1
|
Matera AG. Chaperone dysfunction in motor neuron disease: new insights from studies of the SMN complex. Genetics 2025; 229:iyae223. [PMID: 39907139 PMCID: PMC11912826 DOI: 10.1093/genetics/iyae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Spinal muscular atrophy and amyotrophic lateral sclerosis are devastating neurodegenerative diseases characterized by motor neuron loss. Although these 2 disorders have distinct genetic origins, recent studies suggest that they share common etiological mechanisms rooted in proteostatic dysfunction. At the heart of this emerging understanding is the survival motor neuron (SMN) complex.
Collapse
Affiliation(s)
- A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799, USA
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- RNA Discovery Center and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Martinez‐Salas E, Abellan S, Francisco‐Velilla R. Understanding GEMIN5 Interactions: From Structural and Functional Insights to Selective Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70008. [PMID: 40176294 PMCID: PMC11965781 DOI: 10.1002/wrna.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 04/04/2025]
Abstract
GEMIN5 is a predominantly cytoplasmic protein, initially identified as a member of the survival of motor neurons (SMN) complex. In addition, this abundant protein modulates diverse aspects of RNA-dependent processes, executing its functions through the formation of multi-component complexes. The modular organization of structural domains present in GEMIN5 enables this protein to perform various functions through its interaction with distinct partners. The protein is responsible for the recognition of small nuclear (sn)RNAs through its N-terminal region, and therefore for snRNP assembly. Beyond its role in spliceosome assembly, GEMIN5 regulates translation through the interaction with either RNAs or proteins. In the central region, a robust dimerization domain acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is located towards the C-terminus. Interestingly, GEMIN5 regulates the partitioning of mRNAs into polysomes, likely due to its RNA-binding capacity and its ability to bind native ribosomes. Understanding the functional and structural organization of the protein has brought an increasing interest in the last years with important implications in human disease. Patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. This review discusses recent relevant works aimed at understanding the molecular mechanisms of GEMIN5 activity in gene expression, and also the challenges to discover new functions.
Collapse
|
3
|
Maita H, Nakagawa S. Balancing RNA processing and innate immune response: Possible roles for SMN condensates in snRNP biogenesis. Biochim Biophys Acta Gen Subj 2025; 1869:130764. [PMID: 39826814 DOI: 10.1016/j.bbagen.2025.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates like U-bodies are specialized cellular structures formed through multivalent interactions among intrinsically disordered regions. U-bodies sequester small nuclear ribonucleoprotein complexes (snRNPs) in the cytoplasm, and their formation in mammalian cells depends on stress conditions. Because of their location adjacent to P-bodies, U-bodies have been considered potential sites for snRNP storage or turnover. SMN, a chaperone for snRNP biogenesis, forms condensates through its Tudor domain. In fly models, defects in SMN trigger innate immune responses similar to those observed with excess cytoplasmic snRNA during viral infection in mammalian cells. Additionally, spinal muscular atrophy (SMA), caused by SMN deficiency, is associated with inflammation. Therefore, SMN may help prevent innate immune aberrant activation due to defective snRNP biogenesis by forming U-bodies to sequester these molecules. Further studies on U-body functions may provide therapeutic insights for diseases related to RNA metabolism.
