1
|
Lee MK, Park NH, Lee SY, Kim T. Context-Dependent and Locus-Specific Role of H3K36 Methylation in Transcriptional Regulation. J Mol Biol 2025; 437:168796. [PMID: 39299382 DOI: 10.1016/j.jmb.2024.168796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
H3K36 methylation is a critical histone modification involved in transcription regulation. It involves the mono (H3K36me1), di (H3K36me2), and/or tri-methylation (H3K36me3) of lysine 36 on histone H3 by methyltransferases. In yeast, Set2 catalyzes all three methylation states. By contrast, in higher eukaryotes, at least eight methyltransferases catalyze different methylation states, including SETD2 for H3K36me3 and the NSD family for H3K36me2 in vivo. Both Set2 and SETD2 interact with the phosphorylated CTD of RNA Pol II, which links H3K36 methylation to transcription. In yeast, H3K36me3 and H3K36me2 peak at the 3' ends of genes. In higher eukaryotes, this is also true for H3K36me3 but not for H3K36me2, which is enriched at the 5' ends of genes and intergenic regions, suggesting that H3K36me2 and H3K36me3 may play different regulatory roles. Whether H3K36me1 demonstrates preferential distribution remains unclear. H3K36me3 is essential for inhibiting transcription elongation. It also suppresses cryptic transcription by promoting histone deacetylation by the histone deacetylases Rpd3S (yeast) and variant NuRD (higher eukaryotes). H3K36me3 also facilitates DNA methylation by DNMT3B, thereby preventing spurious transcription initiation. H3K36me3 not only represses transcription since it promotes the activation of mRNA and cryptic promoters in response to environmental changes by targeting the histone acetyltransferase NuA3 in yeast. Further research is needed to elucidate the methylation state- and locus-specific functions of H3K36me1 and the mechanisms that regulate it.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Na Hyun Park
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Young Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - TaeSoo Kim
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Mumford CC, Tanizawa H, Wiles ET, McNaught KJ, Jamieson K, Tsukamoto K, Selker EU. The RPD3L deacetylation complex is required for facultative heterochromatin repression in Neurospora crassa. Proc Natl Acad Sci U S A 2024; 121:e2404770121. [PMID: 39074265 PMCID: PMC11317574 DOI: 10.1073/pnas.2404770121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Repression of facultative heterochromatin is essential for developmental processes in numerous organisms. Methylation of histone H3 lysine 27 (H3K27) by Polycomb repressive complex 2 is a prominent feature of facultative heterochromatin in both fungi and higher eukaryotes. Although this methylation is frequently associated with silencing, the detailed mechanism of repression remains incompletely understood. We utilized a forward genetics approach to identify genes required to maintain silencing at facultative heterochromatin genes in Neurospora crassa and identified three previously uncharacterized genes that are important for silencing: sds3 (NCU01599), rlp1 (RPD3L protein 1; NCU09007), and rlp2 (RPD3L protein 2; NCU02898). We found that SDS3, RLP1, and RLP2 associate with N. crassa homologs of the Saccharomyces cerevisiae Rpd3L complex and are required for repression of a subset of H3K27-methylated genes. Deletion of these genes does not lead to loss of H3K27 methylation but increases acetylation of histone H3 lysine 14 at up-regulated genes, suggesting that RPD3L-driven deacetylation is a factor required for silencing of facultative heterochromatin in N. crassa, and perhaps in other organisms.
Collapse
Affiliation(s)
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | | | - Kevin J. McNaught
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | - Kirsty Jamieson
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | - Kenta Tsukamoto
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| |
Collapse
|
3
|
Woo H, Oh J, Cho YJ, Oh GT, Kim SY, Dan K, Han D, Lee JS, Kim T. N-terminal acetylation of Set1-COMPASS fine-tunes H3K4 methylation patterns. SCIENCE ADVANCES 2024; 10:eadl6280. [PMID: 38996018 PMCID: PMC11244526 DOI: 10.1126/sciadv.adl6280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
H3K4 methylation by Set1-COMPASS (complex of proteins associated with Set1) is a conserved histone modification. Although it is critical for gene regulation, the posttranslational modifications of this complex that affect its function are largely unexplored. This study showed that N-terminal acetylation of Set1-COMPASS proteins by N-terminal acetyltransferases (NATs) can modulate H3K4 methylation patterns. Specifically, deleting NatA substantially decreased global H3K4me3 levels and caused the H3K4me2 peak in the 5' transcribed regions to shift to the promoters. NatA was required for N-terminal acetylation of three subunits of Set1-COMPASS: Shg1, Spp1, and Swd2. Moreover, deleting Shg1 or blocking its N-terminal acetylation via proline mutation of the target residue drastically reduced H3K4 methylation. Thus, NatA-mediated N-terminal acetylation of Shg1 shapes H3K4 methylation patterns. NatB also regulates H3K4 methylation, likely via N-terminal acetylation of the Set1-COMPASS protein Swd1. Thus, N-terminal acetylation of Set1-COMPASS proteins can directly fine-tune the functions of this complex, thereby substantially shaping H3K4 methylation patterns.
