1
|
Dai W, Yu Q, Ma R, Zheng Z, Hong L, Qi Y, He F, Wang M, Ge F, Yu X, Li S. PKA plays a conserved role in regulating gene expression and metabolic adaptation by phosphorylating Rpd3/HDAC1. Nat Commun 2025; 16:4030. [PMID: 40301306 PMCID: PMC12041213 DOI: 10.1038/s41467-025-59064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Cells need to reprogram their metabolism to adapt to extracellular nutrient changes. The yeast histone acetyltransferase SAGA (Spt-Ada-Gcn5-acetyltransferase) has been reported to acetylate its subunit Ada3 and form homo-dimers to enhance its ability to acetylate nucleosomes and facilitate metabolic gene transcription. How cells transduce extracellular nutrient changes to SAGA structure and function changes remains unclear. Here, we found that SAGA is deacetylated by Rpd3L complex and uncover how its deacetylase activity is repressed by nutrient sensor protein kinase A (PKA). When sucrose is used as the sole carbon source, PKA catalytic subunit Tpk2 is activated, which phosphorylates Rpd3L catalytic subunit Rpd3 to inhibit its ability to deacetylate Ada3. Moreover, Tpk2 phosphorylates Rpd3L subunit Ash1, which specifically reduces the interaction between Rpd3L and SAGA. By phosphorylating both Rpd3 and Ash1, Tpk2 inhibits Rpd3L-mediated Ada3 deacetylation, which promotes SAGA dimerization, nucleosome acetylation and transcription of genes involved in sucrose utilization and tricarboxylate (TCA) cycle, resulting in metabolic shift from glycolysis to TCA cycle. Most importantly, PKA phosphorylates HDAC1, the Rpd3 homolog in mammals to repress its deacetylase activity, promote TCA cycle gene transcription and facilitate cell growth. Our work hence reveals a conserved role of PKA in regulating Rpd3/HDAC1 and metabolic adaptation.
Collapse
Affiliation(s)
- Wenjing Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Zhu Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Lingling Hong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Yuqing Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Fei He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Min Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Al-gafari M, Jagadeesan SK, Kazmirchuk TDD, Takallou S, Wang J, Hajikarimlou M, Ramessur NB, Darwish W, Bradbury-Jost C, Moteshareie H, Said KB, Samanfar B, Golshani A. Investigating the Activities of CAF20 and ECM32 in the Regulation of PGM2 mRNA Translation. BIOLOGY 2024; 13:884. [PMID: 39596839 PMCID: PMC11592143 DOI: 10.3390/biology13110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Translation is a fundamental process in biology, and understanding its mechanisms is crucial to comprehending cellular functions and diseases. The regulation of this process is closely linked to the structure of mRNA, as these regions prove vital to modulating translation efficiency and control. Thus, identifying and investigating these fundamental factors that influence the processing and unwinding of structured mRNAs would be of interest due to the widespread impact in various fields of biology. To this end, we employed a computational approach and identified genes that may be involved in the translation of structured mRNAs. The approach is based on the enrichment of interactions and co-expression of genes with those that are known to influence translation and helicase activity. The in silico prediction found CAF20 and ECM32 to be highly ranked candidates that may play a role in unwinding mRNA. The activities of neither CAF20 nor ECM32 have previously been linked to the translation of PGM2 mRNA or other structured mRNAs. Our follow-up investigations with these two genes provided evidence of their participation in the translation of PGM2 mRNA and several other synthetic structured mRNAs.
