1
|
Li X, Bie L, Wang Y, Hong Y, Zhou Z, Fan Y, Yan X, Tao Y, Huang C, Zhang Y, Sun X, Li JXH, Zhang J, Chang Z, Xi Q, Meng A, Shen X, Xie W, Liu N. LINE-1 transcription activates long-range gene expression. Nat Genet 2024; 56:1494-1502. [PMID: 38849613 DOI: 10.1038/s41588-024-01789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Long interspersed nuclear element-1 (LINE-1 or L1) is a retrotransposon group that constitutes 17% of the human genome and shows variable expression across cell types. However, the control of L1 expression and its function in gene regulation are incompletely understood. Here we show that L1 transcription activates long-range gene expression. Genome-wide CRISPR-Cas9 screening using a reporter driven by the L1 5' UTR in human cells identifies functionally diverse genes affecting L1 expression. Unexpectedly, altering L1 expression by knockout of regulatory genes impacts distant gene expression. L1s can physically contact their distal target genes, with these interactions becoming stronger upon L1 activation and weaker when L1 is silenced. Remarkably, L1s contact and activate genes essential for zygotic genome activation (ZGA), and L1 knockdown impairs ZGA, leading to developmental arrest in mouse embryos. These results characterize the regulation and function of L1 in long-range gene activation and reveal its importance in mammalian ZGA.
Collapse
Affiliation(s)
- Xiufeng Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Luyao Bie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Wang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yaqiang Hong
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ziqiang Zhou
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiming Fan
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohan Yan
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yibing Tao
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Chunyi Huang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongyan Zhang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xueyan Sun
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - John Xiao He Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Zhang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zai Chang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaoran Xi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anming Meng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohua Shen
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Wei Xie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nian Liu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Pabis K, Barardo D, Sirbu O, Selvarajoo K, Gruber J, Kennedy BK. A concerted increase in readthrough and intron retention drives transposon expression during aging and senescence. eLife 2024; 12:RP87811. [PMID: 38567944 PMCID: PMC10990488 DOI: 10.7554/elife.87811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Aging and senescence are characterized by pervasive transcriptional dysfunction, including increased expression of transposons and introns. Our aim was to elucidate mechanisms behind this increased expression. Most transposons are found within genes and introns, with a large minority being close to genes. This raises the possibility that transcriptional readthrough and intron retention are responsible for age-related changes in transposon expression rather than expression of autonomous transposons. To test this, we compiled public RNA-seq datasets from aged human fibroblasts, replicative and drug-induced senescence in human cells, and RNA-seq from aging mice and senescent mouse cells. Indeed, our reanalysis revealed a correlation between transposons expression, intron retention, and transcriptional readthrough across samples and within samples. Both intron retention and readthrough increased with aging or cellular senescence and these transcriptional defects were more pronounced in human samples as compared to those of mice. In support of a causal connection between readthrough and transposon expression, analysis of models showing induced transcriptional readthrough confirmed that they also show elevated transposon expression. Taken together, our data suggest that elevated transposon reads during aging seen in various RNA-seq dataset are concomitant with multiple transcriptional defects. Intron retention and transcriptional readthrough are the most likely explanation for the expression of transposable elements that lack a functional promoter.