Collapse
Affiliation(s)
- Hyeonju Woo
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Goo Taeg Oh
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03082, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - TaeSoo Kim
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
4
|
Shukri AH, Lukinović V, Charih F, Biggar KK. Unraveling the battle for lysine: A review of the competition among post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194990. [PMID: 37748678 DOI: 10.1016/j.bbagrm.2023.194990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Proteins play a critical role as key regulators in various biological systems, influencing crucial processes such as gene expression, cell cycle progression, and cellular proliferation. However, the functions of proteins can be further modified through post-translational modifications (PTMs), which expand their roles and contribute to disease progression when dysregulated. In this review, we delve into the methodologies employed for the characterization of PTMs, shedding light on the techniques and tools utilized to help unravel their complexity. Furthermore, we explore the prevalence of crosstalk and competition that occurs between different types of PTMs, specifically focusing on both histone and non-histone proteins. The intricate interplay between different modifications adds an additional layer of regulation to protein function and cellular processes. To gain insights into the competition for lysine residues among various modifications, computational systems such as MethylSight have been developed, allowing for a comprehensive analysis of the modification landscape. Additionally, we provide an overview of the exciting developments in the field of inhibitors or drugs targeting PTMs, highlighting their potential in combatting prevalent diseases. The discovery and development of drugs that modulate PTMs present promising avenues for therapeutic interventions, offering new strategies to address complex diseases. As research progresses in this rapidly evolving field, we anticipate remarkable advancements in our understanding of PTMs and their roles in health and disease, ultimately paving the way for innovative treatment approaches.
Collapse
Affiliation(s)
- Ali H Shukri
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Valentina Lukinović
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - François Charih
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada; Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Song C, Liu X, Lin W, Lai K, Pan S, Lu Z, Li D, Li N, Geng Q. Systematic analysis of histone acetylation regulators across human cancers. BMC Cancer 2023; 23:733. [PMID: 37553641 PMCID: PMC10408135 DOI: 10.1186/s12885-023-11220-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Histone acetylation (HA) is an important and common epigenetic pathway, which could be hijacked by tumor cells during carcinogenesis and cancer progression. However, the important role of HA across human cancers remains elusive. METHODS In this study, we performed a comprehensive analysis at multiple levels, aiming to systematically describe the molecular characteristics and clinical relevance of HA regulators in more than 10000 tumor samples representing 33 cancer types. RESULTS We found a highly heterogeneous genetic alteration landscape of HA regulators across different human cancer types. CNV alteration may be one of the major mechanisms leading to the expression perturbations in HA regulators. Furthermore, expression perturbations of HA regulators correlated with the activity of multiple hallmark oncogenic pathways. HA regulators were found to be potentially useful for the prognostic stratification of kidney renal clear cell carcinoma (KIRC). Additionally, we identified HDAC3 as a potential oncogene in lung adenocarcinoma (LUAD). CONCLUSION Overall, our results highlights the importance of HA regulators in cancer development, which may contribute to the development of clinical strategies for cancer treatment.
Collapse
Affiliation(s)
- Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Xinfei Liu
- Department of Hematology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Weichen Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Kai Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Donghang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
6
|
Guan H, Wang P, Zhang P, Ruan C, Ou Y, Peng B, Zheng X, Lei J, Li B, Yan C, Li H. Diverse modes of H3K36me3-guided nucleosomal deacetylation by Rpd3S. Nature 2023; 620:669-675. [PMID: 37468628 PMCID: PMC10432269 DOI: 10.1038/s41586-023-06349-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Context-dependent dynamic histone modifications constitute a key epigenetic mechanism in gene regulation1-4. The Rpd3 small (Rpd3S) complex recognizes histone H3 trimethylation on lysine 36 (H3K36me3) and deacetylates histones H3 and H4 at multiple sites across transcribed regions5-7. Here we solved the cryo-electron microscopy structures of Saccharomyces cerevisiae Rpd3S in its free and H3K36me3 nucleosome-bound states. We demonstrated a unique architecture of Rpd3S, in which two copies of Eaf3-Rco1 heterodimers are asymmetrically assembled with Rpd3 and Sin3 to form a catalytic core complex. Multivalent recognition of two H3K36me3 marks, nucleosomal DNA and linker DNAs by Eaf3, Sin3 and Rco1 positions the catalytic centre of Rpd3 next to the histone H4 N-terminal tail for deacetylation. In an alternative catalytic mode, combinatorial readout of unmethylated histone H3 lysine 4 and H3K36me3 by Rco1 and Eaf3 directs histone H3-specific deacetylation except for the registered histone H3 acetylated lysine 9. Collectively, our work illustrates dynamic and diverse modes of multivalent nucleosomal engagement and methylation-guided deacetylation by Rpd3S, highlighting the exquisite complexity of epigenetic regulation with delicately designed multi-subunit enzymatic machineries in transcription and beyond.
