1
|
Abstract
Trans-acting hammerhead ribozymes are challenging tools for diagnostic, therapeutic, and biosensoristic purposes, owing to their specificity, efficiency, and great flexibility of use. One of the main problems in their application is related to the difficulties in the design of active molecules and identification of suitable target sites.The aim of this chapter is to describe ALADDIN, "SeArch computing tooL for hAmmerheaD ribozyme DesIgN," an open-access tool able to automatically identify suitable cleavage sites and provide a set of hammerhead ribozymes putatively active against the selected target.ALADDIN is a fast, cheap, helpful, and accurate tool designed to overcome the problems in the design of trans-acting minimal hammerhead ribozymes.
Collapse
|
2
|
Abstract
Although Nature's antisense approaches are clearly impressive, this Perspectives article focuses on the experimental uses of antisense reagents (ASRs) for control of biological processes. ASRs comprise antisense oligonucleotides (ASOs), and their catalytically active counterparts ribozymes and DNAzymes, as well as small interfering RNAs (siRNAs). ASOs and ribozymes/DNAzymes target RNA molecules on the basis of Watson-Crick base pairing in sequence-specific manner. ASOs generally result in destruction of the target RNA by RNase-H mediated mechanisms, although they may also sterically block translation, also resulting in loss of protein production. Ribozymes and DNAzymes cleave target RNAs after base pairing via their antisense flanking arms. siRNAs, which contain both sense and antisense regions from a target RNA, can mediate target RNA destruction via RNAi and the RISC, although they can also function at the transcriptional level. A considerable number of ASRs (mostly ASOs) have progressed into clinical trials, although most have relatively long histories in Phase I/II settings. Clinical trial results are surprisingly difficult to find, although few ASRs appear to have yet established efficacy in Phase III levels. Evolution of ASRs has included: (a) Modifications to ASOs to render them nuclease resistant, with analogous modifications to siRNAs being developed; and (b) Development of strategies to select optimal sites for targeting. Perhaps the biggest barrier to effective therapies with ASRs is the "Delivery Problem." Various liposomal vehicles have been used for systemic delivery with some success, and recent modifications appear to enhance systemic delivery, at least to liver. Various nanoparticle formulations are now being developed which may also enhance delivery. Going forward, topical applications of ASRs would seem to have the best chances for success. In summary, modifications to ASRs to enhance stability, improve targeting, and incremental improvements in delivery vehicles continue to make ASRs attractive as molecular therapeutics, but their advance toward the bedside has been agonizingly slow.
Collapse
MESH Headings
- Animals
- Binding Sites/genetics
- DNA, Catalytic/chemistry
- DNA, Catalytic/therapeutic use
- Drug Delivery Systems/methods
- Drug Delivery Systems/trends
- Humans
- Oligonucleotides, Antisense/adverse effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/therapeutic use
- Oligonucleotides, Antisense/toxicity
- RNA, Catalytic/chemistry
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/therapeutic use
Collapse
Affiliation(s)
- Wei-Hua Pan
- Gittlen Cancer Research Foundation, Hershey Medical Center, Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
3
|
Tedeschi L, Lande C, Cecchettini A, Citti L. Hammerhead ribozymes in therapeutic target discovery and validation. Drug Discov Today 2009; 14:776-83. [PMID: 19477286 DOI: 10.1016/j.drudis.2009.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 05/11/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
Gene function assessment is a main task in biological networking investigations and system biology. High throughput technologies provide an impressive body of data that enables the design of hypotheses linking genes to phenotypes. When a putative scenario is depicted, gene knockdown technologies and RNA-dependent gene silencing are the most frequent approaches to assess the role of key effectors. In this paper, we discuss the relevance of hammerhead ribozymes in target discovery and validation, describing their properties and applications and highlighting their selectivity. In particular, similarities with siRNAs are presented and advantages and drawbacks are discussed. A description of the perspectives of ribozyme application in wide range studies is also provided, strengthening the value of these inhibitors for target validation purposes.
