1
|
Kawaguchi S, Isshiki W, Kai T. Factories without walls: The molecular architecture and functions of non-membrane organelles in small RNA-guided genome protection. Biochim Biophys Acta Gen Subj 2025; 1869:130811. [PMID: 40319768 DOI: 10.1016/j.bbagen.2025.130811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Non-membrane organelles, Yb body and nuage, play an essential role in piRNA-guided genome defense in Drosophila gonad by mediating piRNA biogenesis and transposon silencing. Yb body, found in somatic follicle cells, is responsible for primary piRNA processing, while nuage, located in germline cells, facilitates the ping-pong cycle to amplify the piRNAs corresponding to both sense and antisense strands of the expressed transposons. These organelles are assembled by liquid-liquid phase separation (LLPS) and protein-protein interactions, integrating RNA helicases (Vasa, Armitage), Tudor domain-containing proteins (Krimper, Tejas, Qin/Kumo), and proteins containing both domains (Yb, SoYb, Spn-E). Within these condensates, we summarize the protein-protein interactions experimentally validated and predicted by AlphaFold3, providing new structural insights into the non-membrane organelle assembly. This review highlights how the dynamic organization of Yb body and nuage enables efficient RNA processing, ensuring transposon suppression and genome stability.
Collapse
Affiliation(s)
- Shinichi Kawaguchi
- Graduate School of Frontier Biosciences, The University of Osaka, Osaka 565-0871, Japan.
| | - Wakana Isshiki
- Graduate School of Frontier Biosciences, The University of Osaka, Osaka 565-0871, Japan
| | - Toshie Kai
- Graduate School of Frontier Biosciences, The University of Osaka, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Suyama R, Kai T. piRNA processing within non-membrane structures is governed by constituent proteins and their functional motifs. FEBS J 2024. [PMID: 39739617 DOI: 10.1111/febs.17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/23/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Abstract
Discovered two decades ago, PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements (TEs) in animal gonads, thereby protecting the germline genome from harmful transposition, and ensuring species continuity. Silencing of TEs is achieved through transcriptional and post-transcriptional suppression by piRNAs and the PIWI clade of Argonaute proteins within non-membrane structured organelle. These structures are composed of proteins involved in piRNA processing, including PIWIs and other proteins by distinct functional motifs such as the Tudor domain, LOTUS, and intrinsic disordered regions (IDRs). This review highlights recent advances in understanding the roles of these conserved proteins and structural motifs in piRNA biogenesis. We explore the molecular mechanisms of piRNA biogenesis, with a primary focus on Drosophila as a model organism, identifying common themes and species-specific variations. Additionally, we extend the discussion to the roles of these components in nongonadal tissues.
Collapse
Affiliation(s)
- Ritsuko Suyama
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
3
|
Pouclet A, Pflieger D, Merret R, Carpentier MC, Schiaffini M, Zuber H, Gagliardi D, Garcia D. Multi-transcriptomics identifies targets of the endoribonuclease DNE1 and highlights its coordination with decapping. THE PLANT CELL 2024; 36:3674-3688. [PMID: 38869231 PMCID: PMC11371186 DOI: 10.1093/plcell/koae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Decapping is a crucial step in mRNA degradation in eucaryotes and requires the formation of a holoenzyme complex between the decapping enzyme DECAPPING 2 (DCP2) and the decapping enhancer DCP1. In Arabidopsis (Arabidopsis thaliana), DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1) is a direct protein partner of DCP1. The function of both DNE1 and decapping is necessary to maintain phyllotaxis, the regularity of organ emergence in the apex. In this study, we combined in vivo mRNA editing, RNA degradome sequencing, transcriptomics, and small RNA-omics to identify targets of DNE1 and study how DNE1 and DCP2 cooperate in controlling mRNA fate. Our data reveal that DNE1 mainly contacts and cleaves mRNAs in the coding sequence and has sequence cleavage preferences. DNE1 targets are also degraded through decapping, and both RNA degradation pathways influence the production of mRNA-derived small interfering RNAs. Finally, we detected mRNA features enriched in DNE1 targets including RNA G-quadruplexes and translated upstream open reading frames. Combining these four complementary high-throughput sequencing strategies greatly expands the range of DNE1 targets and allowed us to build a conceptual framework describing the influence of DNE1 and decapping on mRNA fate. These data will be crucial to unveil the specificity of DNE1 action and understand its importance for developmental patterning.