Collapse
Affiliation(s)
- Hiroshi Maita
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Shinichi Nakagawa
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
4
|
Matera AG, Steiner RE, Mills CA, McMichael BD, Herring LE, Garcia EL. Proteomic analysis of the SMN complex reveals conserved and etiologic connections to the proteostasis network. FRONTIERS IN RNA RESEARCH 2024; 2:1448194. [PMID: 39492846 PMCID: PMC11529804 DOI: 10.3389/frnar.2024.1448194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Introduction Molecular chaperones and co-chaperones are highly conserved cellular components that perform a variety of duties related to the proper three-dimensional folding of the proteome. The web of factors that carries out this essential task is called the proteostasis network (PN). Ribonucleoproteins (RNPs) represent an underexplored area in terms of the connections they make with the PN. The Survival Motor Neuron (SMN) complex is an assembly chaperone and serves as a paradigm for studying how specific RNAs are identified and paired with their client substrate proteins to form RNPs. SMN is the eponymous component of a large complex, required for the biogenesis of uridine-rich small nuclear ribonucleoproteins (U-snRNPs), that localizes to distinct membraneless organelles in both the nucleus and cytoplasm of animal cells. SMN protein forms the oligomeric core of this complex, and missense mutations in the human SMN1 gene are known to cause Spinal Muscular Atrophy (SMA). The basic framework for understanding how snRNAs are assembled into U-snRNPs is known. However, the pathways and mechanisms used by cells to regulate their biogenesis are poorly understood. Methods Given the importance of these processes to normal development as well as neurodegenerative disease, we set out to identify and characterize novel SMN binding partners. We carried out affinity purification mass spectrometry (AP-MS) of Drosophila SMN complexes using fly lines exclusively expressing either wildtype or SMA-causing missense alleles. Results Bioinformatic analyses of the pulldown data, along with comparisons to proximity labeling studies carried out in human cells, revealed conserved connections to at least two other major chaperone systems including heat shock folding chaperones (HSPs) and histone/nucleosome assembly chaperones. Notably, we found that heat shock cognate protein Hsc70-4 and other HspA family members preferentially associated with SMA-causing alleles of SMN. Discussion Hsc70-4 is particularly interesting because its mRNA is aberrantly sequestered by a mutant form of TDP-43 in mouse and Drosophila ALS (Amyotrophic Lateral Sclerosis) disease models. Most important, a missense allele of Hsc70-4 (HspA8 in mammals) was recently identified as a bypass suppressor of the SMA phenotype in mice. Collectively, these findings suggest that chaperone-related dysfunction lies at the etiological root of both ALS and SMA.
Collapse
Affiliation(s)
- A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - C. Allie Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin D. McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
5
|
Francisco-Velilla R, Abellan S, Embarc-Buh A, Martinez-Salas E. Oligomerization regulates the interaction of Gemin5 with members of the SMN complex and the translation machinery. Cell Death Discov 2024; 10:306. [PMID: 38942768 PMCID: PMC11213948 DOI: 10.1038/s41420-024-02057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024] Open
Abstract
RNA-binding proteins are multifunctional molecules impacting on multiple steps of gene regulation. Gemin5 was initially identified as a member of the survival of motor neurons (SMN) complex. The protein is organized in structural and functional domains, including a WD40 repeats domain at the N-terminal region, a tetratricopeptide repeat (TPR) dimerization module at the central region, and a non-canonical RNA-binding site at the C-terminal end. The TPR module allows the recruitment of the endogenous Gemin5 protein in living cells and the assembly of a dimer in vitro. However, the biological relevance of Gemin5 oligomerization is not known. Here we interrogated the Gemin5 interactome focusing on oligomerization-dependent or independent regions. We show that the interactors associated with oligomerization-proficient domains were primarily annotated to ribosome, splicing, translation regulation, SMN complex, and RNA stability. The presence of distinct Gemin5 protein regions in polysomes highlighted differences in translation regulation based on their oligomerization capacity. Furthermore, the association with native ribosomes and negative regulation of translation was strictly dependent on both the WD40 repeats domain and the TPR dimerization moiety, while binding with the majority of the interacting proteins, including SMN, Gemin2, and Gemin4, was determined by the dimerization module. The loss of oligomerization did not perturb the predominant cytoplasmic localization of Gemin5, reinforcing the cytoplasmic functions of this essential protein. Our work highlights a distinctive role of the Gemin5 domains for its functions in the interaction with members of the SMN complex, ribosome association, and RBP interactome.
Collapse
Affiliation(s)
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049, Madrid, Spain
| | | |
Collapse
|
6
|
Matera AG, Steiner RE, Mills CA, Herring LE, Garcia EL. Chaperoning the chaperones: Proteomic analysis of the SMN complex reveals conserved and etiologic connections to the proteostasis network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594402. [PMID: 38903116 PMCID: PMC11188114 DOI: 10.1101/2024.05.15.594402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Molecular chaperones and co-chaperones are highly conserved cellular components that perform variety of duties related to the proper three-dimensional folding of the proteome. The web of factors that carries out this essential task is called the proteostasis network (PN). Ribonucleoproteins (RNPs) represent an underexplored area in terms of the connections they make with the PN. The Survival Motor Neuron (SMN) complex is an RNP assembly chaperone and serves as a paradigm for studying how specific small nuclear (sn)RNAs are identified and paired with their client substrate proteins. SMN protein is the eponymous component of a large complex required for the biogenesis of uridine-rich small nuclear ribonucleoproteins (U-snRNPs) and localizes to distinct membraneless organelles in both the nucleus and cytoplasm of animal cells. SMN forms the oligomeric core of this complex, and missense mutations in its YG box self-interaction domain are known to cause Spinal Muscular Atrophy (SMA). The basic framework for understanding how snRNAs are assembled into U-snRNPs is known, the pathways and mechanisms used by cells to regulate their biogenesis are poorly understood. Given the importance of these processes to normal development as well as neurodegenerative disease, we set out to identify and characterize novel SMN binding partners. Here, we carried out affinity purification mass spectrometry (AP-MS) of SMN using stable fly lines exclusively expressing either wildtype or SMA-causing missense alleles. Bioinformatic analyses of the pulldown data, along with comparisons to proximity labeling studies carried out in human cells, revealed conserved connections to at least two other major chaperone systems including heat shock folding chaperones (HSPs) and histone/nucleosome assembly chaperones. Notably, we found that heat shock cognate protein Hsc70-4 and other HspA family members preferentially interacted with SMA-causing alleles of SMN. Hsc70-4 is particularly interesting because its mRNA is aberrantly sequestered by a mutant form of TDP-43 in mouse and Drosophila ALS (Amyotrophic Lateral Sclerosis) disease models. Most important, a missense allele of Hsc70-4 (HspA8 in mammals) was recently identified as a bypass suppressor of the SMA phenotype in mice. Collectively, these findings suggest that chaperone-related dysfunction lies at the etiological root of both ALS and SMA.
