1
|
Wang Y, Luo J, Jiao S, Xie X, Wang T, Liu J, Shang X, Peng J. STExplore: An Integrated Online Platform for Comprehensive Analysis and Visualization of Spatial Transcriptomics Data. SMALL METHODS 2025; 9:e2401272. [PMID: 40045664 DOI: 10.1002/smtd.202401272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/16/2025] [Indexed: 05/26/2025]
Abstract
Spatial transcriptomics revolutionizes the understanding of tissue organization and cellular interactions by combining high-resolution spatial information with gene expression profiles. Existing spatial transcriptomics analysis platforms face challenges in accommodating diverse techniques, integrating multi-omics data, and providing comprehensive analytical workflows. STExplore, an advanced online platform, is developed to address these limitations. STExplore supports a wide range of technologies, including sequencing-based and image-based methods, and offers a complete analysis workflow encompassing preprocessing, integration with single-cell RNA sequencing (scRNA-seq), cluster-level and gene-level analyses, and cell-cell communication studies. The platform features dynamic parameter adjustments and interactive visualizations at each analytical stage, enabling users to gain deeper insights into the spatial transcriptomic landscape. Case studies on neurogenesis in embryonic brain development, Alzheimer's disease, and brain tissue architecture demonstrate STExplore's capabilities in enhancing gene expression analysis, revealing cellular spatial organizations, and uncovering intercellular communication patterns. STExplore provides a comprehensive and user-friendly solution for the expanding demands of spatial transcriptomics research. The platform is accessible at http://120.77.47.2:3000/.
Collapse
Affiliation(s)
- Yongtian Wang
- School of Computer Science, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, No.1 Dongxiang Road, Xi'an, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Buliding, No.45th, Gaoxin South 9th Road, Nanshan District, Shenzhen City, 518063, China
| | - Jintian Luo
- School of Software, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Shaoqing Jiao
- School of Software, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Xiaohan Xie
- School of Computer Science, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, No.1 Dongxiang Road, Xi'an, 710129, China
| | - Tao Wang
- School of Computer Science, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, No.1 Dongxiang Road, Xi'an, 710129, China
| | - Jie Liu
- School of Software, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, No.1 Dongxiang Road, Xi'an, 710129, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, No.1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, No.1 Dongxiang Road, Xi'an, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Buliding, No.45th, Gaoxin South 9th Road, Nanshan District, Shenzhen City, 518063, China
| |
Collapse
|
2
|
Chiu HP, Shen CH, Wu JK, Mao EC, Yen HY, Chang YP, Wu CC, Fan HF. Nuclease-induced stepwise photodropping (NISP) to precisely investigate single-stranded DNA degradation behaviors of exonucleases and endonucleases. Nucleic Acids Res 2024; 52:e97. [PMID: 39351870 PMCID: PMC11551736 DOI: 10.1093/nar/gkae822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/12/2024] Open
Abstract
Here, we employed a fluorescence-based single molecule method called nuclease-induced stepwise photodropping (NISP) to measure in real time the DNA degradation mediated by mitochondrial genome maintenance exonuclease 1 (MGME1), a bidirectional single-stranded DNA (ssDNA)-specific exonuclease. The method detects a stepwise decrease in fluorescence signals from Cy3 fluorophores labeled on an immobilized DNA substrate. Using NISP, we successfully determined the DNA degradation rates of 6.3 ± 0.4 and 2.0 ± 0.1 nucleotides (nt) s-1 for MGME1 in the 5'-to-3' and 3'-to-5' directions, respectively. These results provide direct evidence of the stronger 5' directionality of MGME1, consistent with its established role in mitochondrial DNA maintenance. Importantly, when we employed NISP to investigate mung bean nuclease, an ss-specific endonuclease, we observed a markedly different NISP pattern, suggesting a distributive cleavage activity of the enzyme. Furthermore, we applied NISP to determine the ssDNA degradation behavior of the double-stranded-specific exonuclease, λ exonuclease. These findings underscore the capability of NISP to accurately and reliably measure the degradation of ssDNA by both exo- and endonucleases. Here, we demonstrate NISP as a powerful tool for investigating the ssDNA degradation behavior of nucleases at the single-molecule level.
