1
|
Raza M, Rajan AR, Kennedy BB, Reznicek TE, Oruji F, Mirza S, Rowley MJ, Kristiansen G, Datta K, Mohapatra BC, Band H, Band V. ECD, a novel androgen receptor target promotes prostate cancer tumorigenesis by regulating glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635534. [PMID: 39975152 PMCID: PMC11838420 DOI: 10.1101/2025.01.30.635534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Androgen receptor (AR)-mediated signaling is essential for PC tumorigenesis. In TCGA database we observed a positive correlation between ECD and AR expression. Consistently, Dihydrotestosterone (DHT) treatment of PC cell lines increased ECD mRNA and protein levels, and AR knockdown (KD) reduced ECD expression. Bioinformatic analysis predicted three consensus androgen response elements in the ECD promoter, and DHT treatment increased AR occupancy at the ECD promoter, and enhanced ECD promoter activity. Enzalutamide treatment decreased ECD levels, and ECD knockout (KO) in PC cells reduced oncogenic traits, suggesting a functional role of ECD to maintain PC oncogenesis. ECD mRNA and protein are overexpressed in PC patient tissues, and its overexpression predicts shorter survival. Overexpression of ECD in PC cell lines enhanced the oncogenic traits in vitro and developed faster and larger highly proliferative xenograft tumors. RNA-seq analysis of mouse tumors revealed increase mRNA levels of several glycolytic genes. ECD associates with mRNA of several key glycolytic genes and is required for their stability, consistent with our recent demonstration of ECD as an RNA binding protein. Higher glucose uptake and glycolysis was seen upon ECD OE in PC cells. Together, we demonstrate role of a novel AR target gene ECD in PC tumorigenesis.
Collapse
|
2
|
Raza M, Rajan AR, Kalluchi A, Saleem I, Kennedy BB, Bhakat KK, Band H, Rowley MJ, Band V. ECD functions as a novel RNA-binding protein to regulate mRNA splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634785. [PMID: 39974924 PMCID: PMC11838213 DOI: 10.1101/2025.01.24.634785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The human ecdysoneless protein (ECD) plays an essential role in the regulation of cell cycle and cell survival. ECD has been implicated in RNA splicing through its association with the protein components of splicing complex. Here, using electrophoretic mobility shift assay and mutational analysis, we demonstrate that ECD directly binds to RNA through its N-terminal region, specifically using amino acids 135-148. Using enhanced CLIP-seq analyses in human cells, we identified a large repertoire of mRNAs bound to ECD. RNA-seq analyses revealed that ECD depletion in cells leads to widespread RNA splicing aberrations associated with alterations in gene expression. Significantly, we demonstrate that ECD mediates mRNA splicing by directly binding to RNA sequences located near splicing sites. Mechanistically, we demonstrate that ECD directly binds to U5 small nuclear RNA (snRNA), and this interaction is critical for maintaining the expression of key protein components of U5 small nuclear protein (snRNP) complex. Notably, RNA binding defective mutant of ECD fails to rescue downregulated levels of U5 snRNP components or cell proliferation block induced by ECD knockout. Collectively, we provide compelling evidence that ECD regulates RNA splicing by directly associating with RNAs, and the RNA binding activity of ECD is essential for its function.
Collapse
|
3
|
Stanković D, Tain LS, Uhlirova M. Xrp1 governs the stress response program to spliceosome dysfunction. Nucleic Acids Res 2024; 52:2093-2111. [PMID: 38303573 PMCID: PMC10954486 DOI: 10.1093/nar/gkae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Co-transcriptional processing of nascent pre-mRNAs by the spliceosome is vital to regulating gene expression and maintaining genome integrity. Here, we show that the deficiency of functional U5 small nuclear ribonucleoprotein particles (snRNPs) in Drosophila imaginal cells causes extensive transcriptome remodeling and accumulation of highly mutagenic R-loops, triggering a robust stress response and cell cycle arrest. Despite compromised proliferative capacity, the U5 snRNP-deficient cells increased protein translation and cell size, causing intra-organ growth disbalance before being gradually eliminated via apoptosis. We identify the Xrp1-Irbp18 heterodimer as the primary driver of transcriptional and cellular stress program downstream of U5 snRNP malfunction. Knockdown of Xrp1 or Irbp18 in U5 snRNP-deficient cells attenuated JNK and p53 activity, restored normal cell cycle progression and growth, and inhibited cell death. Reducing Xrp1-Irbp18, however, did not rescue the splicing defects, highlighting the requirement of accurate splicing for cellular and tissue homeostasis. Our work provides novel insights into the crosstalk between splicing and the DNA damage response and defines the Xrp1-Irbp18 heterodimer as a critical sensor of spliceosome malfunction and mediator of the stress-induced cellular senescence program.
