translation. METHODS We utilized Covalent Ligation of Endogenous Argonaute-bound RNAs and their high-throughput RNA sequencing to identify miR-10b interactome and a combination of biochemical and imaging approaches for target validation. They included Crosslinking and RNA immunoprecipitation with spliceosomal proteins, a combination of miRNA FISH with protein immunofluorescence in glioma cells and patient-derived tumors, native Northern blotting, and the transcriptome-wide analysis of alternative splicing. RESULTS We demonstrate that miR-10b binds to U6 snRNA, a core component of the spliceosomal machinery. We provide evidence of the direct binding between miR-10b and U6, in situ imaging of miR-10b and U6 co-localization in glioma cells and tumors, and biochemical co-isolation of miR-10b with the components of the spliceosome. We further demonstrate that miR-10b modulates U6 N-6-adenosine methylation and pseudouridylation, U6 binding to splicing factors SART3 and PRPF8, and regulates U6 stability, conformation, and levels. These effects on U6 result in global splicing alterations, exemplified by the altered ratio of the isoforms of a small GTPase CDC42, reduced overall CDC42 levels, and downstream CDC42 -mediated effects on cell viability. CONCLUSIONS We identified U6 snRNA, the key RNA component of the spliceosome, as the top miR-10b target in glioblastoma. We, therefore, present an unexpected intersection of the miRNA and splicing machineries and a new nuclear function for a major cancer-associated miRNA.
Collapse
Affiliation(s)
- Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
- Current Address: Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), 43150, Benguerir, Morocco
| | - Yanhong Zhang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Mahalakshmi Ramadas
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Harini Saravanan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
- Current Address: Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Nadiya M Teplyuk
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Meher PK, Sahu TK, Rao AR, Wahi SD. A statistical approach for 5' splice site prediction using short sequence motifs and without encoding sequence data. BMC Bioinformatics 2014; 15:362. [PMID: 25420551 PMCID: PMC4702320 DOI: 10.1186/s12859-014-0362-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 10/24/2014] [Indexed: 11/17/2022] Open
Abstract
Background Most of the approaches for splice site prediction are based on machine learning techniques. Though, these approaches provide high prediction accuracy, the window lengths used are longer in size. Hence, these approaches may not be suitable to predict the novel splice variants using the short sequence reads generated from next generation sequencing technologies. Further, machine learning techniques require numerically encoded data and produce different accuracy with different encoding procedures. Therefore, splice site prediction with short sequence motifs and without encoding sequence data became a motivation for the present study. Results An approach for finding association among nucleotide bases in the splice site motifs is developed and used further to determine the appropriate window size. Besides, an approach for prediction of donor splice sites using sum of absolute error criterion has also been proposed. The proposed approach has been compared with commonly used approaches i.e., Maximum Entropy Modeling (MEM), Maximal Dependency Decomposition (MDD), Weighted Matrix Method (WMM) and Markov Model of first order (MM1) and was found to perform equally with MEM and MDD and better than WMM and MM1 in terms of prediction accuracy. Conclusions The proposed prediction approach can be used in the prediction of donor splice sites with higher accuracy using short sequence motifs and hence can be used as a complementary method to the existing approaches. Based on the proposed methodology, a web server was also developed for easy prediction of donor splice sites by users and is available at http://cabgrid.res.in:8080/sspred. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0362-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Prabina Kumar Meher
- Division of Statistical Genetics, Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Tanmaya Kumar Sahu
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Atmakuri Ramakrishna Rao
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Sant Dass Wahi
- Division of Statistical Genetics, Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| |
Collapse
|
3
|
Schneider M, Will CL, Anokhina M, Tazi J, Urlaub H, Lührmann R. Exon definition complexes contain the tri-snRNP and can be directly converted into B-like precatalytic splicing complexes. Mol Cell 2010; 38:223-35. [PMID: 20417601 DOI: 10.1016/j.molcel.2010.02.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 11/18/2009] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
The first step in splicing of pre-mRNAs with long introns is exon definition, where U1 and U2 snRNPs bind at opposite ends of an exon. After exon definition, these snRNPs must form a complex across the upstream intron to allow splicing catalysis. Exon definition and conversion of cross-exon to cross-intron spliceosomal complexes are poorly understood. Here we demonstrate that, in addition to U1 and U2 snRNPs, cross-exon complexes contain U4, U5, and U6 (which form the tri-snRNP). Tri-snRNP docking involves the formation of U2/U6 helix II. This interaction is stabilized by a 5' splice site (SS)-containing oligonucleotide, which can bind the tri-snRNP and convert the cross-exon complex into a cross-intron, B-like complex. Our data suggest that the switch from cross-exon to cross-intron complexes can occur directly when an exon-bound tri-snRNP interacts with an upstream 5'SS, without prior formation of a cross-intron A complex, revealing an alternative spliceosome assembly pathway.