Collapse
Affiliation(s)
- Kamil Pabis
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Centre for Healthy Longevity, National University Health SystemSingaporeSingapore
| | - Diogo Barardo
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Centre for Healthy Longevity, National University Health SystemSingaporeSingapore
| | - Olga Sirbu
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Kumar Selvarajoo
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of SingaporeSingaporeSingapore
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Science Divisions, Yale-NUS CollegeSingaporeSingapore
| | - Brian K Kennedy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Centre for Healthy Longevity, National University Health SystemSingaporeSingapore
| |
Collapse
|
3
|
Kines KJ, Sokolowski M, DeFreece C, Shareef A, deHaro DL, Belancio VP. Large Deletions, Cleavage of the Telomeric Repeat Sequence, and Reverse Transcriptase-Mediated DNA Damage Response Associated with Long Interspersed Element-1 ORF2p Enzymatic Activities. Genes (Basel) 2024; 15:143. [PMID: 38397133 PMCID: PMC10887698 DOI: 10.3390/genes15020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
L1 elements can cause DNA damage and genomic variation via retrotransposition and the generation of endonuclease-dependent DNA breaks. These processes require L1 ORF2p protein that contains an endonuclease domain, which cuts genomic DNA, and a reverse transcriptase domain, which synthesizes cDNA. The complete impact of L1 enzymatic activities on genome stability and cellular function remains understudied, and the spectrum of L1-induced mutations, other than L1 insertions, is mostly unknown. Using an inducible system, we demonstrate that an ORF2p containing functional reverse transcriptase is sufficient to elicit DNA damage response even in the absence of the functional endonuclease. Using a TK/Neo reporter system that captures misrepaired DNA breaks, we demonstrate that L1 expression results in large genomic deletions that lack any signatures of L1 involvement. Using an in vitro cleavage assay, we demonstrate that L1 endonuclease efficiently cuts telomeric repeat sequences. These findings support that L1 could be an unrecognized source of disease-promoting genomic deletions, telomere dysfunction, and an underappreciated source of chronic RT-mediated DNA damage response in mammalian cells. Our findings expand the spectrum of biological processes that can be triggered by functional and nonfunctional L1s, which have impactful evolutionary- and health-relevant consequences.
Collapse
Affiliation(s)
- Kristine J. Kines
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Cecily DeFreece
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Afzaal Shareef
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Dawn L. deHaro
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Liang N, Li C, Zhang N, Xu Q, Zou S, Zhang M, Si S, Zeng L. Effects of NM23 transfection of human gastric carcinoma cells in mice. Open Life Sci 2023; 18:20220610. [PMID: 37250840 PMCID: PMC10224620 DOI: 10.1515/biol-2022-0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 05/31/2023] Open
Abstract
Gastric carcinoma is a frequent malignant tumor worldwide. NM23 plays an important role in pathological processes, including in the occurrence and development of tumors. The purpose of this study is to examine the effect of NM23 transfection of human gastric carcinoma cells (BGC-823) on growth and metastases of BGC-823 abdominal cancer xenografts in nude mice. BGC-823 cells were transfected with an adenovirus vector for NM23 (NM23-OE), transfected with an empty vector (NC), or were not transfected (Ctrl). Eighteen female BALB/c-nu mice were randomly divided into three groups (six per group) according to the type of BGC-823 cells administered by intraperitoneal injection. After 2 weeks, necropsies of mice were performed, abdominal circumferences were measured, and abdominal cavities were searched by ultrasound. In order to observe the xenografts in nude mice, there were gross macroscopic observations and microscopic observations. In addition, immunohistochemical analysis and western blot of NM23 were also performed. Green fluorescence in the NM23-OE and NC cells indicated successful transfection. The multiplicity of infection is 80%. A comparison of the three groups of mice indicated the NM23-OE group had positive conditions (abdominal circumferences: 81.83 ± 2.40 mm), but the other groups had negative conditions and enlarged abdomens (NC: 90.83 ± 2.32 mm; Ctrl: 92.67 ± 2.07 mm). Ultrasound observations confirmed large tumors in the NC and Ctrl groups, but did not find in the NM23-OE group. There were no obvious ascites in the NM23-OE group, but the cytological examination of ascites exfoliation in NC and Ctrl groups indicated that there were large and deep-stained gastric carcinoma cells. Tumor expression of NM23 was greater in the NM23-OE group than in the NC and Ctrl groups (both p < 0.05). In conclusion, transfection of BCG-823 cells with NM23 rather than an empty vector (NC) or no vector (Ctrl) led to reduced growth and metastases of abdominal cancer xenografts in nude mice.