Collapse
Affiliation(s)
- Aude Pouclet
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Rémy Merret
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096, 66000 Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096, 66000 Perpignan, France
| | - Marlene Schiaffini
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
4
|
Mimura M, Ono S, Somashekar H, Nonomura KI. Impact of protein domains on the MEL2 granule, a cytoplasmic ribonucleoprotein complex maintaining faithful meiosis progression in rice. THE NEW PHYTOLOGIST 2024; 243:2235-2250. [PMID: 39049570 DOI: 10.1111/nph.19968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Cytoplasmic ribonucleoprotein (RNP) granules are membraneless structures composed of various RNAs and proteins that play important roles in post-transcriptional regulation. While RNP granules are known to regulate the meiotic entry in some organisms, little is known about their roles in plants. In this study, we observed the cytoplasmic granular structures of rice RNA-binding protein MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2), which contributes to the control of meiotic entry timing, in leaf protoplasts and spore mother cells. We performed colocalization analysis with known cytoplasmic RNP factors, and domain deletion analysis to assess their impact on granule formation and meiosis progression. Conservation of MEL2 domains across plant species was also explored. Our results indicated that MEL2 granules colocalized with processing body and stress granule factors. The maintenance of granule properties modulated by LOTUS domain and the intrinsically disordered region (IDR) is essential for proper MEL2 function in meiosis progression. MEL2-like proteins widely found in plant kingdom conserved LOTUS domain followed by the IDR despite their diverse domain structures, suggesting the functional conservation of these domains among plant species. This study highlights the role of MEL2 granule dynamics and its impact on meiotic transition and progression.
Collapse
Affiliation(s)
- Manaki Mimura
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Seijiro Ono
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Harsha Somashekar
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
5
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Kubíková J, Ubartaitė G, Metz J, Jeske M. Structural basis for binding of Drosophila Smaug to the GPCR Smoothened and to the germline inducer Oskar. Proc Natl Acad Sci U S A 2023; 120:e2304385120. [PMID: 37523566 PMCID: PMC10410706 DOI: 10.1073/pnas.2304385120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
Drosophila Smaug and its orthologs comprise a family of mRNA repressor proteins that exhibit various functions during animal development. Smaug proteins contain a characteristic RNA-binding sterile-α motif (SAM) domain and a conserved but uncharacterized N-terminal domain (NTD). Here, we resolved the crystal structure of the NTD of the human SAM domain-containing protein 4A (SAMD4A, a.k.a. Smaug1) to 1.6 Å resolution, which revealed its composition of a homodimerization D subdomain and a subdomain with similarity to a pseudo-HEAT-repeat analogous topology (PHAT) domain. Furthermore, we show that Drosophila Smaug directly interacts with the Drosophila germline inducer Oskar and with the Hedgehog signaling transducer Smoothened through its NTD. We determined the crystal structure of the NTD of Smaug in complex with a Smoothened α-helical peptide to 2.0 Å resolution. The peptide binds within a groove that is formed by both the D and PHAT subdomains. Structural modeling supported by experimental data suggested that an α-helix within the disordered region of Oskar binds to the NTD of Smaug in a mode similar to Smoothened. Together, our data uncover the NTD of Smaug as a peptide-binding domain.