Collapse
Affiliation(s)
- Marc Schneider
- Department of Cellular Biochemistry, MPI of Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Lomelin D, Jorgenson E, Risch N. Human genetic variation recognizes functional elements in noncoding sequence. Genome Res 2009; 20:311-9. [PMID: 20032171 DOI: 10.1101/gr.094151.109] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Noncoding DNA, particularly intronic DNA, harbors important functional elements that affect gene expression and RNA splicing. Yet, it is unclear which specific noncoding sites are essential for gene function and regulation. To identify functional elements in noncoding DNA, we characterized genetic variation within introns using ethnically diverse human polymorphism data from three public databases-PMT, NIEHS, and SeattleSNPs. We demonstrate that positions within introns corresponding to known functional elements involved in pre-mRNA splicing, including the branch site, splice sites, and polypyrimidine tract show reduced levels of genetic variation. Additionally, we observed regions of reduced genetic variation that are candidates for distance-dependent localization sites of functional elements, possibly intronic splicing enhancers (ISEs). Using several bioinformatics approaches, we provide additional evidence that supports our hypotheses that these regions correspond to ISEs. We conclude that studies of genetic variation can successfully discriminate and identify functional elements in noncoding regions. As more noncoding sequence data become available, the methods employed here can be utilized to identify additional functional elements in the human genome and provide possible explanations for phenotypic associations.
Collapse
Affiliation(s)
- David Lomelin
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
5
|
Schwartz SH, Silva J, Burstein D, Pupko T, Eyras E, Ast G. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res 2007; 18:88-103. [PMID: 18032728 DOI: 10.1101/gr.6818908] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introns are among the hallmarks of eukaryotic genes. Splicing of introns is directed by three main splicing signals: the 5' splice site (5'ss), the branch site (BS), and the polypyrimdine tract/3'splice site (PPT-3'ss). To study the evolution of these splicing signals, we have conducted a systematic comparative analysis of these signals in over 1.2 million introns from 22 eukaryotes. Our analyses suggest that all these signals have dramatically evolved: The PPT is weak among most fungi, intermediate in plants and protozoans, and strongest in metazoans. Within metazoans it shows a gradual strengthening from Caenorhabditis elegans to human. The 5'ss and the BS were found to be degenerate among most organisms, but highly conserved among some fungi. A maximum parsimony-based algorithm for reconstructing ancestral position-specific scoring matrices suggested that the ancestral 5'ss and BS were degenerate, as in metazoans. To shed light on the evolutionary variation in splicing signals, we have analyzed the evolutionary changes in the factors that bind these signals. Our analysis reveals coevolution of splicing signals and their corresponding splicing factors: The strength of the PPT is correlated to changes in key residues in its corresponding splicing factor U2AF2; limited correlation was found between changes in the 5'ss and U1 snRNA that binds it; but not between the BS and U2 snRNA. Thus, although the basic ability of eukaryotes to splice introns has remained conserved throughout evolution, the splicing signals and their corresponding splicing factors have considerably evolved, uniquely shaping the splicing mechanisms of different organisms.
Collapse
Affiliation(s)
- Schraga H Schwartz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
We describe a protocol in which dimethyl sulfate (DMS) modification of the base-pairing faces of unpaired adenosine and cytidine nucleotides is used for structural analysis of RNAs and RNA-protein complexes (RNPs). The protocol is optimized for RNAs of small to moderate size (< or = 500 nt). The RNA or RNP is first exposed to DMS under conditions that promote formation of the folded structure or complex, as well as 'control' conditions that do not allow folding or complex formation. The positions and extents of modification are then determined by primer extension, polyacrylamide gel electrophoresis and quantitative analysis. From changes in the extent of modification upon folding or protein binding (appearance of a 'footprint'), it is possible to detect local changes in the secondary and tertiary structure of RNA, as well as the formation of RNA-protein contacts. This protocol takes 1.5-3 d to complete, depending on the type of analysis used.