Collapse
Affiliation(s)
- Na Liang
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chunming Li
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Neng Zhang
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Qiang Xu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shengnan Zou
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Meng Zhang
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shuyao Si
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Li Zeng
- Department of Pathology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
5
|
Du Q, Stow EC, LaCoste D, Freeman B, Baddoo M, Shareef A, Miller KM, Belancio VP. A novel role of TRIM28 B box domain in L1 retrotransposition and ORF2p-mediated cDNA synthesis. Nucleic Acids Res 2023; 51:4429-4450. [PMID: 37070200 PMCID: PMC10201437 DOI: 10.1093/nar/gkad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
The long interspersed element 1 (LINE-1 or L1) integration is affected by many cellular factors through various mechanisms. Some of these factors are required for L1 amplification, while others either suppress or enhance specific steps during L1 propagation. Previously, TRIM28 has been identified to suppress transposable elements, including L1 expression via its canonical role in chromatin remodeling. Here, we report that TRIM28 through its B box domain increases L1 retrotransposition and facilitates shorter cDNA and L1 insert generation in cultured cells. Consistent with the latter, we observe that tumor specific L1 inserts are shorter in endometrial, ovarian, and prostate tumors with higher TRIM28 mRNA expression than in those with lower TRIM28 expression. We determine that three amino acids in the B box domain that are involved in TRIM28 multimerization are critical for its effect on both L1 retrotransposition and cDNA synthesis. We provide evidence that B boxes from the other two members in the Class VI TRIM proteins, TRIM24 and TRIM33, also increase L1 retrotransposition. Our findings could lead to a better understanding of the host/L1 evolutionary arms race in the germline and their interplay during tumorigenesis.
Collapse
Affiliation(s)
- Qianhui Du
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Emily C Stow
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Dawn LaCoste
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Benjamin Freeman
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Afzaal M Shareef
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E 24th Street, Austin, TX 78712, USA
| | - Victoria P Belancio
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| |
Collapse
|
6
|
Copley KE, Shorter J. Repetitive elements in aging and neurodegeneration. Trends Genet 2023; 39:381-400. [PMID: 36935218 PMCID: PMC10121923 DOI: 10.1016/j.tig.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
Repetitive elements (REs), such as transposable elements (TEs) and satellites, comprise much of the genome. Here, we review how TEs and (peri)centromeric satellite DNA may contribute to aging and neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Alterations in RE expression, retrotransposition, and chromatin microenvironment may shorten lifespan, elicit neurodegeneration, and impair memory and movement. REs may cause these phenotypes via DNA damage, protein sequestration, insertional mutagenesis, and inflammation. We discuss several TE families, including gypsy, HERV-K, and HERV-W, and how TEs interact with various factors, including transactive response (TAR) DNA-binding protein 43 kDa (TDP-43) and the siRNA and piwi-interacting (pi)RNA systems. Studies of TEs in neurodegeneration have focused on Drosophila and, thus, further examination in mammals is needed. We suggest that therapeutic silencing of REs could help mitigate neurodegenerative disorders.
Collapse
Affiliation(s)
- Katie E Copley
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
McKerrow W, Kagermazova L, Doudican N, Frazzette N, Kaparos E, Evans SA, Rocha A, Sedivy JM, Neretti N, Carucci J, Boeke J, Fenyö D. LINE-1 retrotransposon expression in cancerous, epithelial and neuronal cells revealed by 5' single-cell RNA-Seq. Nucleic Acids Res 2023; 51:2033-2045. [PMID: 36744437 PMCID: PMC10018344 DOI: 10.1093/nar/gkad049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
LINE-1 retrotransposons are sequences capable of copying themselves to new genomic loci via an RNA intermediate. New studies implicate LINE-1 in a range of diseases, especially in the context of aging, but without an accurate understanding of where and when LINE-1 is expressed, a full accounting of its role in health and disease is not possible. We therefore developed a method-5' scL1seq-that makes use of a widely available library preparation method (10x Genomics 5' single cell RNA-seq) to measure LINE-1 expression in tens of thousands of single cells. We recapitulated the known pattern of LINE-1 expression in tumors-present in cancer cells, absent from immune cells-and identified hitherto undescribed LINE-1 expression in human epithelial cells and mouse hippocampal neurons. In both cases, we saw a modest increase with age, supporting recent research connecting LINE-1 to age related diseases.