Collapse
Affiliation(s)
- Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Luke S Tain
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
4
|
Preussner M, Santos KF, Alles J, Heroven C, Heyd F, Wahl MC, Weber G. Structural and functional investigation of the human snRNP assembly factor AAR2 in complex with the RNase H-like domain of PRPF8. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:1373-1383. [PMID: 36322420 PMCID: PMC9629490 DOI: 10.1107/s2059798322009755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
The crystal structure of human AAR2 bound to the central spliceosomal factor PRPF8 and in vitro functional data yield insights into the structural basis of snRNP assembly in humans. Small nuclear ribonucleoprotein complexes (snRNPs) represent the main subunits of the spliceosome. While the assembly of the snRNP core particles has been well characterized, comparably little is known of the incorporation of snRNP-specific proteins and the mechanisms of snRNP recycling. U5 snRNP assembly in yeast requires binding of the the Aar2 protein to Prp8p as a placeholder to preclude premature assembly of the SNRNP200 helicase, but the role of the human AAR2 homolog has not yet been investigated in detail. Here, a crystal structure of human AAR2 in complex with the RNase H-like domain of the U5-specific PRPF8 (PRP8F RH) is reported, revealing a significantly different interaction between the two proteins compared with that in yeast. Based on the structure of the AAR2–PRPF8 RH complex, the importance of the interacting regions and residues was probed and AAR2 variants were designed that failed to stably bind PRPF8 in vitro. Protein-interaction studies of AAR2 with U5 proteins using size-exclusion chromatography reveal similarities and marked differences in the interaction patterns compared with yeast Aar2p and imply phosphorylation-dependent regulation of AAR2 reminiscent of that in yeast. It is found that in vitro AAR2 seems to lock PRPF8 RH in a conformation that is only compatible with the first transesterification step of the splicing reaction and blocks a conformational switch to the step 2-like, Mg2+-coordinated conformation that is likely during U5 snRNP biogenesis. These findings extend the picture of AAR2 PRP8 interaction from yeast to humans and indicate a function for AAR2 in the spliceosomal assembly process beyond its role as an SNRNP200 placeholder in yeast.
Collapse
|
5
|
Mohapatra BC, Mirza S, Bele A, Gurumurthy CB, Raza M, Saleem I, Storck MD, Sarkar A, Kollala SS, Shukla SK, Southekal S, Wagner KU, Qiu F, Lele SM, Alsaleem MA, Rakha EA, Guda C, Singh PK, Cardiff RD, Band H, Band V. Ecdysoneless Overexpression Drives Mammary Tumorigenesis through Upregulation of C-MYC and Glucose Metabolism. Mol Cancer Res 2022; 20:1391-1404. [PMID: 35675041 PMCID: PMC9437571 DOI: 10.1158/1541-7786.mcr-22-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 01/09/2023]
Abstract
Ecdysoneless (ECD) protein is essential for embryogenesis, cell-cycle progression, and cellular stress mitigation with an emerging role in mRNA biogenesis. We have previously shown that ECD protein as well as its mRNA are overexpressed in breast cancer and ECD overexpression predicts shorter survival in patients with breast cancer. However, the genetic evidence for an oncogenic role of ECD has not been established. Here, we generated transgenic mice with mammary epithelium-targeted overexpression of an inducible human ECD transgene (ECDTg). Significantly, ECDTg mice develop mammary hyperplasia, preneoplastic lesions, and heterogeneous tumors with occasional lung metastasis. ECDTg tumors exhibit epithelial to mesenchymal transition and cancer stem cell characteristics. Organoid cultures of ECDTg tumors showed ECD dependency for in vitro oncogenic phenotype and in vivo growth when implanted in mice. RNA sequencing (RNA-seq) analysis of ECDTg tumors showed a c-MYC signature, and alterations in ECD levels regulated c-MYC mRNA and protein levels as well as glucose metabolism. ECD knockdown-induced decrease in glucose uptake was rescued by overexpression of mouse ECD as well as c-MYC. Publicly available expression data analyses showed a significant correlation of ECD and c-MYC overexpression in breast cancer, and ECD and c-MYC coexpression exhibits worse survival in patients with breast cancer. Taken together, we establish a novel role of overexpressed ECD as an oncogenesis driver in the mouse mammary gland through upregulation of c-MYC-mediated glucose metabolism. IMPLICATIONS We demonstrate ECD overexpression in the mammary gland of mice led to the development of a tumor progression model through upregulation of c-MYC signaling and glucose metabolism.