Collapse
Affiliation(s)
- Pilar Tijerina
- Department of Chemistry and Biochemistry and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Sabine Mohr
- Department of Chemistry and Biochemistry and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Rick Russell
- Department of Chemistry and Biochemistry and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
7
|
Zhang XHF, Leslie CS, Chasin LA. Dichotomous splicing signals in exon flanks. Genome Res 2005; 15:768-79. [PMID: 15930489 PMCID: PMC1142467 DOI: 10.1101/gr.3217705] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 03/04/2005] [Indexed: 02/06/2023]
Abstract
Intronic elements flanking the splice-site consensus sequences are thought to play a role in pre-mRNA splicing. However, the generality of this role, the catalog of effective sequences, and the mechanisms involved are still lacking. Using molecular genetic tests, we first showed that the approximately 50-nt intronic flanking sequences of exons beyond the splice-site consensus are generally important for splicing. We then went on to characterize exon flank sequences on a genomic scale. The G+C content of flanks displayed a bimodal distribution reflecting an exaggeration of this base composition in flanks relative to the gene as a whole. We divided all exons into two classes according to their flank G+C content and used computational and statistical methods to define pentamers of high relative abundance and phylogenetic conservation in exon flanks. Upstream pentamers were often common to the two classes, whereas downstream pentamers were totally different. Upstream and downstream pentamers were often identical around low G+C exons, and in contrast, were often complementary around high G+C exons. In agreement with this complementarity, predicted base pairing was more frequent between the flanks of high G+C exons. Pseudo exons did not exhibit this behavior, but rather tended to form base pairs between flanks and exon bodies. We conclude that most exons require signals in their immediate flanks for efficient splicing. G+C content is a sequence feature correlated with many genetic and genomic attributes. We speculate that there may be different mechanisms for splice site recognition depending on G+C content.
Collapse
Affiliation(s)
- Xiang H-F Zhang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
8
|
Abstract
Introns are removed from precursor messenger RNAs in the cell nucleus by a large ribonucleoprotein complex called the spliceosome. The spliceosome contains five subcomplexes called snRNPs, each with one RNA and several protein components. Interactions of the snRNPs with each other and the intron are highly dynamic, changing in an ordered progression throughout the splicing process. This allosteric cascade of interactions is programmed into the RNA and protein components of the spliceosome, and is driven by a family of DExD/H-box RNA-dependent ATPases. The dependence of cascade progression on multiple intron-recognition events likely serves to enforce the accuracy of splicing. Here, the progression of the allosteric cascade from the first recognition event to the first catalytic step of splicing is reviewed.
Collapse
Affiliation(s)
- David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1532, USA.
| |
Collapse
|
9
|
Malca H, Shomron N, Ast G. The U1 snRNP base pairs with the 5' splice site within a penta-snRNP complex. Mol Cell Biol 2003; 23:3442-55. [PMID: 12724403 PMCID: PMC164765 DOI: 10.1128/mcb.23.10.3442-3455.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recognition of the 5' splice site is an important step in mRNA splicing. To examine whether U1 approaches the 5' splice site as a solitary snRNP or as part of a multi-snRNP complex, we used a simplified in vitro system in which a short RNA containing the 5' splice site sequence served as a substrate in a binding reaction. This system allowed us to study the interactions of the snRNPs with the 5' splice site without the effect of other cis-regulatory elements of precursor mRNA. We found that in HeLa cell nuclear extracts, five spliceosomal snRNPs form a complex that specifically binds the 5' splice site through base pairing with the 5' end of U1. This system can accommodate RNA-RNA rearrangements in which U5 replaces U1 binding to the 5' splice site, a process that occurs naturally during the splicing reaction. The complex in which U1 and the 5' splice site are base paired sediments in the 200S fraction of a glycerol gradient together with all five spliceosomal snRNPs. This fraction is functional in mRNA spliceosome assembly when supplemented with soluble nuclear proteins. The results argue that U1 can bind the 5' splice site in a mammalian preassembled penta-snRNP complex.
Collapse
Affiliation(s)
- Hadar Malca
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | | | |
Collapse
|
10
|
Jean-Joseph B, Flisser A, Martinez A, Metzenberg S. The U5/U6 snRNA genomic repeat of Taenia solium. J Parasitol 2003; 89:329-35. [PMID: 12760649 DOI: 10.1645/0022-3395(2003)089[0329:tusgro]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The U6 and U5 snRNA (small nuclear ribonucleic acid) genes were identified in Taenia solium with the aim of characterizing their sequence and genomic structures. They are contained within a shared 1,009-nt tandem genomic repeat and present at approximately 3 copies per haploid genome. The U6 snRNA gene shares 92 and 95% sequence similarity with the U6 homologs from humans and Schistosoma mansoni, respectively. The U5 snRNA gene of T. solium is 70% similar to the human U5 sequence in the 5' stem and loop 1 domains. The U6 and U5 snRNA genes are on complementary genomic strands and separated by 458 nt at their "heads" and 306 nt at their "tails." The nucleotides upstream of the U6 gene lack a recognizable TATA box and proximal sequence elements (PSEs), and the putative gene promoter for U5 snRNA does not resemble vertebrate examples. There are short blocks of similarity between the sequences upstream of the U5 and U6 snRNA genes, and these may be sites of shared transcription factor binding at the respective RNA polymerase II and III promoters. It is possible that this unusual allied U5/U6 snRNA genomic repeat may help mediate coordinated regulation of expression of the 2 snRNAs.