Collapse
Affiliation(s)
- Jana Kubíková
- Biochemistry Center, Heidelberg University, Heidelberg69120, Germany
| | | | - Jutta Metz
- Biochemistry Center, Heidelberg University, Heidelberg69120, Germany
| | - Mandy Jeske
- Biochemistry Center, Heidelberg University, Heidelberg69120, Germany
| |
Collapse
|
7
|
Nagarajan VK, Stuart CJ, DiBattista AT, Accerbi M, Caplan JL, Green PJ. RNA degradome analysis reveals DNE1 endoribonuclease is required for the turnover of diverse mRNA substrates in Arabidopsis. THE PLANT CELL 2023; 35:1936-1955. [PMID: 37070465 PMCID: PMC10226599 DOI: 10.1093/plcell/koad085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 05/30/2023]
Abstract
In plants, cytoplasmic mRNA decay is critical for posttranscriptionally controlling gene expression and for maintaining cellular RNA homeostasis. Arabidopsis DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1) is a cytoplasmic mRNA decay factor that interacts with proteins involved in mRNA decapping and nonsense-mediated mRNA decay (NMD). There is limited information on the functional role of DNE1 in RNA turnover, and the identities of its endogenous targets are unknown. In this study, we utilized RNA degradome approaches to globally investigate DNE1 substrates. Monophosphorylated 5' ends, produced by DNE1, should accumulate in mutants lacking the cytoplasmic exoribonuclease XRN4, but be absent from DNE1 and XRN4 double mutants. In seedlings, we identified over 200 such transcripts, most of which reflect cleavage within coding regions. While most DNE1 targets were NMD-insensitive, some were upstream ORF (uORF)-containing and NMD-sensitive transcripts, indicating that this endoribonuclease is required for turnover of a diverse set of mRNAs. Transgenic plants expressing DNE1 cDNA with an active-site mutation in the endoribonuclease domain abolished the in planta cleavage of transcripts, demonstrating that DNE1 endoribonuclease activity is required for cleavage. Our work provides key insights into the identity of DNE1 substrates and enhances our understanding of DNE1-mediated mRNA decay.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Catherine J Stuart
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Anna T DiBattista
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Monica Accerbi
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Jeffrey L Caplan
- Bio-Imaging Center, Delaware Biotechnology Institute, University of
Delaware, Newark, DE 19713-1316, USA
| | - Pamela J Green
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| |
Collapse
|
8
|
Volná A, Bartas M, Nezval J, Pech R, Pečinka P, Špunda V, Červeň J. Beyond the Primary Structure of Nucleic Acids: Potential Roles of Epigenetics and Noncanonical Structures in the Regulations of Plant Growth and Stress Responses. Methods Mol Biol 2023; 2642:331-361. [PMID: 36944887 DOI: 10.1007/978-1-0716-3044-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Epigenetics deals with changes in gene expression that are not caused by modifications in the primary sequence of nucleic acids. These changes beyond primary structures of nucleic acids not only include DNA/RNA methylation, but also other reversible conversions, together with histone modifications or RNA interference. In addition, under particular conditions (such as specific ion concentrations or protein-induced stabilization), the right-handed double-stranded DNA helix (B-DNA) can form noncanonical structures commonly described as "non-B DNA" structures. These structures comprise, for example, cruciforms, i-motifs, triplexes, and G-quadruplexes. Their formation often leads to significant differences in replication and transcription rates. Noncanonical RNA structures have also been documented to play important roles in translation regulation and the biology of noncoding RNAs. In human and animal studies, the frequency and dynamics of noncanonical DNA and RNA structures are intensively investigated, especially in the field of cancer research and neurodegenerative diseases. In contrast, noncanonical DNA and RNA structures in plants have been on the fringes of interest for a long time and only a few studies deal with their formation, regulation, and physiological importance for plant stress responses. Herein, we present a review focused on the main fields of epigenetics in plants and their possible roles in stress responses and signaling, with special attention dedicated to noncanonical DNA and RNA structures.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
9
|
Anqi Y, Saina Y, Chujie C, Yanfei Y, Xiangwei T, Jiajia M, Jiaojiao X, Maoliang R, Bin C. Regulation of DNA methylation during the testicular development of Shaziling pigs. Genomics 2022; 114:110450. [PMID: 35995261 DOI: 10.1016/j.ygeno.2022.110450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
DNA methylation is one of the key epigenetic regulatory mechanisms in development and spermatogenesis. However, the dynamic regulatory mechanisms of genome-wide DNA methylation during testicular development remain largely unknown. Herein, we generated a single-base resolution DNA methylome and transcriptome atlas of precocious porcine testicular tissues across three developmental stages (1, 75, and 150 days old). The results showed that the dynamic methylation patterns were directly related to the expression of the DNMT3A gene. Conjoint analysis revealed a negative regulatory pattern between promoter methylation and the positive regulation of 3'-untranslated region (3'UTR) methylation. Mechanistically, the decrease in promoter methylation affected the upregulation of meiosis-related genes, such as HORMAD1, SPO11, and SYCE1. Demethylation in the 3'UTR induced the downregulation of the INHBA gene and knockdown of INHBA inhibited cell proliferation by reducing the synthesis of activin A. These findings contribute to exploring the regulatory mechanisms of DNA methylation in testicular development.
