1
|
Zhao W, Xin J, Yu X, Li Z, Li N. Recent advances of lysine lactylation in prokaryotes and eukaryotes. Front Mol Biosci 2025; 11:1510975. [PMID: 39850757 PMCID: PMC11754067 DOI: 10.3389/fmolb.2024.1510975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Lysine lactylation is a newly discovered protein post-translational modification that plays regulatory roles in cell metabolism, growth, reprogramming, and tumor progression. It utilizes lactate as the modification precursor, which is an end product of glycolysis while functioning as a signaling molecule in cells. Unlike previous reviews focused primarily on eukaryotes, this review aims to provide a comprehensive summary of recent knowledge about lysine lactylation in prokaryotes and eukaryotes. The current identification and enrichment strategies for lysine lactylation are introduced, and the known readers, writers, and erasers of this modification are summarized. In addition, the physiological and pathological implications of lysine lactylation are reviewed for different organisms, especially in prokaryotic cells. Finally, we end with a discussion of the limitations of the studies so far and propose future directions for lysine lactylation investigations.
Collapse
Affiliation(s)
- Wenjuan Zhao
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiayi Xin
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of life sciences, Henan University, Kaifeng, China
| | - Xin Yu
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhifang Li
- School of life sciences, Henan University, Kaifeng, China
| | - Nan Li
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
Broeckaert N, Longin H, Hendrix H, De Smet J, Franz-Wachtel M, Maček B, van Noort V, Lavigne R. Acetylomics reveals an extensive acetylation diversity within Pseudomonas aeruginosa. MICROLIFE 2024; 5:uqae018. [PMID: 39464744 PMCID: PMC11512479 DOI: 10.1093/femsml/uqae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/25/2024] [Indexed: 10/29/2024]
Abstract
Bacteria employ a myriad of regulatory mechanisms to adapt to the continuously changing environments that they face. They can, for example, use post-translational modifications, such as Nε-lysine acetylation, to alter enzyme activity. Although a lot of progress has been made, the extent and role of lysine acetylation in many bacterial strains remains uncharted. Here, we applied stable isotope labeling by amino acids in cell culture (SILAC) in combination with the immunoprecipitation of acetylated peptides and LC-MS/MS to measure the first Pseudomonas aeruginosa PAO1 acetylome, revealing 1076 unique acetylation sites in 508 proteins. Next, we assessed interstrain acetylome differences within P. aeruginosa by comparing our PAO1 acetylome with two publicly available PA14 acetylomes, and postulate that the overall acetylation patterns are not driven by strain-specific factors. In addition, the comparison of the P. aeruginosa acetylome to 30 other bacterial acetylomes revealed that a high percentage of transcription related proteins are acetylated in the majority of bacterial species. This conservation could help prioritize the characterization of functional consequences of individual acetylation sites.