Collapse
Affiliation(s)
- Haipeng Guan
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Pei Wang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Pei Zhang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Chun Ruan
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutian Ou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Bo Peng
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Xiangdong Zheng
- Research Center of Basic Medicine, Academy of Medical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Jianlin Lei
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
- Technology Center for Protein Sciences, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, MOE Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China.
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Haitao Li
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
7
|
Xu H, Ye M, Xia A, Jiang H, Huang P, Liu H, Hou R, Wang Q, Li D, Xu JR, Jiang C. The Fng3 ING protein regulates H3 acetylation and H4 deacetylation by interacting with two distinct histone-modifying complexes. THE NEW PHYTOLOGIST 2022; 235:2350-2364. [PMID: 35653584 DOI: 10.1111/nph.18294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/30/2022] [Indexed: 05/26/2023]
Abstract
The steady-state level of histone acetylation is maintained by histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes. INhibitor of Growth (ING) proteins are key components of the HAT or HDAC complexes but their relationship with other components and roles in phytopathogenic fungi are not well-characterized. Here, the FNG3 ING gene was functionally characterized in the wheat head blight fungus Fusarium graminearum. Deletion of FNG3 results in defects in fungal development and pathogenesis. Unlike other ING proteins that are specifically associated with distinct complexes, Fng3 was associated with both NuA3 HAT and FgRpd3 HDAC complexes to regulate H3 acetylation and H4 deacetylation. Whereas FgNto1 mediates the FgSas3-Fng3 interaction in the NuA3 complex, Fng3 interacted with the C-terminal region of FgRpd3 that is present in Rpd3 orthologs from filamentous fungi but absent in yeast Rpd3. The intrinsically disordered regions in the C-terminal tail of FgRpd3 underwent phase separation, which was important for its interaction with Fng3. Furthermore, the ING domain of Fng3 is responsible for its specificities in protein-protein interactions and functions. Taken together, Fng3 is involved in the dynamic regulation of histone acetylation by interacting with two histone modification complexes, and is important for fungal development and pathogenicity.
Collapse
Affiliation(s)
- Huaijian Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meng Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aliang Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hang Jiang
- Institution of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Hou
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
8
|
Song C, Lin W, Meng H, Li N, Geng Q. Integrated Analysis Reveals the Potential Significance of HDAC Family Genes in Lung Adenocarcinoma. Front Genet 2022; 13:862977. [PMID: 36072664 PMCID: PMC9441483 DOI: 10.3389/fgene.2022.862977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Histone deacetylases comprise a family of 18 genes, and classical HDACs are a promising class of novel anticancer drug targets. However, to date, no systematic study has been comprehensive to reveal the potential significance of these 18 genes in lung adenocarcinoma (LUAD). Here, we used a systematic bioinformatics approach to comprehensively describe the biological characteristics of the HDACs in LUAD. Unsupervised consensus clustering was performed to identify LUAD molecular subtypes. The ssGSEA, CIBERSORT, MCP counter, and ESTIMATE algorithms were used to depict the tumor microenvironment (TME) landscape. The Cox proportional hazards model and LASSO regression analyses were used to construct the HDAC scoring system for evaluating the prognosis of individual tumors. In this study, three distinct HDAC-mediated molecular subtypes were determined, which were also related to different clinical outcomes and biological pathways. HDACsCluster-C subtype had lowest PD-L1/PD-1/CTLA4 expression and immune score. The constructed HDAC scoring system (HDACsScore) could be used as an independent predictor to assess patient prognosis and effectively identify patients with different prognosis. High- and low-HDACsScore groups presented distinct genetic features, immune infiltration, and biological processes. The high-HDACsScore group was more likely to benefit from immunotherapy, as well as from the application of common chemotherapeutic agents (cyclopamine, docetaxel, doxorubicin, gemcitabine, paclitaxel, and pyrimethamine). Overall, HDAC family genes play important roles in LUAD, and the three LUAD subtypes and the HDAC scoring system identified in this study would help enhance our perception of LUAD prognostic differences and provide important insights into the efficacy of immunotherapy and chemotherapy.