Collapse
Affiliation(s)
- Lorena Tedeschi
- Institute of Clinical Physiology, National Research Council, CNR, via Moruzzi, 1, 56124 Pisa, Italy.
| | | | | | | |
Collapse
|
4
|
Mueller D, Stahl U, Meyer V. Application of hammerhead ribozymes in filamentous fungi. J Microbiol Methods 2006; 65:585-95. [PMID: 16298445 DOI: 10.1016/j.mimet.2005.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 11/25/2022]
Abstract
Metabolic engineering in filamentous fungi is a emerging field of research as many fungi produce high value primary and secondary metabolites. Ribozyme technology can be used as a tool for metabolic engineering to influence metabolic pathways and to knock down the expression of specific genes of interest. Hammerhead ribozymes can target virtually any mRNA sequence of choice and prevent gene expression on the post-transcriptional level. They are thus a versatile tool for timed and spatial elimination of unwanted gene products. As current research has only investigated the application of ribozymes in bacteria, yeast and mammalian cells, we decided to carry out a study on whether this technology can also function with filamentous fungi. We employed a sensitive, quantitative reporter-based model system as a proof of concept, using the Escherichia coli beta-glucuronidase transcript (uidA) as the target mRNA and Aspergillus giganteus as the host. This system was used to validate the in vivo activities of seven different hammerhead ribozymes, which were selected by in silico analysis of the uidA mRNA. All ribozymes tested were able to reduce the reporter activity up to a maximum of 100%, demonstrating that ribozyme technology is indeed a useful tool in fungal metabolic engineering.
Collapse
Affiliation(s)
- Dirk Mueller
- Technische Universität Berlin, Institut für Biotechnologie, Fachgebiet Mikrobiologie und Genetik, Germany
| | | | | |
Collapse
|
5
|
Hendry P, McCall MJ, Lockett TJ. Influence of Helix Length on Cleavage Efficiency of Hammerhead Ribozymes. Aust J Chem 2005. [DOI: 10.1071/ch05196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cleavage rates of RNA substrates by trans-acting, hammerhead ribozymes are controlled by interactions between helices I and II. The interactions are affected by the relative lengths of these two double helices and by unpaired nucleotides protruding beyond helix I, either in the substrate or the ribozyme strand. Maximum cleavage rates are observed for ribozyme–substrate complexes with three or more base pairs in helix II and six or less base pairs in helix I. However, for these helix combinations, rates fall sharply with unpaired nucleotides at the end of helix I. Cleavage rates by ribozymes with one or two base pairs in helix II increase as helix I is lengthened, and are unaffected by unpaired nucleotides on the end. Since miniribozymes, with one base pair in helix II, efficiently cleave long RNA transcripts under physiological conditions, they represent the optimal design for the simple hammerheads for application in vivo.
Collapse
|
6
|
Abstract
With the advent of functional genomics and the shift of interest towards sequence-based therapeutics, the past decades have witnessed intense research efforts on nucleic acid-mediated gene regulation technologies. Today, RNA interference is emerging as a groundbreaking discovery, holding promise for development of genetic modulators of unprecedented potency. Twenty-five years after the discovery of antisense RNA and ribozymes, gene control therapeutics are still facing developmental difficulties, with only one US FDA-approved antisense drug currently available in the clinic. Limited predictability of target site selection models is recognized as one major stumbling block that is shared by all of the so-called complementary technologies, slowing the progress towards a commercial product. Currently employed in vitro systems for target site selection include RNAse H-based mapping, antisense oligonucleotide microarrays, and functional screening approaches using libraries of catalysts with randomized target-binding arms to identify optimal ribozyme/DNAzyme cleavage sites. Individually, each strategy has its drawbacks from a drug development perspective. Utilization of message-modulating sequences as therapeutic agents requires that their action on a given target transcript meets criteria of potency and selectivity in the natural physiological environment. In addition to sequence-dependent characteristics, other factors will influence annealing reactions and duplex stability, as well as nucleic acid-mediated catalysis. Parallel consideration of physiological selection systems thus appears essential for screening for nucleic acid compounds proposed for therapeutic applications. Cellular message-targeting studies face issues relating to efficient nucleic acid delivery and appropriate analysis of response. For reliability and simplicity, prokaryotic systems can provide a rapid and cost-effective means of studying message targeting under pseudo-cellular conditions, but such approaches also have limitations. To streamline nucleic acid drug discovery, we propose a multi-model strategy integrating high-throughput-adapted bacterial screening, followed by reporter-based and/or natural cellular models and potentially also in vitro assays for characterization of the most promising candidate sequences, before final in vivo testing.
