1
|
Metelev VG, Baulin EF, Bogdanov AA. Role of Non-Canonical Stacking Interactions of Heterocyclic RNA Bases in Ribosome Function. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2252-2262. [PMID: 39865037 DOI: 10.1134/s0006297924120137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 01/28/2025]
Abstract
Identification and analysis of repetitive elements (motifs) in DNA, RNA, and protein macromolecules is an important step in studying structure and functions of these biopolymers. Functional role of NA-BSE (non-adjacent base-stacking element, a widespread tertiary structure motif in various RNAs) in RNA-RNA interactions at various stages of the ribosome function during translation has been investigated in this work. Motifs of this type have been described to date that are reversibly formed during mRNA decoding, moving of the ribosome subunits relative to each other, and moving mRNA and tRNA along the ribosome during translocation. The EF-G-dependent NA-BSE formation involving 5S rRNA and 23S rRNA nucleotide residues is considered separately.
Collapse
MESH Headings
- Ribosomes/metabolism
- Ribosomes/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- Protein Biosynthesis
- Nucleic Acid Conformation
- RNA, Messenger/metabolism
- RNA, Messenger/chemistry
- RNA/chemistry
- RNA/metabolism
- RNA, Ribosomal, 5S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/chemistry
Collapse
Affiliation(s)
- Valeriy G Metelev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eugene F Baulin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, 02-109, Poland
| | - Alexey A Bogdanov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| |
Collapse
|
2
|
Wu J, Niu L, Yang K, Xu J, Zhang D, Ling J, Xia P, Wu Y, Liu X, Liu J, Zhang J, Yu P. The role and mechanism of RNA-binding proteins in bone metabolism and osteoporosis. Ageing Res Rev 2024; 96:102234. [PMID: 38367813 DOI: 10.1016/j.arr.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis is a prevalent chronic metabolic bone disease that poses a significant risk of fractures or mortality in elderly individuals. Its pathophysiological basis is often attributed to postmenopausal estrogen deficiency and natural aging, making the progression of primary osteoporosis among elderly people, especially older women, seemingly inevitable. The treatment and prevention of osteoporosis progression have been extensively discussed. Recently, as researchers delve deeper into the molecular biological mechanisms of bone remodeling, they have come to realize the crucial role of posttranscriptional gene control in bone metabolism homeostasis. RNA-binding proteins, as essential actors in posttranscriptional activities, may exert influence on osteoporosis progression by regulating the RNA life cycle. This review compiles recent findings on the involvement of RNA-binding proteins in abnormal bone metabolism in osteoporosis and describes the impact of some key RNA-binding proteins on bone metabolism regulation. Additionally, we explore the potential and rationale for modulating RNA-binding proteins as a means of treating osteoporosis, with an overview of drugs that target these proteins.
Collapse
Affiliation(s)
- Jiaqiang Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Liyan Niu
- HuanKui College of Nanchang University, Nanchang 330006, China
| | - Kangping Yang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jingdong Xu
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Jing Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Peng Yu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China.
| |
Collapse
|
3
|
Bohdan DR, Voronina VV, Bujnicki JM, Baulin EF. A comprehensive survey of long-range tertiary interactions and motifs in non-coding RNA structures. Nucleic Acids Res 2023; 51:8367-8382. [PMID: 37471030 PMCID: PMC10484739 DOI: 10.1093/nar/gkad605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Understanding the 3D structure of RNA is key to understanding RNA function. RNA 3D structure is modular and can be seen as a composition of building blocks of various sizes called tertiary motifs. Currently, long-range motifs formed between distant loops and helical regions are largely less studied than the local motifs determined by the RNA secondary structure. We surveyed long-range tertiary interactions and motifs in a non-redundant set of non-coding RNA 3D structures. A new dataset of annotated LOng-RAnge RNA 3D modules (LORA) was built using an approach that does not rely on the automatic annotations of non-canonical interactions. An original algorithm, ARTEM, was developed for annotation-, sequence- and topology-independent superposition of two arbitrary RNA 3D modules. The proposed methods allowed us to identify and describe the most common long-range RNA tertiary motifs. Along with the prevalent canonical A-minor interactions, a large number of previously undescribed staple interactions were observed. The most frequent long-range motifs were found to belong to three main motif families: planar staples, tilted staples, and helical packing motifs.