Collapse
Affiliation(s)
- A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill NC, USA
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill NC, USA
| | - C. Alison Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill NC, USA
- Department of Biology, University of Kentucky, Lexington KY, USA
| |
Collapse
|
7
|
Garcia EL, Steiner RE, Raimer AC, Herring LE, Matera AG, Spring AM. Dysregulation of innate immune signaling in animal models of spinal muscular atrophy. BMC Biol 2024; 22:94. [PMID: 38664795 PMCID: PMC11044505 DOI: 10.1186/s12915-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the survival motor neuron (SMN) protein. SMA presents across a broad spectrum of disease severity. Unfortunately, genetic models of intermediate SMA have been difficult to generate in vertebrates and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. RESULTS Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the immune deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, the knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of a ubiquitylation complex that includes Traf6, Bendless, and Diap2 and plays a pivotal role in several signaling networks. CONCLUSIONS In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.
Collapse
Affiliation(s)
- Eric L Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Rebecca E Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
- Present Address: Lake, Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Amanda C Raimer
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
- Present Address, Radford University, Radford, VA, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
| | - Ashlyn M Spring
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
8
|
Garcia EL, Steiner RE, Raimer AC, Herring LE, Matera AG, Spring AM. Dysregulation of innate immune signaling in animal models of Spinal Muscular Atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571739. [PMID: 38168196 PMCID: PMC10760185 DOI: 10.1101/2023.12.14.571739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Spinal Muscular Atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the Survival Motor Neuron (SMN) protein. SMA presents across broad spectrum of disease severity. Unfortunately, vertebrate models of intermediate SMA have been difficult to generate and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. Results Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the Immune Deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of an ubiquitylation complex that includes Traf6, Bendless and Diap2, and plays a pivotal role in several signaling networks. Conclusions In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.
Collapse
Affiliation(s)
- Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Department of Biology, University of Kentucky, Lexington KY, USA
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Department of Biology, University of North Carolina at Chapel Hill
| | - Amanda C. Raimer
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
- Department of Biology, University of North Carolina at Chapel Hill
- Department of Genetics, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Ashlyn M. Spring
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro NC, USA
| |
Collapse
|
9
|
Musawi S, Donnio LM, Zhao Z, Magnani C, Rassinoux P, Binda O, Huang J, Jacquier A, Coudert L, Lomonte P, Martinat C, Schaeffer L, Mottet D, Côté J, Mari PO, Giglia-Mari G. Nucleolar reorganization after cellular stress is orchestrated by SMN shuttling between nuclear compartments. Nat Commun 2023; 14:7384. [PMID: 37968267 PMCID: PMC10652021 DOI: 10.1038/s41467-023-42390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/10/2023] [Indexed: 11/17/2023] Open
Abstract
Spinal muscular atrophy is an autosomal recessive neuromuscular disease caused by mutations in the multifunctional protein Survival of Motor Neuron, or SMN. Within the nucleus, SMN localizes to Cajal bodies, which are associated with nucleoli, nuclear organelles dedicated to the first steps of ribosome biogenesis. The highly organized structure of the nucleolus can be dynamically altered by genotoxic agents. RNAP1, Fibrillarin, and nucleolar DNA are exported to the periphery of the nucleolus after genotoxic stress and, once DNA repair is fully completed, the organization of the nucleolus is restored. We find that SMN is required for the restoration of the nucleolar structure after genotoxic stress. During DNA repair, SMN shuttles from the Cajal bodies to the nucleolus. This shuttling is important for nucleolar homeostasis and relies on the presence of Coilin and the activity of PRMT1.