Collapse
Affiliation(s)
- Hui-Pin Chiu
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Chung-Han Shen
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Jan-Kai Wu
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Eric Y C Mao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Han-Yi Yen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Yuan-Pin Chang
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Chyuan-Chuan Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Hsiu-Fang Fan
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| |
Collapse
|
3
|
de Oliveira MA, Florentino LH, Sales TT, Lima RN, Barros LRC, Limia CG, Almeida MSM, Robledo ML, Barros LMG, Melo EO, Bittencourt DM, Rehen SK, Bonamino MH, Rech E. Protocol for the establishment of a serine integrase-based platform for functional validation of genetic switch controllers in eukaryotic cells. PLoS One 2024; 19:e0303999. [PMID: 38781126 PMCID: PMC11115199 DOI: 10.1371/journal.pone.0303999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Serine integrases (Ints) are a family of site-specific recombinases (SSRs) encoded by some bacteriophages to integrate their genetic material into the genome of a host. Their ability to rearrange DNA sequences in different ways including inversion, excision, or insertion with no help from endogenous molecular machinery, confers important biotechnological value as genetic editing tools with high host plasticity. Despite advances in their use in prokaryotic cells, only a few Ints are currently used as gene editors in eukaryotes, partly due to the functional loss and cytotoxicity presented by some candidates in more complex organisms. To help expand the number of Ints available for the assembly of more complex multifunctional circuits in eukaryotic cells, this protocol describes a platform for the assembly and functional screening of serine-integrase-based genetic switches designed to control gene expression by directional inversions of DNA sequence orientation. The system consists of two sets of plasmids, an effector module and a reporter module, both sets assembled with regulatory components (as promoter and terminator regions) appropriate for expression in mammals, including humans, and plants. The complete method involves plasmid design, DNA delivery, testing and both molecular and phenotypical assessment of results. This platform presents a suitable workflow for the identification and functional validation of new tools for the genetic regulation and reprogramming of organisms with importance in different fields, from medical applications to crop enhancement, as shown by the initial results obtained. This protocol can be completed in 4 weeks for mammalian cells or up to 8 weeks for plant cells, considering cell culture or plant growth time.
Collapse
Affiliation(s)
- Marco A. de Oliveira
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, Distrito Federal, Brazil
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
| | - Lilian H. Florentino
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, Distrito Federal, Brazil
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Thais T. Sales
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, Distrito Federal, Brazil
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Rayane N. Lima
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Luciana R. C. Barros
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina de Universidade de São Paulo, São Paulo, Brazil
| | - Cintia G. Limia
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Mariana S. M. Almeida
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Maria L. Robledo
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Leila M. G. Barros
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Eduardo O. Melo
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Daniela M. Bittencourt
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Stevens K. Rehen
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martín H. Bonamino
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice-Presidency of Research and Biological Collections (VPPCB), FIOCRUZ – Oswaldo Cruz Foundation Institute, Rio de Janeiro, Brazil
| | - Elibio Rech
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| |
Collapse
|
4
|
Chen YW, Su BY, Van Duyne GD, Fogg P, Fan HF. The influence of coiled-coil motif of serine recombinase toward the directionality regulation. Biophys J 2023; 122:4656-4669. [PMID: 37974397 PMCID: PMC10754689 DOI: 10.1016/j.bpj.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Serine integrases promote the recombination of two complementary DNA sequences, attP and attB, to create hybrid sequences, attL and attR. The reaction is unidirectional in the absence of an accessory protein called recombination directionality factor. We utilized tethered particle motion (TPM) experiments to investigate the reaction behaviors of two model serine integrases from Listeria innocua phage LI and Streptomyces coelicolor phage C31. Detailed kinetic analyses of wild-type and mutant proteins were carried out to verify the mechanisms of recombination directionality. In particular, we assessed the influence of a coiled-coil motif (CC) that is conserved in the C-terminal domain of serine integrases and is an important prerequisite for efficient recombination. Compared to wild type, we found that CC deletions in both serine integrases reduced the overall abundance of integrase (Int) att-site complexes and favored the formation of nonproductive complexes over recombination-competent complexes. Furthermore, the rate at which CC mutants formed productive synaptic complexes and disassembled aberrant nonproductive complexes was significantly reduced. It is notable that while the φC31 Int CC is essential for recombination, the LI Int CC plays an auxiliary role for recombination to stabilize protein-protein interactions and to control the directionality of the reaction.