Collapse
Affiliation(s)
- Bhopal C. Mohapatra
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aditya Bele
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Channabasavaiah B. Gurumurthy
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mohsin Raza
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irfana Saleem
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Matthew D. Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aniruddha Sarkar
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sai Sundeep Kollala
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surendra K. Shukla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fang Qiu
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| | - Subodh M. Lele
- Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mansour A. Alsaleem
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Applied Medical Sciences, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Emad A. Rakha
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chittibabu Guda
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pankaj K. Singh
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert D. Cardiff
- Department of Pathology and Laboratory Medicine, University of California, Davis, California
| | - Hamid Band
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
6
|
The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022; 12:biom12081045. [PMID: 36008939 PMCID: PMC9406135 DOI: 10.3390/biom12081045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.
Collapse
|
7
|
Serna M, González-Corpas A, Cabezudo S, López-Perrote A, Degliesposti G, Zarzuela E, Skehel JM, Muñoz J, Llorca O. CryoEM of RUVBL1-RUVBL2-ZNHIT2, a complex that interacts with pre-mRNA-processing-splicing factor 8. Nucleic Acids Res 2021; 50:1128-1146. [PMID: 34951455 PMCID: PMC8789047 DOI: 10.1093/nar/gkab1267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Biogenesis of the U5 small nuclear ribonucleoprotein (snRNP) is an essential and highly regulated process. In particular, PRPF8, one of U5 snRNP main components, requires HSP90 working in concert with R2TP, a cochaperone complex containing RUVBL1 and RUVBL2 AAA-ATPases, and additional factors that are still poorly characterized. Here, we use biochemistry, interaction mapping, mass spectrometry and cryoEM to study the role of ZNHIT2 in the regulation of the R2TP chaperone during the biogenesis of PRPF8. ZNHIT2 forms a complex with R2TP which depends exclusively on the direct interaction of ZNHIT2 with the RUVBL1–RUVBL2 ATPases. The cryoEM analysis of this complex reveals that ZNHIT2 alters the conformation and nucleotide state of RUVBL1–RUVBL2, affecting its ATPase activity. We characterized the interactions between R2TP, PRPF8, ZNHIT2, ECD and AAR2 proteins. Interestingly, PRPF8 makes a direct interaction with R2TP and this complex can incorporate ZNHIT2 and other proteins involved in the biogenesis of PRPF8 such as ECD and AAR2. Together, these results show that ZNHIT2 participates in the assembly of the U5 snRNP as part of a network of contacts between assembly factors required for PRPF8 biogenesis and the R2TP-HSP90 chaperone, while concomitantly regulating the structure and nucleotide state of R2TP.