Collapse
|
9
|
Keshavarz Alikhani H, Pourhamzeh M, Seydi H, Shokoohian B, Hossein-khannazer N, Jamshidi-adegani F, Al-Hashmi S, Hassan M, Vosough M. Regulatory Non-Coding RNAs in Familial Hypercholesterolemia, Theranostic Applications. Front Cell Dev Biol 2022; 10:894800. [PMID: 35813199 PMCID: PMC9260315 DOI: 10.3389/fcell.2022.894800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a common monogenic disease which is associated with high serum levels of low-density lipoprotein cholesterol (LDL-C) and leads to atherosclerosis and cardiovascular disease (CVD). Early diagnosis and effective treatment strategy can significantly improve prognosis. Recently, non-coding RNAs (ncRNAs) have emerged as novel biomarkers for the diagnosis and innovative targets for therapeutics. Non-coding RNAs have essential roles in the regulation of LDL-C homeostasis, suggesting that manipulation and regulating ncRNAs could be a promising theranostic approach to ameliorate clinical complications of FH, particularly cardiovascular disease. In this review, we briefly discussed the mechanisms and pathophysiology of FH and novel therapeutic strategies for the treatment of FH. Moreover, the theranostic effects of different non-coding RNAs for the treatment and diagnosis of FH were highlighted. Finally, the advantages and disadvantages of ncRNA-based therapies vs. conventional therapies were discussed.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jamshidi-adegani
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sulaiman Al-Hashmi
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- *Correspondence: Massoud Vosough,
| |
Collapse
|
10
|
Lee BB, Woo H, Lee MK, Youn S, Lee S, Roe JS, Lee SY, Kim T. Core promoter activity contributes to chromatin-based regulation of internal cryptic promoters. Nucleic Acids Res 2021; 49:8097-8109. [PMID: 34320189 PMCID: PMC8373055 DOI: 10.1093/nar/gkab639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
During RNA polymerase II (RNA Pol II) transcription, the chromatin structure undergoes dynamic changes, including opening and closing of the nucleosome to enhance transcription elongation and fidelity. These changes are mediated by transcription elongation factors, including Spt6, the FACT complex, and the Set2-Rpd3S HDAC pathway. These factors not only contribute to RNA Pol II elongation, reset the repressive chromatin structures after RNA Pol II has passed, thereby inhibiting aberrant transcription initiation from the internal cryptic promoters within gene bodies. Notably, the internal cryptic promoters of infrequently transcribed genes are sensitive to such chromatin-based regulation but those of hyperactive genes are not. To determine why, the weak core promoters of genes that generate cryptic transcripts in cells lacking transcription elongation factors (e.g. STE11) were replaced with those from more active genes. Interestingly, as core promoter activity increased, activation of internal cryptic promoter dropped. This associated with loss of active histone modifications at the internal cryptic promoter. Moreover, environmental changes and transcription elongation factor mutations that downregulated the core promoters of highly active genes concomitantly increased their cryptic transcription. We therefore propose that the chromatin-based regulation of internal cryptic promoters is mediated by core promoter strength as well as transcription elongation factors.
Collapse
Affiliation(s)
- Bo Bae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Hyeonju Woo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Min Kyung Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - SeoJung Youn
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Sumin Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Soo Young Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - TaeSoo Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
11
|
Fng1 is involved in crosstalk between histone acetylation and methylation. Curr Genet 2021; 67:535-538. [PMID: 33641041 DOI: 10.1007/s00294-021-01167-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
The histone modifications usually form complicated networks to regulate accessibility of DNA and transcription. Identification of proteins that are involved in the crosstalk among different histone modifications will help to better understand the epigenetic regulatory network in eukaryotes. The Inhibitor of Growth (ING) proteins represent a tumor suppressor family were first linked to histone modification in yeast and their functions in epigenetic regulation were further characterized. This review summarizes the crosstalk of histone modification in fungi and describes recently achieved mechanistic insights into the role of Fng1 (an ING protein in filamentous ascomycetes) in this process. We conclude that Fng1 is involved in crosstalk among histone acetylation, deacetylation and methylation.
Collapse
|