Collapse
Affiliation(s)
- Yang Anqi
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yan Saina
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Chen Chujie
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yin Yanfei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Tang Xiangwei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ma Jiajia
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Xiang Jiaojiao
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ran Maoliang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| | - Chen Bin
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| |
Collapse
|
10
|
Marnik EA, Almeida MV, Cipriani PG, Chung G, Caspani E, Karaulanov E, Gan HH, Zinno J, Isolehto IJ, Kielisch F, Butter F, Sharp CS, Flanagan RM, Bonnet FX, Piano F, Ketting RF, Gunsalus KC, Updike DL. The Caenorhabditis elegans TDRD5/7-like protein, LOTR-1, interacts with the helicase ZNFX-1 to balance epigenetic signals in the germline. PLoS Genet 2022; 18:e1010245. [PMID: 35657999 PMCID: PMC9200344 DOI: 10.1371/journal.pgen.1010245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 06/15/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
LOTUS and Tudor domain containing proteins have critical roles in the germline. Proteins that contain these domains, such as Tejas/Tapas in Drosophila, help localize the Vasa helicase to the germ granules and facilitate piRNA-mediated transposon silencing. The homologous proteins in mammals, TDRD5 and TDRD7, are required during spermiogenesis. Until now, proteins containing both LOTUS and Tudor domains in Caenorhabditis elegans have remained elusive. Here we describe LOTR-1 (D1081.7), which derives its name from its LOTUS and Tudor domains. Interestingly, LOTR-1 docks next to P granules to colocalize with the broadly conserved Z-granule helicase, ZNFX-1. The Tudor domain of LOTR-1 is required for its Z-granule retention. Like znfx-1 mutants, lotr-1 mutants lose small RNAs from the 3' ends of WAGO and mutator targets, reminiscent of the loss of piRNAs from the 3' ends of piRNA precursor transcripts in mouse Tdrd5 mutants. Our work shows that LOTR-1 acts with ZNFX-1 to bring small RNA amplifying mechanisms towards the 3' ends of its RNA templates.
Collapse
Affiliation(s)
- Elisabeth A. Marnik
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
- Husson University, Bangor, Maine, United States of America
| | - Miguel V. Almeida
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - P. Giselle Cipriani
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - George Chung
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Edoardo Caspani
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | | | - Hin Hark Gan
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - John Zinno
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Ida J. Isolehto
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | | | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | - Catherine S. Sharp
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
| | - Roisin M. Flanagan
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Frederic X. Bonnet
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
| | - Fabio Piano
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Kristin C. Gunsalus
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Dustin L. Updike
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
11
|
How RNases Shape Mitochondrial Transcriptomes. Int J Mol Sci 2022; 23:ijms23116141. [PMID: 35682820 PMCID: PMC9181182 DOI: 10.3390/ijms23116141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are the power houses of eukaryote cells. These endosymbiotic organelles of prokaryote origin are considered as semi-autonomous since they have retained a genome and fully functional gene expression mechanisms. These pathways are particularly interesting because they combine features inherited from the bacterial ancestor of mitochondria with characteristics that appeared during eukaryote evolution. RNA biology is thus particularly diverse in mitochondria. It involves an unexpectedly vast array of factors, some of which being universal to all mitochondria and others being specific from specific eukaryote clades. Among them, ribonucleases are particularly prominent. They play pivotal functions such as the maturation of transcript ends, RNA degradation and surveillance functions that are required to attain the pool of mature RNAs required to synthesize essential mitochondrial proteins such as respiratory chain proteins. Beyond these functions, mitochondrial ribonucleases are also involved in the maintenance and replication of mitochondrial DNA, and even possibly in the biogenesis of mitochondrial ribosomes. The diversity of mitochondrial RNases is reviewed here, showing for instance how in some cases a bacterial-type enzyme was kept in some eukaryotes, while in other clades, eukaryote specific enzymes were recruited for the same function.