Collapse
Affiliation(s)
- Nand Broeckaert
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Hannelore Longin
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, Institute of Cell Biology, University of Tübingen, Auf d. Morgenstelle 15, D-72076 Tübingen, Germany
| | - Boris Maček
- Proteome Center Tuebingen, Institute of Cell Biology, University of Tübingen, Auf d. Morgenstelle 15, D-72076 Tübingen, Germany
| | - Vera van Noort
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, the Netherlands
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| |
Collapse
|
3
|
Duława-Kobeluszczyk J, Strzałka A, Tracz M, Bartyńska M, Pawlikiewicz K, Łebkowski T, Wróbel S, Szymczak J, Zarek A, Małecki T, Jakimowicz D, Szafran M. The activity of CobB1 protein deacetylase contributes to nucleoid compaction in Streptomyces venezuelae spores by increasing HupS affinity for DNA. Nucleic Acids Res 2024; 52:7112-7128. [PMID: 38783097 PMCID: PMC11229371 DOI: 10.1093/nar/gkae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Streptomyces are soil bacteria with complex life cycle. During sporulation Streptomyces linear chromosomes become highly compacted so that the genetic material fits within limited spore volume. The key players in this process are nucleoid-associated proteins (NAPs). Among them, HU (heat unstable) proteins are the most abundant NAPs in the cell and the most conserved in bacteria. HupS, one of the two HU homologues encoded by the Streptomyces genome, is the best-studied spore-associated NAP. In contrast to other HU homologues, HupS contains a long, C-terminal domain that is extremely rich in lysine repeats (LR domain) similar to eukaryotic histone H2B and mycobacterial HupB protein. Here, we have investigated, whether lysine residues in HupS are posttranslationally modified by reversible lysine acetylation. We have confirmed that Streptomyces venezuelae HupS is acetylated in vivo. We showed that HupS binding to DNA in vitro is controlled by the acetylation. Moreover, we identified that CobB1, one of two Sir2 homologues in Streptomyces, controls HupS acetylation levels in vivo. We demonstrate that the elimination of CobB1 increases HupS mobility, reduces chromosome compaction in spores, and affects spores maturation. Thus, our studies indicate that HupS acetylation affects its function by diminishing DNA binding and disturbing chromosome organization.
Collapse
Affiliation(s)
| | | | - Michał Tracz
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | | | - Tomasz Łebkowski
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Sara Wróbel
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Justyna Szymczak
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Anna Zarek
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Tomasz Małecki
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | | | - Marcin J Szafran
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| |
Collapse
|
4
|
Zheng W. The (patho)physiological roles of the individual deacylase activities of a sirtuin. Chem Biol Drug Des 2024; 103:e14460. [PMID: 39556442 DOI: 10.1111/cbdd.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 11/19/2024]
Abstract
Since the discovery of the sirtuin family founding member (i.e., the yeast silent information regulator 2 (sir2) protein) in 2000, more and more sirtuin proteins have been identified and are currently known to be present in organisms from all the three kingdoms of life (i.e., bacteria, archaea, and eukarya). Seven sirtuin proteins have been identified in mammals including humans, that is, SIRT1/2/3/4/5/6/7. Sirtuin proteins are a class of enzymes with primary catalytic activity being the β-nicotinamide adenine dinucleotide (β-NAD+ or NAD+)-dependent deacylation from the Nε-acyl-lysine residues on cellular proteins. Many sirtuins (e.g., human SIRT1/2/3/4/5/6/7) have been found to each possess multiple individual deacylase activities acting on Nε-acyl-lysine substrates with different acyl groups ranging from the simple formyl and acetyl to the more complex groups like succinyl and myristoyl; however, our current knowledge on the (patho)physiological roles of these individual deacylase activities is still limited, which could be due to the currently still thin research toolbox for investigation (i.e., the deacylase-selective sirtuin mutant and inhibitor/activator). In this article, an updated account on the subject matter will be presented with biochemical and medicinal chemistry perspectives.