Collapse
Affiliation(s)
- Shaqraa Musawi
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Lise-Marie Donnio
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France.
| | - Zehui Zhao
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Charlène Magnani
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Phoebe Rassinoux
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Olivier Binda
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Ontario, Canada
| | - Jianbo Huang
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Arnaud Jacquier
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Laurent Coudert
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Patrick Lomonte
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Cécile Martinat
- INSERM/UEPS UMR 861, Paris Saclay Université, I-STEM, 91100, Corbeil-Essonnes, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Denis Mottet
- GIGA-Molecular Biology of Diseases, Gene Expression and Cancer Laboratory, B34 + 1, University of Liege, Avenue de l'Hôpital 1, B-4000, Liège, Belgium
| | - Jocelyn Côté
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Ontario, Canada
| | - Pierre-Olivier Mari
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Giuseppina Giglia-Mari
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France.
| |
Collapse
|
10
|
Li L, Perera L, Varghese SA, Shiloh-Malawsky Y, Hunter SE, Sneddon TP, Powell CM, Matera AG, Fan Z. A homozygous missense variant in the YG box domain in an individual with severe spinal muscular atrophy: a case report and variant characterization. Front Cell Neurosci 2023; 17:1259380. [PMID: 37841286 PMCID: PMC10571918 DOI: 10.3389/fncel.2023.1259380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
The vast majority of severe (Type 0) spinal muscular atrophy (SMA) cases are caused by homozygous deletions of survival motor neuron 1 (SMN1). We report a case in which the patient has two copies of SMN1 but clinically presents as Type 0 SMA. The patient is an African American male carrying a homozygous maternally inherited missense variant (c.796T>C) in a cis-oriented SMN1 duplication on one chromosome and an SMN1 deletion on the other chromosome (genotype: 2*+0). Initial extensive genetic workups including exome sequencing were negative. Deletion analysis used in the initial testing for SMA also failed to detect SMA as the patient has two copies of SMN1. Because of high clinical suspicion, SMA diagnosis was finally confirmed based on full-length SMN1 sequencing. The patient was initially treated with risdiplam and later gene therapy with onasemnogene abeparvovec at 5 months without complications. The patient's muscular weakness has stabilized with mild improvement. The patient is now 28 months old and remains stable and diffusely weak, with stable respiratory ventilatory support. This case highlights challenges in the diagnosis of SMA with a non-deletion genotype and provides a clinical example demonstrating that disruption of functional SMN protein polymerization through an amino acid change in the YG-box domain represents a little known but important pathogenic mechanism for SMA. Clinicians need to be mindful about the limitations of the current diagnostic approach for SMA in detecting non-deletion genotypes.
Collapse
Affiliation(s)
- Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sonia A. Varghese
- Division of Pediatric Neurology, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yael Shiloh-Malawsky
- Division of Pediatric Neurology, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Senyene E. Hunter
- Division of Pediatric Neurology, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tam P. Sneddon
- Department of Pathology and Lab Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cynthia M. Powell
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zheng Fan
- Division of Pediatric Neurology, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Hu Y, Hou Y, Zhou S, Wang Y, Shen C, Mu L, Su D, Zhang R. Mechanism of assembly of snRNP cores assisted by ICln and the SMN complex in fission yeast. iScience 2023; 26:107604. [PMID: 37664592 PMCID: PMC10470402 DOI: 10.1016/j.isci.2023.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The spliceosomal snRNP cores, each comprised of a snRNA and a seven-membered Sm ring (D1/D2/F/E/G/D3/B), are assembled by twelve chaperoning proteins in human. However, only six assembly-assisting proteins, ICln and the SMN complex (SMN/Gemin2/Gemin6-8), have been found in Schizosaccharomyces pombe (Sp). Here, we used recombinant proteins to reconstitute the chaperone machinery and investigated the roles of these proteins systematically. We found that, like the human system, the assembly in S. pombe requires ICln and the SMN complex sequentially. However, there are several significant differences. For instance, h_F/E/G forms heterohexamers and heterotrimers, while Sp_F/E/G only forms heterohexamers; h_Gemin2 alone can bind D1/D2/F/E/G, but Sp_Gemin2 cannot. Moreover, we found that Sp_Gemin2 is essential using genetic approaches. These mechanistic studies reveal that these six proteins are necessary and sufficient for Sm core assembly at the molecular level, and enrich our understanding of the chaperone systems in species variation and evolution.