Collapse
Affiliation(s)
- Wilson McKerrow
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Nicole Doudican
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY, USA
| | - Nicholas Frazzette
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY, USA
| | - Efiyenia Ismini Kaparos
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Shane A Evans
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Nicola Neretti
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - John Carucci
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn,NY11201, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
8
|
McKerrow W. Quantification of LINE-1 RNA Expression from Bulk RNA-seq Using L1EM. Methods Mol Biol 2023; 2607:115-126. [PMID: 36449161 DOI: 10.1007/978-1-0716-2883-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
LINE-1 retrotransposons have the potential to cause DNA damage, contribute to genome instability, and induce an interferon response. Thus, accurate measurements of their expression, especially in disease contexts where genome instability and the interferon response are relevant, are of particular importance. Illumina-based bulk RNA sequencing remains the most abundant datatype for measuring gene expression. However, "active" expression from its own internal promoter is only one source of LINE-1 aligning reads in an RNA-seq experiment. With about half a million LINE-1 sequences scattered throughout the genome, many are incorporated into other transcripts that have nothing to do with LINE-1 activity. We call this "passive" co-transcription. Here we will describe how to use L1EM, a computational method that separates active from passive LINE-1 expression at the locus-specific level.
Collapse
Affiliation(s)
- Wilson McKerrow
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
9
|
Huang R, Li Z, Weng S, Wu S. Simultaneous triple primary malignancies, including bladder cancer, lymphoma, and lung cancer, in an elderly male: A case report. Open Life Sci 2022; 17:1263-1268. [PMID: 36249529 PMCID: PMC9518660 DOI: 10.1515/biol-2022-0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Multiple primary malignancies (MPMs) are defined as the coexistence of at least two unrelated primary malignancies in a single patient, with the tumors differing in their histology. MPMs in the same patient, when present within 6 months of the primary tumor diagnosis, are considered a synchronous occurrence. In this case report, we describe a 61-year-old man who presented with three distinct tumors concurrently in 2021: noninvasive urothelial carcinoma of the bladder, diffuse large B-cell lymphoma, and squamous cell carcinoma of the lung. We discuss the process of therapy and briefly review the literature. MPMs are increasing in incidence, requiring an interdisciplinary approach to diagnosis and treatment.
Collapse
Affiliation(s)
- Risheng Huang
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University (The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital), Wenzhou City, Zhejiang Province, China
| | - Zhijia Li
- Department of Urology Surgery, The Dingli Clinical College of Wenzhou Medical University (The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital), Wenzhou City, Zhejiang Province, China
| | - Shanshan Weng
- Department of Hematology, The Dingli Clinical College of Wenzhou Medical University (The Second Affiliated Hospital of Shanghai University Wenzhou Central Hospital), Wenzhou City, Zhejiang Province, China
| | - Shenghao Wu
- Department of Hematology, The Dingli Clinical College of Wenzhou Medical University (The Second Affiliated Hospital of Shanghai University Wenzhou Central Hospital), Wenzhou City, Zhejiang Province, China
| |
Collapse
|
10
|
Stow EC, Baddoo M, LaRosa AJ, LaCoste D, Deininger P, Belancio V. SCIFER: approach for analysis of LINE-1 mRNA expression in single cells at a single locus resolution. Mob DNA 2022; 13:21. [PMID: 36028901 PMCID: PMC9413895 DOI: 10.1186/s13100-022-00276-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Endogenous expression of L1 mRNA is the first step in an L1-initiated mutagenesis event. However, the contribution of individual cell types to patterns of organ-specific L1 mRNA expression remains poorly understood, especially at single-locus resolution. We introduce a method to quantify expression of mobile elements at the single-locus resolution in scRNA-Seq datasets called Single Cell Implementation to Find Expressed Retrotransposons (SCIFER). SCIFER aligns scRNA-Seq reads uniquely to the genome and extracts alignments from single cells by cell-specific barcodes. In contrast to the alignment performed using default parameters, this alignment strategy increases accuracy of L1 locus identification by retaining only reads that are uniquely mapped to individual L1 loci. L1 loci expressed in single cells are unambiguously identified using a list of L1 loci manually validated to be expressed in bulk RNA-Seq datasets generated from the same cell line or organ. RESULTS Validation of SCIFER using MCF7 cells determined technical parameters needed