Collapse
Affiliation(s)
- Yei-Wei Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Bo-Yu Su
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Gregory D Van Duyne
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul Fogg
- Biology Department and York Biomedical Research Institute (YBRI), University of York, York, United Kingdom.
| | - Hsiu-Fang Fan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Fan H. Single‐molecule tethered particle motion to study
protein‐DNA
interaction. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Zhang K, Feng W, Wang P. Identification of spatially variable genes with graph cuts. Nat Commun 2022; 13:5488. [PMID: 36123336 PMCID: PMC9485129 DOI: 10.1038/s41467-022-33182-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
Single-cell gene expression data with positional information is critical to dissect mechanisms and architectures of multicellular organisms, but the potential is limited by the scalability of current data analysis strategies. Here, we present scGCO, a method based on fast optimization of hidden Markov Random Fields with graph cuts to identify spatially variable genes. Comparing to existing methods, scGCO delivers a superior performance with lower false positive rate and improved specificity, while demonstrates a more robust performance in the presence of noises. Critically, scGCO scales near linearly with inputs and demonstrates orders of magnitude better running time and memory requirement than existing methods, and could represent a valuable solution when spatial transcriptomics data grows into millions of data points and beyond.
Collapse
Affiliation(s)
- Ke Zhang
- National Genomics Data Center, CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanwan Feng
- National Genomics Data Center, CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng Wang
- National Genomics Data Center, CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Faculty of Health Science, University of Macau, Macau, China.
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China.
| |
Collapse
|
7
|
Zhang L, Chen D, Song D, Liu X, Zhang Y, Xu X, Wang X. Clinical and translational values of spatial transcriptomics. Signal Transduct Target Ther 2022; 7:111. [PMID: 35365599 PMCID: PMC8972902 DOI: 10.1038/s41392-022-00960-w] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
The combination of spatial transcriptomics (ST) and single cell RNA sequencing (scRNA-seq) acts as a pivotal component to bridge the pathological phenomes of human tissues with molecular alterations, defining in situ intercellular molecular communications and knowledge on spatiotemporal molecular medicine. The present article overviews the development of ST and aims to evaluate clinical and translational values for understanding molecular pathogenesis and uncovering disease-specific biomarkers. We compare the advantages and disadvantages of sequencing- and imaging-based technologies and highlight opportunities and challenges of ST. We also describe the bioinformatics tools necessary on dissecting spatial patterns of gene expression and cellular interactions and the potential applications of ST in human diseases for clinical practice as one of important issues in clinical and translational medicine, including neurology, embryo development, oncology, and inflammation. Thus, clear clinical objectives, designs, optimizations of sampling procedure and protocol, repeatability of ST, as well as simplifications of analysis and interpretation are the key to translate ST from bench to clinic.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China
| | - Dongsheng Chen
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Dongli Song
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China
| | - Xiaoxia Liu
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China
| | - Yanan Zhang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xiangdong Wang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, 200000, China.
| |
Collapse
|
8
|
Abstract
The function of many biological systems, such as embryos, liver lobules, intestinal villi, and tumors, depends on the spatial organization of their cells. In the past decade, high-throughput technologies have been developed to quantify gene expression in space, and computational methods have been developed that leverage spatial gene expression data to identify genes with spatial patterns and to delineate neighborhoods within tissues. To comprehensively document spatial gene expression technologies and data-analysis methods, we present a curated review of literature on spatial transcriptomics dating back to 1987, along with a thorough analysis of trends in the field, such as usage of experimental techniques, species, tissues studied, and computational approaches used. Our Review places current methods in a historical context, and we derive insights about the field that can guide current research strategies. A companion supplement offers a more detailed look at the technologies and methods analyzed: https://pachterlab.github.io/LP_2021/ .