Collapse
|
12
|
Shu H, Zhang R, Xiao K, Yang J, Sun X. G-Quadruplex-Binding Proteins: Promising Targets for Drug Design. Biomolecules 2022; 12:biom12050648. [PMID: 35625576 PMCID: PMC9138358 DOI: 10.3390/biom12050648] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical secondary nucleic acid structures. Sequences with the potential to form G4s are abundant in regulatory regions of the genome including telomeres, promoters and 5′ non-coding regions, indicating they fulfill important genome regulatory functions. Generally, G4s perform various biological functions by interacting with proteins. In recent years, an increasing number of G-quadruplex-binding proteins have been identified with biochemical experiments. G4-binding proteins are involved in vital cellular processes such as telomere maintenance, DNA replication, gene transcription, mRNA processing. Therefore, G4-binding proteins are also associated with various human diseases. An intensive study of G4-protein interactions provides an attractive approach for potential therapeutics and these proteins can be considered as drug targets for novel medical treatment. In this review, we present biological functions and structural properties of G4-binding proteins, and discuss how to exploit G4-protein interactions to develop new therapeutic targets.
Collapse
|
13
|
TDRD5 Is Required for Spermatogenesis and Oogenesis in Locusta migratoria. INSECTS 2022; 13:insects13030227. [PMID: 35323525 PMCID: PMC8953433 DOI: 10.3390/insects13030227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/13/2023]
Abstract
Tudor family proteins exist in all eukaryotic organisms and play a role in many cellular processes by recognizing and binding to proteins with methylated arginine or lysine residues. TDRD5, a member of Tudor domain-containing proteins (TDRDs), has been implicated in the P-element-induced wimpy testis-interacting RNA (piRNA) pathway and germ cell development in some model species, but little is known about its function in other species. Therefore, we identified and characterized LmTDRD5, the TDRD5 ortholog in Locusta migratoria, a hemimetabolous pest. The LmTdrd5 gene has 19 exons that encode a protein possessing a single copy of the Tudor domain and three LOTUS domains at its N-terminus. qRT-PCR analysis revealed a high LmTdrd5 expression level in genital glands. Using RNA interference, LmTdrd5 knockdown in males led to a lag in meiosis phase transition, decreased spermatid elongation and sperm production, and downregulated the expression of the two germ cell-specific transcription factors, LmCREM and LmACT, as well as the sperm tail marker gene LmQrich2.LmTdrd5 knockdown in females reduced the expression levels of vitellogenin (Vg) and Vg receptor (VgR) and impaired ovarian development and oocyte maturation, thus decreasing the hatchability rate. These results demonstrate that LmTdrd5 is essential for germ cell development and fertility in locusts, indicating a conserved function for TDRD5.
Collapse
|
14
|
Schiaffini M, Chicois C, Pouclet A, Chartier T, Ubrig E, Gobert A, Zuber H, Mutterer J, Chicher J, Kuhn L, Hammann P, Gagliardi D, Garcia D. A NYN domain protein directly interacts with DECAPPING1 and is required for phyllotactic pattern. PLANT PHYSIOLOGY 2022; 188:1174-1188. [PMID: 34791434 PMCID: PMC8825452 DOI: 10.1093/plphys/kiab529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 06/01/2023]
Abstract
In eukaryotes, general mRNA decay requires the decapping complex. The activity of this complex depends on its catalytic subunit, DECAPPING2 (DCP2), and its interaction with decapping enhancers, including its main partner DECAPPING1 (DCP1). Here, we report that in Arabidopsis thaliana, DCP1 also interacts with a NYN domain endoribonuclease, hence named DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1). Interestingly, we found DNE1 predominantly associated with DCP1, but not with DCP2, and reciprocally, suggesting the existence of two distinct protein complexes. We also showed that the catalytic residues of DNE1 are required to repress the expression of mRNAs in planta upon transient expression. The overexpression of DNE1 in transgenic lines led to growth defects and a similar gene deregulation signature than inactivation of the decapping complex. Finally, the combination of dne1 and dcp2 mutations revealed a functional redundancy between DNE1 and DCP2 in controlling phyllotactic pattern formation. Our work identifies DNE1, a hitherto unknown DCP1 protein partner highly conserved in the plant kingdom and identifies its importance for developmental robustness.