Collapse
Affiliation(s)
- Davyd R Bohdan
- Department of Innovation and High Technology, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valeria V Voronina
- Department of Information Systems, Ulyanovsk State Technical University, Ulyanovsk 432027, Russia
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Eugene F Baulin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| |
Collapse
|
4
|
Ali Z, Kukhta T, Jhunjhunwala A, Trant JF, Sharma P. Occurrence and classification of T-shaped interactions between nucleobases in RNA structures. RNA (NEW YORK, N.Y.) 2023; 29:1215-1229. [PMID: 37188492 PMCID: PMC10351890 DOI: 10.1261/rna.079486.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Understanding the frequency and structural context of discrete noncovalent interactions between nucleotides is of pivotal significance in establishing the rules that govern RNA structure and dynamics. Although T-shaped contacts (i.e., perpendicular stacking contacts) between aromatic amino acids and nucleobases at the nucleic acid-protein interface have recently garnered attention, the analogous contacts within the nucleic acid structures have not been discussed. In this work, we have developed an automated method for identifying and unambiguously classifying T-shaped interactions between nucleobases. Using this method, we identified a total of 3261 instances of T-shaped (perpendicular stacking) contacts between two nucleobases in an array of RNA structures from an up-to-date data set of ≤3.5 Å resolution crystal structures deposited in the Protein Data Bank.
Collapse
Affiliation(s)
- Zakir Ali
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Teagan Kukhta
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Ayush Jhunjhunwala
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana, 500032, India
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
5
|
Metelev VG, Baulin EF, Bogdanov AA. Multiple Non-Canonical Base-Stacking Interactions as One of the Major Determinants of RNA Tertiary Structure Organization. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:792-800. [PMID: 37748875 DOI: 10.1134/s000629792306007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 09/27/2023]
Abstract
Stacking interactions of heterocyclic bases of ribonucleotides are one of the most important factors in the organization of RNA secondary and tertiary structure. Most of these (canonical) interactions are formed between adjacent residues in RNA polynucleotide chains. However, with the accumulation of data on the atomic tertiary structures of various RNAs and their complexes with proteins, it has become clear that nucleotide residues that are not adjacent in the polynucleotide chains and are sometimes separated in the RNA primary structure by tens or hundreds of nucleotides can interact via (non-canonical) base stacking. This paper presents an exhaustive database of such nonadjacent base-stacking elements (NA-BSEs) and their environment in the macromolecules of natural and synthetic RNAs. Analysis of these data showed that NA-BSE-forming nucleotides, on average, account for about a quarter of all nucleotides in a particular RNA and, therefore, should be considered as bona fide motifs of the RNA tertiary structure. We also classified NA-BSEs by their location in RNA macromolecules. It was shown that the structure-forming role of NA-BSEs involves compact folding of single-stranded RNA loops, transformation of double-stranded bulges into imperfect helices, and binding of RNA regions distant in the primary and secondary RNA structure.
Collapse
Affiliation(s)
- Valeriy G Metelev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eugene F Baulin
- Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey A Bogdanov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| |
Collapse
|
6
|
Ali Z, Goyal A, Jhunjhunwala A, Mitra A, Trant JF, Sharma P. Structural and Energetic Features of Base-Base Stacking Contacts in RNA. J Chem Inf Model 2023; 63:655-669. [PMID: 36635230 DOI: 10.1021/acs.jcim.2c01116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nucleobase π-π stacking is one of the crucial organizing interactions within three-dimensional (3D) RNA architectures. Characterizing the structural variability of these contacts in RNA crystal structures will help delineate their subtleties and their role in determining function. This analysis of different stacking geometries found in RNA X-ray crystal structures is the largest such survey to date; coupled with quantum-mechanical calculations on typical representatives of each possible stacking arrangement, we determined the distribution of stacking interaction energies. A total of 1,735,481 stacking contacts, spanning 359 of the 384 theoretically possible distinct stacking geometries, were identified. Our analysis reveals preferential occurrences of specific consecutive stacking arrangements in certain regions of RNA architectures. Quantum chemical calculations suggest that 88 of the 359 contacts possess intrinsically stable stacking geometries, whereas the remaining stacks require the RNA backbone or surrounding macromolecular environment to force their formation and maintain their stability. Our systematic analysis of π-π stacks in RNA highlights trends in the occurrence and localization of these noncovalent interactions and may help better understand the structural intricacies of functional RNA-based molecular architectures.
Collapse
Affiliation(s)
- Zakir Ali
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh160014, India
| | - Ambika Goyal
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh160014, India
| | - Ayush Jhunjhunwala
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, Gachibowli, Hyderabad, Telangana500032, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, Gachibowli, Hyderabad, Telangana500032, India
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, OntarioN9B 3P4, Canada
- Binary Star Research Services, LaSalle, OntarioN9J 3X8, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh160014, India
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, OntarioN9B 3P4, Canada
| |
Collapse
|
7
|
D’Esposito RJ, Myers CA, Chen AA, Vangaveti S. Challenges with Simulating Modified RNA: Insights into Role and Reciprocity of Experimental and Computational Approaches. Genes (Basel) 2022; 13:540. [PMID: 35328093 PMCID: PMC8949676 DOI: 10.3390/genes13030540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
RNA is critical to a broad spectrum of biological and viral processes. This functional diversity is a result of their dynamic nature; the variety of three-dimensional structures that they can fold into; and a host of post-transcriptional chemical modifications. While there are many experimental techniques to study the structural dynamics of biomolecules, molecular dynamics simulations (MDS) play a significant role in complementing experimental data and providing mechanistic insights. The accuracy of the results obtained from MDS is determined by the underlying physical models i.e., the force-fields, that steer the simulations. Though RNA force-fields have received a lot of attention in the last decade, they still lag compared to their protein counterparts. The chemical diversity imparted by the RNA modifications adds another layer of complexity to an already challenging problem. Insight into the effect of RNA modifications upon RNA folding and dynamics is lacking due to the insufficiency or absence of relevant experimental data. This review provides an overview of the state of MDS of modified RNA, focusing on the challenges in parameterization of RNA modifications as well as insights into relevant reference experiments necessary for their calibration.