for optimal detection of L1 expression in single cells. We show that unsupervised analysis of L1 expression in single cells exponentially inflates both the levels of L1 expression and the number of expressed L1 loci. Application of SCIFER to analysis of scRNA-Seq datasets generated from mouse and human testes identified that mouse Round Spermatids and human Spermatogonia, Spermatocytes, and Round Spermatids express the highest levels of L1 mRNA. Our analysis also determined that similar to mice, human testes from unrelated individuals share as much as 80% of expressed L1 loci. Additionally, SCIFER determined that individual mouse cells co-express different L1 sub-families and different families of transposable elements, experimentally validating their co-existence in the same cell. CONCLUSIONS SCIFER detects mRNA expression of individual L1 loci in single cells. It is compatible with scRNA-Seq datasets prepared using traditional sequencing methods. Validated using a human cancer cell line, SCIFER analysis of mouse and human testes identified key cell types supporting L1 expression in these species. This will further our understanding of differences and similarities in endogenous L1 mRNA expression patterns in mice and humans.
Collapse
Affiliation(s)
- Emily C Stow
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Alexis J LaRosa
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Dawn LaCoste
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Victoria Belancio
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA.
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Etchegaray E, Dechaud C, Barbier J, Naville M, Volff JN. Diversity of Harbinger-like Transposons in Teleost Fish Genomes. Animals (Basel) 2022; 12:ani12111429. [PMID: 35681893 PMCID: PMC9179366 DOI: 10.3390/ani12111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The study of transposable elements, which are repeated DNA sequences that can insert into new locations in genomes, is of particular interest to genome evolution, as they are sources of mutations but also of new regulatory and coding sequences. Teleost fish are a species-rich clade presenting a high diversity of transposable elements, both quantitatively and qualitatively, making them a very attractive group to investigate the evolution of mobile sequences. We studied Harbinger-like DNA transposons, which are widespread from plants to vertebrates but absent from mammalian genomes. These elements code for both a transposase and a Myb-like protein. We observed high variability in the genomic composition of Harbinger-like sequences in teleost fish. While Harbinger transposons might have been present in a common ancestor of all the fish species studied, ISL2EU elements were possibly gained by horizontal transfer at the base of teleost fish. Transposase and Myb-like protein phylogenies of Harbinger transposons indicated unique origins of the association between both genes and suggests recombination was rare between transposon sublineages. Finally, we report one case of Harbinger horizontal transfer between divergent fish species and the transcriptional activity of both Harbinger and ISL2EU transposons in teleost fish. There was male-biased expression in the gonads of the medaka fish. Abstract Harbinger elements are DNA transposons that are widespread from plants to vertebrates but absent from mammalian genomes. Among vertebrates, teleost fish are the clade presenting not only the largest number of species but also the highest diversity of transposable elements, both quantitatively and qualitatively, making them a very attractive group to investigate the evolution of mobile sequences. We studied Harbinger DNA transposons and the distantly related ISL2EU elements in fish, focusing on representative teleost species compared to the spotted gar, the coelacanth, the elephant shark and the amphioxus. We observed high variability in the genomic composition of Harbinger-like sequences in teleost fish, as they covered 0.002–0.14% of the genome, when present. While Harbinger transposons might have been present in a common ancestor of all the fish species studied here, with secondary loss in elephant shark, our results suggests that ISL2EU elements were gained by horizontal transfer at the base of teleost fish 200–300 million years ago, and that there was secondary loss in a common ancestor of pufferfishes and stickleback. Harbinger transposons code for a transposase and a Myb-like protein. We reconstructed and compared molecular phylogenies of both proteins to get insights into the evolution of Harbinger transposons in fish. Transposase and Myb-like protein phylogenies showed global congruent evolution, indicating unique origin of the association between both genes and suggesting rare recombination between transposon sublineages. Finally, we report one case of Harbinger horizontal transfer between divergent fish species and the transcriptional activity of both Harbinger and ISL2EU transposons in teleost fish. There was male-biased expression in the gonads of the medaka fish.