Collapse
|
9
|
Longo SK, Guo MG, Ji AL, Khavari PA. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet 2021; 22:627-644. [PMID: 34145435 PMCID: PMC9888017 DOI: 10.1038/s41576-021-00370-8] [Citation(s) in RCA: 502] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) identifies cell subpopulations within tissue but does not capture their spatial distribution nor reveal local networks of intercellular communication acting in situ. A suite of recently developed techniques that localize RNA within tissue, including multiplexed in situ hybridization and in situ sequencing (here defined as high-plex RNA imaging) and spatial barcoding, can help address this issue. However, no method currently provides as complete a scope of the transcriptome as does scRNA-seq, underscoring the need for approaches to integrate single-cell and spatial data. Here, we review efforts to integrate scRNA-seq with spatial transcriptomics, including emerging integrative computational methods, and propose ways to effectively combine current methodologies.
Collapse
Affiliation(s)
- Sophia K. Longo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA,Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Margaret G. Guo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA,Stanford Cancer Institute, Stanford University, Stanford, CA, USA,Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
| | - Andrew L. Ji
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA,Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Paul A. Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA,Stanford Cancer Institute, Stanford University, Stanford, CA, USA,Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| |
Collapse
|
10
|
Novel Virulent Bacteriophage ΦSG005, Which Infects Streptococcus gordonii, Forms a Distinct Clade among Streptococcus Viruses. Viruses 2021; 13:v13101964. [PMID: 34696394 PMCID: PMC8537203 DOI: 10.3390/v13101964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages are viruses that specifically infect bacteria and are classified as either virulent phages or temperate phages. Despite virulent phages being promising antimicrobial agents due to their bactericidal effects, the implementation of phage therapy depends on the availability of virulent phages against target bacteria. Notably, virulent phages of Streptococcus gordonii, which resides in the oral cavity and is an opportunistic pathogen that can cause periodontitis and endocarditis have previously never been found. We thus attempted to isolate virulent phages against S. gordonii. In the present study, we report for the first time a virulent bacteriophage against S. gordonii, ΦSG005, discovered from drainage water. ΦSG005 is composed of a short, non-contractile tail and a long head, revealing Podoviridae characteristics via electron microscopic analysis. In turbidity reduction assays, ΦSG005 showed efficient bactericidal effects on S. gordonii. Whole-genome sequencing showed that the virus has a DNA genome of 16,127 bp with 21 coding sequences. We identified no prophage-related elements such as integrase in the ΦSG005 genome, demonstrating that the virus is a virulent phage. Phylogenetic analysis indicated that ΦSG005 forms a distinct clade among the streptococcus viruses and is positioned next to streptococcus virus C1. Molecular characterization revealed the presence of an anti-CRISPR (Acr) IIA5-like protein in the ΦSG005 genome. These findings facilitate our understanding of streptococcus viruses and advance the development of phage therapy against S. gordonii infection.