Collapse
Affiliation(s)
- Bernadette Jean-Joseph
- Department of Biology, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330-8303, USA
| | | | | | | |
Collapse
|
11
|
Gonzalez-Santos JM, Wang A, Jones J, Ushida C, Liu J, Hu J. Central region of the human splicing factor Hprp3p interacts with Hprp4p. J Biol Chem 2002; 277:23764-72. [PMID: 11971898 DOI: 10.1074/jbc.m111461200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human splicing factors Hprp3p and Hprp4p are associated with the U4/U6 small nuclear ribonucleoprotein particle, which is essential for the assembly of an active spliceosome. Currently, little is known about the specific roles of these factors in splicing. In this study, we characterized the molecular interaction between Hprp3p and Hprp4p. Constructs were created for expression of Hprp3p or its mutants in bacterial or mammalian cells. We showed that antibodies against either Hprp3p or Hprp4p were able to pull-down the Hprp3p-Hprp4p complex formed in Escherichia coli lysates. By co-immunoprecipitation and isothermal titration calorimetry, we demonstrated that purified Hprp3p and its mutants containing the central region, but lacking either the N-terminal 194 amino acids or the C-terminal 240 amino acids, were able to interact with Hprp4p. Conversely, Hprp3p mutants containing only the N- or C-terminal region did not interact with Hprp4p. In addition, by co-immunoprecipitation, we showed that intact Hprp3p and its mutants containing the central region interacted with Hprp4p in HeLa cell nuclear extracts. Primer extension analysis illustrated that the central region of Hprp3p is required to maintain the association of Hprp3p-Hprp4p with U4/U6 small nuclear RNAs, suggesting that this Hprp3p/Hprp4p interaction allows the recruitment of Hprp4p, and perhaps other protein(s), to the U4/U6 small nuclear ribonucleoprotein particle.
Collapse
|
12
|
Abu Dayyeh BKA, Quan TK, Castro M, Ruby SW. Probing interactions between the U2 small nuclear ribonucleoprotein and the DEAD-box protein, Prp5. J Biol Chem 2002; 277:20221-33. [PMID: 11927574 DOI: 10.1074/jbc.m109553200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pre-mRNA binding to the yeast U2 small nuclear ribonucleoprotein (snRNP) during prespliceosome formation requires ATP hydrolysis, the highly conserved UACUAAC box of the branch point region of the pre-mRNA, and several factors. Here we analyzed the binding of a radiolabeled 2'-O-methyl oligonucleotide complementary to U2 small nuclear RNA to study interactions between the UACUAAC box, U2 snRNP, and Prp5p, a DEAD box protein necessary for prespliceosome formation. Binding of the 2'-O-methyl oligonucleotide to the U2 snRNP in yeast cell extract was assayed by gel electrophoresis. Binding was rapid, enhanced by ATP, and dependent on the integrity and conformation of the U2 snRNP. It was also stimulated by Prp5p that was found to associate physically with U2 snRNP. In vitro heat inactivation of the temperature-sensitive prp5-1 mutant extract decreased oligonucleotide binding to U2 and the ATP enhancement of binding by 3-fold. Furthermore, the temperature-sensitive prp5-1 mutation maps to the ATP-binding motif I within the helicase-like domain. Thus the catalytic activity of Prp5p likely promotes a conformational change in the U2 snRNP.
Collapse
Affiliation(s)
- Barham K Abu Abu Dayyeh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Cancer Research and Treatment Center, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
13
|
Newnham CM, Query CC. The ATP requirement for U2 snRNP addition is linked to the pre-mRNA region 5' to the branch site. RNA (NEW YORK, N.Y.) 2001; 7:1298-309. [PMID: 11565751 PMCID: PMC1370173 DOI: 10.1017/s1355838201010561] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Association of U2 snRNP with the pre-mRNA branch region is the first ATP-dependent step in spliceosome assembly. The basis of this energy dependence is not known. Previously, we identified minimal intron-derived substrates that form complexes with U2 independent of ATP. Here, we identify the intron region linked to the ATP dependence of this step by comparing these substrates to longer RNAs that recapitulate the ATP requirement. This region needed to impose ATP dependence lies immediately 5' to the branch site. Sequences ranging from 6 to 14 nt yield a near linear inhibitory effect on efficiency of complex formation with U2 snRNP, with 18 nt yielding near maximal ATP dependence. This region is not protected prior to U2 addition, and RNase H targeting of the region within nuclear extract converts an ATP-dependent substrate into an ATP-independent one. Within this region, there is no sequence specificity linked with the ATP requirement, as neither a specific sequence is needed, nor even nucleobases. These data and the results of other modifications suggest models in which the 18-nt region is a target for interactions with U2 snRNP in an ATP-bound or -activated conformation.
Collapse
Affiliation(s)
- C M Newnham
- Department of Cell Biology, Albert Einstein College of Medicine. New York, New York 10461-1975, USA
| | | |
Collapse
|