Collapse
Affiliation(s)
- Yan Hu
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Yan Hou
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Shijie Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Yingzhi Wang
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Congcong Shen
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Li Mu
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Dan Su
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Rundong Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| |
Collapse
|
12
|
Byer AS, Pei X, Patterson MG, Ando N. Small-angle X-ray scattering studies of enzymes. Curr Opin Chem Biol 2023; 72:102232. [PMID: 36462455 PMCID: PMC9992928 DOI: 10.1016/j.cbpa.2022.102232] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 12/02/2022]
Abstract
Enzyme function requires conformational changes to achieve substrate binding, domain rearrangements, and interactions with partner proteins, but these movements are difficult to observe. Small-angle X-ray scattering (SAXS) is a versatile structural technique that can probe such conformational changes under solution conditions that are physiologically relevant. Although it is generally considered a low-resolution structural technique, when used to study conformational changes as a function of time, ligand binding, or protein interactions, SAXS can provide rich insight into enzyme behavior, including subtle domain movements. In this perspective, we highlight recent uses of SAXS to probe structural enzyme changes upon ligand and partner-protein binding and discuss tools for signal deconvolution of complex protein solutions.
Collapse
Affiliation(s)
- Amanda S Byer
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Xiaokun Pei
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael G Patterson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Vezain M, Thauvin-Robinet C, Vial Y, Coutant S, Drunat S, Urtizberea JA, Rolland A, Jacquin-Piques A, Fehrenbach S, Nicolas G, Lecoquierre F, Saugier-Veber P. Retrotransposon insertion as a novel mutational cause of spinal muscular atrophy. Hum Genet 2023; 142:125-138. [PMID: 36138164 DOI: 10.1007/s00439-022-02473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder resulting from biallelic alterations of the SMN1 gene: deletion, gene conversion or, in rare cases, intragenic variants. The disease severity is mainly influenced by the copy number of SMN2, a nearly identical gene, which produces only low amounts of full-length (FL) mRNA. Here we describe the first example of retrotransposon insertion as a pathogenic SMN1 mutational event. The 50-year-old patient is clinically affected by SMA type III with a diagnostic odyssey spanning nearly 30 years. Despite a mild disease course, he carries a single SMN2 copy. Using Exome Sequencing and Sanger sequencing, we characterized a SINE-VNTR-Alu (SVA) type F retrotransposon inserted in SMN1 intron 7. Using RT-PCR and RNASeq experiments on lymphoblastoid cell lines, we documented the dramatic decrease of FL transcript production in the patient compared to subjects with the same SMN1 and SMN2 copy number, thus validating the pathogenicity of this SVA insertion. We described the mutant FL-SMN1-SVA transcript characterized by exon extension and showed that it is subject to degradation by nonsense-mediated mRNA decay. The stability of the SMN-SVA protein may explain the mild course of the disease. This observation exemplifies the role of retrotransposons in human genetic disorders.
Collapse
Affiliation(s)
- Myriam Vezain
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France
| | - Christel Thauvin-Robinet
- INSERM UMR1231 GAD-Génétique des Anomalies du Développement, Bourgogne Franche-Comté University, F-21000 , Dijon, France.,Genetics Center, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Dijon-Burgundy University Hospital, F-21000, Dijon, France
| | - Yoann Vial
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France.,Genetics Department, AP-HP, Robert-Debré University Hospital, 48 boulevard Sérurier, 75019 , Paris, France
| | - Sophie Coutant
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France
| | - Séverine Drunat
- INSERM UMR 1141, PROTECT, Paris University, F-75019, Paris, France.,Genetics Department, AP-HP, Robert-Debré University Hospital, F-75019, Paris, France
| | - Jon Andoni Urtizberea
- Myology Institute, AP-HP Pitié-Salpêtrière University Hospital, F-75013, Paris, France
| | - Anne Rolland
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Pediatrics Department, Valence Hospital, 179 boulevard du Maréchal Juin, 26000, Valence, France
| | - Agnès Jacquin-Piques
- Department of Neurology, Clinical Neurophysiology, Competence Center of Neuromuscular Diseases, Dijon-Burgundy University Hospital, F-21000, Dijon, France
| | - Séverine Fehrenbach
- Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France
| | - Gaël Nicolas
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France
| | - François Lecoquierre
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France
| | - Pascale Saugier-Veber
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France. .,Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France. .,Laboratoire de Génétique Moléculaire, UFR-Santé, 22 boulevard Gambetta, 76183, Rouen, France.