Collapse
Affiliation(s)
- Marlene Schiaffini
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Clara Chicois
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Aude Pouclet
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Tiphaine Chartier
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Elodie Ubrig
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anthony Gobert
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jérôme Mutterer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Lachke SA. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Exp Eye Res 2022; 214:108889. [PMID: 34906599 PMCID: PMC8792301 DOI: 10.1016/j.exer.2021.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023]
Abstract
Development of the ocular lens - a transparent tissue capable of sustaining frequent shape changes for optimal focusing power - pushes the boundaries of what cells can achieve using the molecular toolkit encoded by their genomes. The mammalian lens contains broadly two types of cells, the anteriorly located monolayer of epithelial cells which, at the equatorial region of the lens, initiate differentiation into fiber cells that contribute to the bulk of the tissue. This differentiation program involves massive upregulation of select fiber cell-expressed RNAs and their subsequent translation into high amounts of proteins, such as crystallins. But intriguingly, fiber cells achieve this while also simultaneously undergoing significant morphological changes such as elongation - involving about 1000-fold length-wise increase - and migration, which requires modulation of cytoskeletal and cell adhesion factors. Adding further to the challenges, these molecular and cellular events have to be coordinated as fiber cells progress toward loss of their nuclei and organelles, which irreversibly compromises their potential for harnessing genetically hardwired information. A long-standing question is how processes downstream of signaling and transcription, which may also participate in feedback regulation, contribute toward orchestrating these cellular differentiation events in the lens. It is now becoming clear from findings over the past decade that post-transcriptional gene expression regulatory mechanisms are critical in controlling cellular proteomes and coordinating key processes in lens development and fiber cell differentiation. Indeed, RNA-binding proteins (RBPs) such as Caprin2, Celf1, Rbm24 and Tdrd7 have now been described in mediating post-transcriptional control over key factors (e.g. Actn2, Cdkn1a (p21Cip1), Cdkn1b (p27Kip1), various crystallins, Dnase2b, Hspb1, Pax6, Prox1, Sox2) that are variously involved in cell cycle, transcription, cytoskeleton maintenance and differentiation in the lens. Furthermore, deficiencies of these RBPs have been shown to result in various eye and lens defects and/or cataract. Because fiber cell differentiation in the lens occurs throughout life, the underlying regulatory mechanisms operational in development are expected to also be recruited for the maintenance of transparency in aged lenses. Indeed, in support of this, TDRD7 and CAPRIN2 loci have been linked to age-related cataract in humans. Here, I will review the role of key RBPs in the lens and their importance in understanding the pathology of lens defects. I will discuss advances in RBP-based gene expression control, in general, and the important challenges that need to be addressed in the lens to define the mechanisms that determine the epithelial and fiber cell proteome. Finally, I will also discuss in detail several key future directions including the application of bioinformatics approaches such as iSyTE to study RBP-based post-transcriptional gene expression control in the aging lens and in the context of age-related cataract.
Collapse
Affiliation(s)
- Salil A Lachke
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA; Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
16
|
Lyu K, Chow EYC, Mou X, Chan TF, Kwok CK. RNA G-quadruplexes (rG4s): genomics and biological functions. Nucleic Acids Res 2021; 49:5426-5450. [PMID: 33772593 PMCID: PMC8191793 DOI: 10.1093/nar/gkab187] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes (G4s) are non-classical DNA or RNA secondary structures that have been first observed decades ago. Over the years, these four-stranded structural motifs have been demonstrated to have significant regulatory roles in diverse biological processes, but challenges remain in detecting them globally and reliably. Compared to DNA G4s (dG4s), the study of RNA G4s (rG4s) has received less attention until recently. In this review, we will summarize the innovative high-throughput methods recently developed to detect rG4s on a transcriptome-wide scale, highlight the many novel and important functions of rG4 being discovered in vivo across the tree of life, and discuss the key biological questions to be addressed in the near future.