Collapse
|
11
|
Control of the Serine Integrase Reaction: Roles of the Coiled-Coil and Helix E Regions in DNA Site Synapsis and Recombination. J Bacteriol 2021; 203:e0070320. [PMID: 34060907 DOI: 10.1128/jb.00703-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacteriophage serine integrases catalyze highly specific recombination reactions between defined DNA segments called att sites. These reactions are reversible depending upon the presence of a second phage-encoded directionality factor. The bipartite C-terminal DNA-binding region of integrases includes a recombinase domain (RD) connected to a zinc-binding domain (ZD), which contains a long flexible coiled-coil (CC) motif that extends away from the bound DNA. We directly show that the identities of the phage A118 integrase att sites are specified by the DNA spacing between the RD and ZD DNA recognition determinants, which in turn directs the relative trajectories of the CC motifs on each subunit of the att-bound integrase dimer. Recombination between compatible dimer-bound att sites requires minimal-length CC motifs and 14 residues surrounding the tip where the pairing of CC motifs between synapsing dimers occurs. Our alanine-scanning data suggest that molecular interactions between CC motif tips may differ in integrative (attP × attB) and excisive (attL × attR) recombination reactions. We identify mutations in 5 residues within the integrase oligomerization helix that control the remodeling of dimers into tetramers during synaptic complex formation. Whereas most of these gain-of-function mutants still require the CC motifs for synapsis, one mutant efficiently, but indiscriminately, forms synaptic complexes without the CC motifs. However, the CC motifs are still required for recombination, suggesting a function for the CC motifs after the initial assembly of the integrase synaptic tetramer. IMPORTANCE The robust and exquisitely regulated site-specific recombination reactions promoted by serine integrases are integral to the life cycle of temperate bacteriophage and, in the case of the A118 prophage, are an important virulence factor of Listeria monocytogenes. The properties of these recombinases have led to their repurposing into tools for genetic engineering and synthetic biology. In this report, we identify determinants regulating synaptic complex formation between correct DNA sites, including the DNA architecture responsible for specifying the identity of recombination sites, features of the unique coiled-coil structure on the integrase that are required to initiate synapsis, and amino acid residues on the integrase oligomerization helix that control the remodeling of synapsing dimers into a tetramer active for DNA strand exchange.
Collapse
|
12
|
Fan HF, Su S. The regulation mechanism of the C-terminus of RecA proteins during DNA strand-exchange process. Biophys J 2021; 120:3166-3179. [PMID: 34197804 DOI: 10.1016/j.bpj.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The C-terminus of Escherichia coli RecA protein can affect the DNA binding affinity, interact with accessory proteins, and regulate the RecA activity. A substantial upward shift in the pH-reaction profile of RecA-mediated DNA strand-exchange reactions was observed for C-terminal-truncated E. coli ΔC17 RecA, Deinococcus radiodurans RecA, and Deinococcus ficus RecA. Here, the process of RecA-mediated strand exchange from the beginning to the end was investigated with florescence resonance energy transfer and tethered particle motion experiments to determine the detailed regulation mechanism. RecA proteins with a shorter C-terminus possess more stable nuclei, higher DNA binding affinities, and lower protonation requirements for the formation of nucleoprotein filaments. Moreover, more stable synaptic complexes in the homologous sequence searching process were also observed for RecA proteins with a shorter C-terminus. Our results suggest that the C-terminus of RecA proteins regulates not only the formation of RecA nucleoprotein filaments but also the entrance of secondary DNA into RecA nucleoprotein filaments.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Institute of Medical Science and Technology, Kaohsiung, Taiwan; Department of Chemistry, Kaohsiung, Taiwan; Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Shu Su
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
13
|
van de Grift YBC, Heijmans N, van Amerongen R. How to Use Online Tools to Generate New Hypotheses for Mammary Gland Biology Research: A Case Study for Wnt7b. J Mammary Gland Biol Neoplasia 2020; 25:319-335. [PMID: 33625717 PMCID: PMC7960620 DOI: 10.1007/s10911-020-09474-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
An increasing number of '-omics' datasets, generated by labs all across the world, are becoming available. They contain a wealth of data that are largely unexplored. Not every scientist, however, will have access to the required resources and expertise to analyze such data from scratch. Fortunately, a growing number of investigators is dedicating their time and effort to the development of user friendly, online applications that allow researchers to use and investigate these datasets. Here, we will illustrate the usefulness of such an approach. Using regulation of Wnt7b expression as an example, we will highlight a selection of accessible tools and resources that are available to researchers in the area of mammary gland biology. We show how they can be used for in silico analyses of gene regulatory mechanisms, resulting in new hypotheses and providing leads for experimental follow up. We also call out to the mammary gland community to join forces in a coordinated effort to generate and share additional tissue-specific '-omics' datasets and thereby expand the in silico toolbox.
Collapse
Affiliation(s)
- Yorick Bernardus Cornelis van de Grift
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Nika Heijmans
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| |
Collapse
|