Collapse
|
12
|
Freeman B, White T, Kaul T, Stow EC, Baddoo M, Ungerleider N, Morales M, Yang H, Deharo D, Deininger P, Belancio V. Analysis of epigenetic features characteristic of L1 loci expressed in human cells. Nucleic Acids Res 2022; 50:1888-1907. [PMID: 35100410 PMCID: PMC8887483 DOI: 10.1093/nar/gkac013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Only a select few L1 loci in the human genome are expressed in any given cell line or organ, likely to minimize damage done to the genome. The epigenetic features and requirements of expressed L1 loci are currently unknown. Using human cells and comprehensive epigenetic analysis of individual expressed and unexpressed L1 loci, we determined that endogenous L1 transcription depends on a combination of epigenetic factors, including open chromatin, activating histone modifications, and hypomethylation at the L1 promoter. We demonstrate that the L1 promoter seems to require interaction with enhancer elements for optimal function. We utilize epigenetic context to predict the expression status of L1Hs loci that are poorly mappable with RNA-Seq. Our analysis identified a population of ‘transitional’ L1 loci that likely have greater potential to be activated during the epigenetic dysregulation seen in tumors and during aging because they are the most responsive to targeted CRISPR-mediated delivery of trans-activating domains. We demonstrate that an engineered increase in endogenous L1 mRNA expression increases Alu mobilization. Overall, our findings present the first global and comprehensive analysis of epigenetic status of individual L1 loci based on their expression status and demonstrate the importance of epigenetic context for L1 expression heterogeneity.
Collapse
Affiliation(s)
- Benjamin Freeman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Travis White
- Sloan Kettering Institute for Cancer Research, NY, NY 10065, USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily C Stow
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Maria Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Dawn Deharo
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- To whom correspondence should be addressed. Tel: +1 504 988 4506; Fax: +1 504 988 1687;
| |
Collapse
|
13
|
Ramakrishna NB, Murison K, Miska EA, Leitch HG. Epigenetic Regulation during Primordial Germ Cell Development and Differentiation. Sex Dev 2021; 15:411-431. [PMID: 34847550 DOI: 10.1159/000520412] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022] Open
Abstract
Germline development varies significantly across metazoans. However, mammalian primordial germ cell (PGC) development has key conserved landmarks, including a critical period of epigenetic reprogramming that precedes sex-specific differentiation and gametogenesis. Epigenetic alterations in the germline are of unique importance due to their potential to impact the next generation. Therefore, regulation of, and by, the non-coding genome is of utmost importance during these epigenomic events. Here, we detail the key chromatin changes that occur during mammalian PGC development and how these interact with the expression of non-coding RNAs alongside broader epitranscriptomic changes. We identify gaps in our current knowledge, in particular regarding epigenetic regulation in the human germline, and we highlight important areas of future research.
Collapse
Affiliation(s)
- Navin B Ramakrishna
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore, Singapore
| | - Keir Murison
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|