| |
Collapse
|
14
|
Niba ETE, Nishio H, Wijaya YOS, Ar Rochmah M, Takarada T, Takeuchi A, Kimizu T, Okamoto K, Saito T, Awano H, Takeshima Y, Shinohara M. Stability and Oligomerization of Mutated SMN Protein Determine Clinical Severity of Spinal Muscular Atrophy. Genes (Basel) 2022; 13:genes13020205. [PMID: 35205250 PMCID: PMC8872419 DOI: 10.3390/genes13020205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/10/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disease characterized by defects of lower motor neurons. Approximately 95% of SMA patients are homozygous for survival motor neuron 1 (SMN1) gene deletion, while ~5% carry an intragenic SMN1 mutation. Here, we investigated the stability and oligomerization ability of mutated SMN1 proteins. Plasmids containing wild- and mutant-type SMN1 cDNA were constructed and transfected into HeLa cells. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated similar abundances of transcripts from the plasmids containing SMN cDNA, but Western blotting showed different expression levels of mutated SMN1 proteins, reflecting the degree of their instability. A mutated SMN1 protein with T274YfsX32 exhibited a much lower expression level than other mutated SMN1 proteins with E134K, Y276H, or Y277C. In immunoprecipitation analysis, the mutated SMN1 protein with T274YfsX32 did not bind to endogenous SMN1 protein in HeLa cells, suggesting that this mutation completely blocks the oligomerization with full-length SMN2 protein in the patient. The patient with T274YfsX32 showed a much more severe phenotype than the other patients with different mutations. In conclusion, the stability and oligomerization ability of mutated SMN1 protein may determine the protein stability and may be associated with the clinical severity of SMA caused by intragenic SMN1 mutation.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan; (E.T.E.N.); (Y.O.S.W.); (M.S.)
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan; (E.T.E.N.); (Y.O.S.W.); (M.S.)
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Hyogo, Japan
- Correspondence: ; Tel.: +81-789-745-073
| | - Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan; (E.T.E.N.); (Y.O.S.W.); (M.S.)
| | - Mawaddah Ar Rochmah
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako, Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Toru Takarada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Hyogo, Japan;
| | - Atsuko Takeuchi
- Instrumental Analysis Center, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Hyogo, Japan;
| | - Tomokazu Kimizu
- Department of Pediatric Neurology, Osaka Women’s and Children’s Hospital, 840 Murodo-cho, Izumi 594-1101, Osaka, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishii-cho, Imabari 794-0006, Ehime, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Osaka, Japan;
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan; (E.T.E.N.); (Y.O.S.W.); (M.S.)
| |
Collapse
|
15
|
Gupta K, Wen Y, Ninan NS, Raimer AC, Sharp R, Spring A, Sarachan KL, Johnson MC, Van Duyne GD, Matera AG. Assembly of higher-order SMN oligomers is essential for metazoan viability and requires an exposed structural motif present in the YG zipper dimer. Nucleic Acids Res 2021; 49:7644-7664. [PMID: 34181727 PMCID: PMC8287954 DOI: 10.1093/nar/gkab508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Protein oligomerization is one mechanism by which homogenous solutions can separate into distinct liquid phases, enabling assembly of membraneless organelles. Survival Motor Neuron (SMN) is the eponymous component of a large macromolecular complex that chaperones biogenesis of eukaryotic ribonucleoproteins and localizes to distinct membraneless organelles in both the nucleus and cytoplasm. SMN forms the oligomeric core of this complex, and missense mutations within its YG box domain are known to cause Spinal Muscular Atrophy (SMA). The SMN YG box utilizes a unique variant of the glycine zipper motif to form dimers, but the mechanism of higher-order oligomerization remains unknown. Here, we use a combination of molecular genetic, phylogenetic, biophysical, biochemical and computational approaches to show that formation of higher-order SMN oligomers depends on a set of YG box residues that are not involved in dimerization. Mutation of key residues within this new structural motif restricts assembly of SMN to dimers and causes locomotor dysfunction and viability defects in animal models.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Ying Wen
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nisha S Ninan
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Amanda C Raimer
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Ashlyn M Spring
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kathryn L Sarachan
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - Meghan C Johnson
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19105-6059, USA
| | - A Gregory Matera
- Integrative Program for Biological & Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|