Collapse
Affiliation(s)
- Marina Serna
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Ana González-Corpas
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sofía Cabezudo
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Andrés López-Perrote
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Gianluca Degliesposti
- MRC Laboratory of Molecular Biology. Francis Crick Avenue. Cambridge Biomedical Campus, Cambridge CB2 0QH. UK
| | - Eduardo Zarzuela
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology. Francis Crick Avenue. Cambridge Biomedical Campus, Cambridge CB2 0QH. UK
| | - Javier Muñoz
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Oscar Llorca
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
8
|
Mirza S, Kalluchi A, Raza M, Saleem I, Mohapatra B, Pal D, Ouellette MM, Qiu F, Yu L, Lobanov A, Zheng ZM, Zhang Y, Alsaleem MA, Rakha EA, Band H, Rowley MJ, Band V. Ecdysoneless Protein Regulates Viral and Cellular mRNA Splicing to Promote Cervical Oncogenesis. Mol Cancer Res 2021; 20:305-318. [PMID: 34670863 DOI: 10.1158/1541-7786.mcr-21-0567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
High-risk human papillomaviruses (HPV), exemplified by HPV16/18, are causally linked to human cancers of the anogenital tract, skin, and upper aerodigestive tract. Previously, we identified Ecdysoneless (ECD) protein, the human homolog of the Drosophila ecdysoneless gene, as a novel HPV16 E6-interacting protein. Here, we show that ECD, through its C-terminal region, selectively binds to high-risk but not to low-risk HPV E6 proteins. We demonstrate that ECD is overexpressed in cervical and head and neck squamous cell carcinoma (HNSCC) cell lines as well as in tumor tissues. Using The Cancer Genome Atlas dataset, we show that ECD mRNA overexpression predicts shorter survival in patients with cervical and HNSCC. We demonstrate that ECD knockdown in cervical cancer cell lines led to impaired oncogenic behavior, and ECD co-overexpression with E7 immortalized primary human keratinocytes. RNA-sequencing analyses of SiHa cells upon ECD knockdown showed to aberrations in E6/E7 RNA splicing, as well as RNA splicing of several HPV oncogenesis-linked cellular genes, including splicing of components of mRNA splicing machinery itself. Taken together, our results support a novel role of ECD in viral and cellular mRNA splicing to support HPV-driven oncogenesis. IMPLICATIONS: This study links ECD overexpression to poor prognosis and shorter survival in HNSCC and cervical cancers and identifies a critical role of ECD in cervical oncogenesis through regulation of viral and cellular mRNA splicing.
Collapse
Affiliation(s)
- Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mohsin Raza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irfana Saleem
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bhopal Mohapatra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dhananjaya Pal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michel M Ouellette
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fang Qiu
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lulu Yu
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), National Cancer Institute, Bethesda, Maryland
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Ying Zhang
- Northshore University Health System, Chicago, Illinois
| | - Mansour A Alsaleem
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Applied Medical Sciences, Onizah Community College, Qassim University, Qassim, Saudi Arabia
| | - Emad A Rakha
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Hamid Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
9
|
TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. Nat Commun 2021; 12:3646. [PMID: 34131137 PMCID: PMC8206348 DOI: 10.1038/s41467-021-23934-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
U5 snRNP is a complex particle essential for RNA splicing. U5 snRNPs undergo intricate biogenesis that ensures that only a fully mature particle assembles into a splicing competent U4/U6•U5 tri-snRNP and enters the splicing reaction. During splicing, U5 snRNP is substantially rearranged and leaves as a U5/PRPF19 post-splicing particle, which requires re-generation before the next round of splicing. Here, we show that a previously uncharacterized protein TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. We provide evidence that TSSC4 associates with U5 snRNP chaperones, U5 snRNP and the U5/PRPF19 particle. Specifically, TSSC4 interacts with U5-specific proteins PRPF8, EFTUD2 and SNRNP200. We also identified TSSC4 domains critical for the interaction with U5 snRNP and the PRPF19 complex, as well as for TSSC4 function in tri-snRNP assembly. TSSC4 emerges as a specific chaperone that acts in U5 snRNP de novo biogenesis as well as post-splicing recycling. The correct assembly and recycling of the multicomponent spliceosome remains largely elusive. Here, the authors show that a previously uncharacterized protein TSSC4 associates with de novo formed spliceosomal U5 snRNP as well as with a post-splicing U5-PRPF19 particle, and that TSSC4 is important for assembly of the splicing competent tri-snRNP.
Collapse
|