Collapse
Affiliation(s)
- Isabelle Gautherot
- Virology Platform, Industrialization and Process Development, AVENTIS PASTEUR, Marcy l'Etoile, France.
| | | |
Collapse
|
7
|
Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 2003; 31:589-95. [PMID: 12527766 PMCID: PMC140512 DOI: 10.1093/nar/gkg147] [Citation(s) in RCA: 390] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Short interfering RNA (siRNA), the active agent of RNA interference, shows promise of becoming a valuable tool in both basic and clinical research. We explore the tolerance to mutations and chemical modifications in various parts of the two 21-nt strands of a siRNA targeting the blood clotting initiator Tissue Factor. The mutations were G/C transversions. The chemical modifications were 2'-O-methylation, 2'-O-allylation and phosphorothioates. We found that siRNA generally tolerated mutations in the 5' end, while the 3' end exhibited low tolerance. This observation may facilitate the design of siRNA for specific targeting of transcripts containing single nucleotide polymorphisms. We further demonstrate that in our system the single antisense strand of the wild-type siRNA is almost as effective as the siRNA duplex, while the corresponding methylated M2+4 version of the antisense had reduced activity. Most of the chemically modified versions tested had near-wild-type initial activity, while the long-term activity was increased for certain siRNA species. Our results may improve the design of siRNAs for in vivo experiments.
Collapse
Affiliation(s)
- Mohammed Amarzguioui
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, N-0349, Oslo, Norway
| | | | | | | |
Collapse
|
8
|
Pan WH, Xin P, Bui V, Clawson GA. Rapid identification of efficient target cleavage sites using a hammerhead ribozyme library in an iterative manner. Mol Ther 2003; 7:129-39. [PMID: 12573626 DOI: 10.1016/s0000-000x(00)00000-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A major limitation to the effectiveness of ribozymes is definition of accessible sites in targeted RNAs. Although library selection procedures have been developed, they are generally difficult to perform and have not been widely employed. Here we describe a selection technology that utilizes a randomized, active hammerhead ribozyme (Rz) library in an iterative manner. After two rounds of binding under inactive conditions, the selected, active Rz library is incubated with target RNA, and the sites of cleavage are identified on sequencing gels. We performed this library-selection protocol using human papillomavirus type 16 E6/E7 mRNA as target and constructed Rz targeted to the identified sites. Rz targeted to sites identified with this procedure were generally highly active in vitro and, more importantly, they were highly active in cell culture, whereas their catalytically inactive counterparts were not. This protocol can be used to identify a set of potential target sites within a relatively short time.
Collapse
MESH Headings
- Base Sequence
- DNA Primers
- Hydrolysis
- Kinetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oncogene Proteins, Viral/genetics
- Papillomavirus E7 Proteins
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Wei-Hua Pan
- Department of Pathology, Gittlen Cancer Research Institute, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Expensive failures in the pharmaceutical industry might be avoided by target validation at an early stage. Often, the full consequences of inhibiting a chosen drug target do not emerge until late in the development process. One option is to use hammerhead ribozymes as highly specific ribonucleases targeted exclusively at the mRNA encoding the target protein. The first part of this review is concerned with the mechanism and design of hammerhead ribozymes. This includes the chemistry of their action, specificity of cleavage and ability to discriminate between different mRNAs and selection of suitable cleavage sites. In considering their use for target validation, hammerhead ribozymes are divided into two categories. Endogenous ribozymes are transcribed inside the cell where they act whilst exogenous are introduced into the cell from outside. Exogenous ribozymes are synthesised chemically and must be protected against cellular nucleases. Information is provided on transfection methods and vectors that have been used with endogenous ribozymes as well as synthesis and chemical modification of exogenous ribozymes. Of proteins inhibited in cells or whole organisms, those in animal experiments are emphasised. Comparisons are made with other approaches, especially the use of antisense oligonucleotides or RNA.
Collapse
Affiliation(s)
- John Goodchild
- Center for Discovery of Drugs and Diagnostics, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|