Collapse
Affiliation(s)
- Rebecca J. D’Esposito
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (R.J.D.); (A.A.C.)
| | - Christopher A. Myers
- Department of Physics, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA;
| | - Alan A. Chen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (R.J.D.); (A.A.C.)
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
8
|
Zeke A, Schád É, Horváth T, Abukhairan R, Szabó B, Tantos A. Deep structural insights into RNA-binding disordered protein regions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1714. [PMID: 35098694 PMCID: PMC9539567 DOI: 10.1002/wrna.1714] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022]
Abstract
Recent efforts to identify RNA binding proteins in various organisms and cellular contexts have yielded a large collection of proteins that are capable of RNA binding in the absence of conventional RNA recognition domains. Many of the recently identified RNA interaction motifs fall into intrinsically disordered protein regions (IDRs). While the recognition mode and specificity of globular RNA binding elements have been thoroughly investigated and described, much less is known about the way IDRs can recognize their RNA partners. Our aim was to summarize the current state of structural knowledge on the RNA binding modes of disordered protein regions and to propose a classification system based on their sequential and structural properties. Through a detailed structural analysis of the complexes that contain disordered protein regions binding to RNA, we found two major binding modes that represent different recognition strategies and, most likely, functions. We compared these examples with DNA binding disordered proteins and found key differences stemming from the nucleic acids as well as similar binding strategies, implying a broader substrate acceptance by these proteins. Due to the very limited number of known structures, we integrated molecular dynamics simulations in our study, whose results support the proposed structural preferences of specific RNA‐binding IDRs. To broaden the scope of our review, we included a brief analysis of RNA‐binding small molecules and compared their structural characteristics and RNA recognition strategies to the RNA‐binding IDRs. This article is categorized under:RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Interactions with Proteins and Other Molecules > Protein–RNA Recognition RNA Interactions with Proteins and Other Molecules > Small Molecule–RNA Interactions
Collapse
Affiliation(s)
- András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Éva Schád
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Horváth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rawan Abukhairan
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Beáta Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
9
|
Negi I, Mahmi AS, Seelam Prabhakar P, Sharma P. Molecular Dynamics Simulations of the Aptamer Domain of Guanidinium Ion Binding Riboswitch ykkC-III: Structural Insights into the Discrimination of Cognate and Alternate Ligands. J Chem Inf Model 2021; 61:5243-5255. [PMID: 34609872 DOI: 10.1021/acs.jcim.1c01022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Guanidinium ion is a toxic cellular metabolite. The ykkC-III riboswitch, an mRNA stretch, regulates the gene expression by undergoing a conformational change in response to the binding of a free guanidinium ion and thereby plays a potentially important role in alleviating guanidinium toxicity in cells. An experimental crystal structure of the guanidinium-bound aptamer domain of the riboswitch from Thermobifida Fusca revealed the overall RNA architecture and mapped the specific noncovalent interactions that stabilize the ligand within the binding pocket aptamer. However, details of how the aptamer domain discriminates the cognate ligand from its closest structurally analogous physiological metabolites (arginine and urea), and how the binding of cognate ligand arrays information from the aptamer domain to the expression platform for regulating the gene expression, are not well understood. To fill this void, we perform a cumulative of 2 μs all-atom explicit-solvent molecular dynamics (MD) simulations on the full aptamer domain, augmented with quantum-chemical calculations on the ligand-binding pocket, to compare the structural and dynamical details of the guanidinium-bound state with the arginine or urea bound states, as well as the unbound (open) state. Analysis of the ligand-binding pocket reveals that due to unfavorable interactions with the binding-pocket residues, urea cannot bind the aptamer domain and thereby cannot alter the gene expression. Although interaction of the guanidyl moiety of arginine within the binding pocket is either comparable or stronger than the guanidinium ion, additional non-native hydrogen-bonding networks, as well as differences in the dynamical details of the arginine-bound state, explain why arginine cannot transmit the information from the aptamer domain to the expression platform. Based on our simulations, we propose a mechanism of how the aptamer domain communicates with the expression platform. Overall, our work provides interesting insights into the ligand recognition by a specific class of riboswitches and may hopefully inspire future studies to further understand the gene regulation by riboswitches.
Collapse
Affiliation(s)
- Indu Negi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Amanpreet Singh Mahmi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Preethi Seelam Prabhakar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|