Collapse
Affiliation(s)
- Weiping Zheng
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
5
|
Tišma M, Kaljević J, Gruber S, Le TBK, Dekker C. Connecting the dots: key insights on ParB for chromosome segregation from single-molecule studies. FEMS Microbiol Rev 2024; 48:fuad067. [PMID: 38142222 PMCID: PMC10786196 DOI: 10.1093/femsre/fuad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/25/2023] Open
Abstract
Bacterial cells require DNA segregation machinery to properly distribute a genome to both daughter cells upon division. The most common system involved in chromosome and plasmid segregation in bacteria is the ParABS system. A core protein of this system - partition protein B (ParB) - regulates chromosome organization and chromosome segregation during the bacterial cell cycle. Over the past decades, research has greatly advanced our knowledge of the ParABS system. However, many intricate details of the mechanism of ParB proteins were only recently uncovered using in vitro single-molecule techniques. These approaches allowed the exploration of ParB proteins in precisely controlled environments, free from the complexities of the cellular milieu. This review covers the early developments of this field but emphasizes recent advances in our knowledge of the mechanistic understanding of ParB proteins as revealed by in vitro single-molecule methods. Furthermore, we provide an outlook on future endeavors in investigating ParB, ParB-like proteins, and their interaction partners.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology; Van der Maasweg 9, Delft, the Netherlands
| | - Jovana Kaljević
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH Norwich, United Kingdom
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, UNIL-Sorge, Biophore, CH-1015 Lausanne, Switzerland
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH Norwich, United Kingdom
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology; Van der Maasweg 9, Delft, the Netherlands
| |
Collapse
|
6
|
Nisar A, Gongye X, Huang Y, Khan S, Chen M, Wu B, He M. Genome-Wide Analyses of Proteome and Acetylome in Zymomonas mobilis Under N 2-Fixing Condition. Front Microbiol 2021; 12:740555. [PMID: 34803957 PMCID: PMC8600466 DOI: 10.3389/fmicb.2021.740555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Zymomonas mobilis, a promising candidate for industrial biofuel production, is capable of nitrogen fixation naturally without hindering ethanol production. However, little is known about the regulation of nitrogen fixation in Z. mobilis. We herein conducted a high throughput analysis of proteome and protein acetylation in Z. mobilis under N2-fixing conditions and established its first acetylome. The upregulated proteins mainly belong to processes of nitrogen fixation, motility, chemotaxis, flagellar assembly, energy production, transportation, and oxidation–reduction. Whereas, downregulated proteins are mainly related to energy-consuming and biosynthetic processes. Our acetylome analyses revealed 197 uniquely acetylated proteins, belonging to major pathways such as nitrogen fixation, central carbon metabolism, ammonia assimilation pathway, protein biosynthesis, and amino acid metabolism. Further, we observed acetylation in glycolytic enzymes of central carbon metabolism, the nitrogenase complex, the master regulator NifA, and the enzyme in GS/GOGAT cycle. These findings suggest that protein acetylation may play an important role in regulating various aspects of N2-metabolism in Z. mobilis. This study provides new knowledge of specific proteins and their associated cellular processes and pathways that may be regulated by protein acetylation in Z. mobilis.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Xiangxu Gongye
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yuhuan Huang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Sawar Khan
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Mao Chen
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.,Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
7
|
Polyketide Starter and Extender Units Serve as Regulatory Ligands to Coordinate the Biosynthesis of Antibiotics in Actinomycetes. mBio 2021; 12:e0229821. [PMID: 34579580 PMCID: PMC8546615 DOI: 10.1128/mbio.02298-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Polyketides are one of the largest categories of secondary metabolites, and their biosynthesis is initiated by polyketide synthases (PKSs) using coenzyme A esters of short fatty acids (acyl-CoAs) as starter and extender units. In this study, we discover a universal regulatory mechanism in which the starter and extender units, beyond direct precursors of polyketides, function as ligands to coordinate the biosynthesis of antibiotics in actinomycetes. A novel acyl-CoA responsive TetR-like regulator (AcrT) is identified in an erythromycin-producing strain of Saccharopolyspora erythraea. AcrT shows the highest binding affinity to the promoter of the PKS-encoding gene eryAI in the DNA affinity capture assay (DACA) and directly represses the biosynthesis of erythromycin. Propionyl-CoA (P-CoA) and methylmalonyl-CoA (MM-CoA) as the starter and extender units for erythromycin biosynthesis can serve as the ligands to release AcrT from PeryAI, resulting in an improved erythromycin yield. Intriguingly, anabolic pathways of the two acyl-CoAs are also suppressed by AcrT through inhibition of the transcription of acetyl-CoA (A-CoA) and P-CoA carboxylase genes and stimulation of the transcription of citrate synthase genes, which is beneficial to bacterial growth. As P-CoA and MM-CoA accumulate, they act as ligands in turn to release AcrT from those targets, resulting in a redistribution of more A-CoA to P-CoA and MM-CoA against citrate. Furthermore, based on analyses of AcrT homologs in Streptomyces avermitilis and Streptomyces coelicolor, it is believed that polyketide starter and extender units have a prevalent, crucial role as ligands in modulating antibiotic biosynthesis in actinomycetes.