Collapse
Affiliation(s)
- Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Eugene Yui-Ching Chow
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xi Mou
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
17
|
Cipriani PG, Bay O, Zinno J, Gutwein M, Gan HH, Mayya VK, Chung G, Chen JX, Fahs H, Guan Y, Duchaine TF, Selbach M, Piano F, Gunsalus KC. Novel LOTUS-domain proteins are organizational hubs that recruit C. elegans Vasa to germ granules. eLife 2021; 10:60833. [PMID: 34223818 PMCID: PMC8331183 DOI: 10.7554/elife.60833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
We describe MIP-1 and MIP-2, novel paralogous C. elegans germ granule components that interact with the intrinsically disordered MEG-3 protein. These proteins promote P granule condensation, form granules independently of MEG-3 in the postembryonic germ line, and balance each other in regulating P granule growth and localization. MIP-1 and MIP-2 each contain two LOTUS domains and intrinsically disordered regions and form homo- and heterodimers. They bind and anchor the Vasa homolog GLH-1 within P granules and are jointly required for coalescence of MEG-3, GLH-1, and PGL proteins. Animals lacking MIP-1 and MIP-2 show temperature-sensitive embryonic lethality, sterility, and mortal germ lines. Germline phenotypes include defects in stem cell self-renewal, meiotic progression, and gamete differentiation. We propose that these proteins serve as scaffolds and organizing centers for ribonucleoprotein networks within P granules that help recruit and balance essential RNA processing machinery to regulate key developmental transitions in the germ line.
Collapse
Affiliation(s)
- Patricia Giselle Cipriani
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Olivia Bay
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - John Zinno
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Michelle Gutwein
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Vinay K Mayya
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - George Chung
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Jia-Xuan Chen
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Hala Fahs
- NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yu Guan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Thomas F Duchaine
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Fabio Piano
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Tao Y, Zheng Y, Zhai Q, Wei D. Recent advances in the development of small molecules targeting RNA G-quadruplexes for drug discovery. Bioorg Chem 2021; 110:104804. [PMID: 33740677 DOI: 10.1016/j.bioorg.2021.104804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Extensive evidence indicates that RNA G-quadruplexes have associated with some important cellular events. Investigation of RNA G-quadruplexes is thus vital to revealing their biofunctions. Several small molecules have been developed to target RNA G-quadruplexes to date. Some of the small molecules showed significantly light-up fluorescence signals upon binding to RNA G-quadruplexes, while some of them regulated the biofunctions of RNA G-quadruplexes. In this mini-review, the small molecules divided into four kinds are expounded which focused mainly on their structural features and biological activities. Moreover, we raised the current challenges and promising prospects. This mini-review might contribute to exploiting more sophisticated small molecules targeting RNA G-quadruplexes with high specificity based on the reported chemical structural features.
Collapse
Affiliation(s)
- Yanfei Tao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingge Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Zhai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Kubíková J, Reinig R, Salgania HK, Jeske M. LOTUS-domain proteins - developmental effectors from a molecular perspective. Biol Chem 2020; 402:7-23. [DOI: 10.1515/hsz-2020-0270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Abstract
The LOTUS domain (also known as OST-HTH) is a highly conserved protein domain found in a variety of bacteria and eukaryotes. In animals, the LOTUS domain is present in the proteins Oskar, TDRD5/Tejas, TDRD7/TRAP/Tapas, and MARF1/Limkain B1, all of which play essential roles in animal development, in particular during oogenesis and/or spermatogenesis. This review summarizes the diverse biological as well as molecular functions of LOTUS-domain proteins and discusses their roles as helicase effectors, post-transcriptional regulators, and critical cofactors of piRNA-mediated transcript silencing.
Collapse
Affiliation(s)
- Jana Kubíková
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Rebecca Reinig
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Harpreet Kaur Salgania
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| |
Collapse
|