Collapse
|
8
|
Yang Y, Zhang H, Guo Z, Zou S, Long F, Wu J, Li P, Zhao GP, Zhao W. Global Insights Into Lysine Acylomes Reveal Crosstalk Between Lysine Acetylation and Succinylation in Streptomyces coelicolor Metabolic Pathways. Mol Cell Proteomics 2021; 20:100148. [PMID: 34530157 PMCID: PMC8498004 DOI: 10.1016/j.mcpro.2021.100148] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/08/2021] [Indexed: 02/09/2023] Open
Abstract
Lysine acylations are reversible and ubiquitous post-translational modifications that play critical roles in regulating multiple cellular processes. In the current study, highly abundant and dynamic acetylation, besides succinylation, was uncovered in a soil bacterium, Streptomyces coelicolor. By affinity enrichment using anti–acetyl-lysine antibody and the following LC−MS/MS analysis, a total of 1298 acetylation sites among 601 proteins were identified. Bioinformatics analyses suggested that these acetylated proteins have diverse subcellular localization and were enriched in a wide range of biological functions. Specifically, a majority of the acetylated proteins were also succinylated in the tricarboxylic acid cycle and protein translation pathways, and the bimodification occurred at the same sites in some proteins. The acetylation and succinylation sites were quantified by knocking out either the deacetylase ScCobB1 or the desuccinylase ScCobB2, demonstrating a possible competitive relationship between the two acylations. Moreover, in vitro experiments using synthetically modified peptides confirmed the regulatory crosstalk between the two sirtuins, which may be involved in the collaborative regulation of cell physiology. Collectively, these results provided global insights into the S. coelicolor acylomes and laid a foundation for characterizing the regulatory roles of the crosstalk between lysine acetylation and succinylation in the future. A highly abundant and dynamic acetylation is discovered in Streptomyces coelicolor. Quantitative acetylome and succinylome analyses in Streptomyces coelicolor. The bimodification proteins are enriched in multiple metabolic pathways.
Collapse
Affiliation(s)
- Yujiao Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Siwei Zou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Long
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiacheng Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Guo-Ping Zhao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing, China.
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
9
|
Spatial rearrangement of the Streptomyces venezuelae linear chromosome during sporogenic development. Nat Commun 2021; 12:5222. [PMID: 34471115 PMCID: PMC8410768 DOI: 10.1038/s41467-021-25461-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteria of the genus Streptomyces have a linear chromosome, with a core region and two ‘arms’. During their complex life cycle, these bacteria develop multi-genomic hyphae that differentiate into chains of exospores that carry a single copy of the genome. Sporulation-associated cell division requires chromosome segregation and compaction. Here, we show that the arms of Streptomyces venezuelae chromosomes are spatially separated at entry to sporulation, but during sporogenic cell division they are closely aligned with the core region. Arm proximity is imposed by segregation protein ParB and condensin SMC. Moreover, the chromosomal terminal regions are organized into distinct domains by the Streptomyces-specific HU-family protein HupS. Thus, as seen in eukaryotes, there is substantial chromosomal remodelling during the Streptomyces life cycle, with the chromosome undergoing rearrangements from an ‘open’ to a ‘closed’ conformation. Streptomyces bacteria have a linear chromosome and a complex life cycle, including development of multi-genomic hyphae that differentiate into mono-genomic exospores. Here, Szafran et al. show that the chromosome of Streptomyces venezuelae undergoes substantial remodelling during sporulation, from an ‘open’ to a ‘closed’ conformation.
Collapse
|