Collapse
Affiliation(s)
- Mustafa Al-gafari
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Sasi Kumar Jagadeesan
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Thomas David Daniel Kazmirchuk
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Sarah Takallou
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Jiashu Wang
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Maryam Hajikarimlou
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Nishka Beersing Ramessur
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
| | - Waleed Darwish
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
| | - Calvin Bradbury-Jost
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Houman Moteshareie
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Kamaledin B. Said
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail P.O. Box 2240, Saudi Arabia
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
3
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Kazmirchuk TDD, Said KB, Samanfar B, Golshani A. The Involvement of YNR069C in Protein Synthesis in the Baker's Yeast, Saccharomyces cerevisiae. BIOLOGY 2024; 13:138. [PMID: 38534408 DOI: 10.3390/biology13030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Maintaining translation fidelity is a critical step within the process of gene expression. It requires the involvement of numerous regulatory elements to ensure the synthesis of functional proteins. The efficient termination of protein synthesis can play a crucial role in preserving this fidelity. Here, we report on investigating a protein of unknown function, YNR069C (also known as BSC5), for its activity in the process of translation. We observed a significant increase in the bypass of premature stop codons upon the deletion of YNR069C. Interestingly, the genomic arrangement of this ORF suggests a compatible mode of expression reliant on translational readthrough, incorporating the neighboring open reading frame. We also showed that the deletion of YNR069C results in an increase in the rate of translation. Based on our results, we propose that YNR069C may play a role in translation fidelity, impacting the overall quantity and quality of translation. Our genetic interaction analysis supports our hypothesis, associating the role of YNR069C to the regulation of protein synthesis.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kamaledin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
4
|
Yu Q, Gong X, Tong Y, Wang M, Duan K, Zhang X, Ge F, Yu X, Li S. Phosphorylation of Jhd2 by the Ras-cAMP-PKA(Tpk2) pathway regulates histone modifications and autophagy. Nat Commun 2022; 13:5675. [PMID: 36167807 PMCID: PMC9515143 DOI: 10.1038/s41467-022-33423-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Cells need to coordinate gene expression with their metabolic states to maintain cell homeostasis and growth. How cells transduce nutrient availability to appropriate gene expression remains poorly understood. Here we show that glycolysis regulates histone modifications and gene expression by activating protein kinase A (PKA) via the Ras-cyclic AMP pathway. The catalytic subunit of PKA, Tpk2 antagonizes Jhd2-catalyzed H3K4 demethylation by phosphorylating Jhd2 at Ser321 and Ser340 in response to glucose availability. Tpk2-catalyzed Jhd2 phosphorylation impairs its nuclear localization, reduces its binding to chromatin, and promotes its polyubiquitination and degradation by the proteasome. Tpk2-catalyzed Jhd2 phosphorylation also maintains H3K14 acetylation by preventing the binding of histone deacetylase Rpd3 to chromatin. By phosphorylating Jhd2, Tpk2 regulates gene expression, maintains normal chronological life span and promotes autophagy. These results provide a direct connection between metabolism and histone modifications and shed lights on how cells rewire their biological responses to nutrient signals.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xuanyunjing Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Yue Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Min Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Kai Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xinyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
5
|
Jagadeesan SK, Potter T, Al-Gafari M, Hooshyar M, Hewapathirana CM, Takallou S, Hajikarimlou M, Burnside D, Samanfar B, Moteshareie H, Smith M, Golshani A. Discovery and identification of genes involved in DNA damage repair in yeast. Gene 2022; 831:146549. [PMID: 35569766 DOI: 10.1016/j.gene.2022.146549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
DNA repair defects are common in tumour cells and can lead to misrepair of double-strand breaks (DSBs), posing a significant challenge to cellular integrity. The overall mechanisms of DSB have been known for decades. However, the list of the genes that affect the efficiency of DSB repair continues to grow. Additional factors that play a role in DSB repair pathways have yet to be identified. In this study, we present a computational approach to identify novel gene functions that are involved in DNA damage repair in Saccharomyces cerevisiae. Among the primary candidates, GAL7, YMR130W, and YHI9 were selected for further analysis since they had not previously been identified as being active in DNA repair pathways. Originally, GAL7 was linked to galactose metabolism. YHI9 and YMR130W encode proteins of unknown functions. Laboratory testing of deletion strains gal7Δ, ymr130wΔ, and yhi9Δ implicated all 3 genes in Homologous Recombination (HR) and/or Non-Homologous End Joining (NHEJ) repair pathways, and enhanced sensitivity to DNA damage-inducing drugs suggested involvement in the broader DNA damage repair machinery. A subsequent genetic interaction analysis revealed interconnections of these three genes, most strikingly through SIR2, SIR3 and SIR4 that are involved in chromatin regulation and DNA damage repair network.
Collapse
Affiliation(s)
- Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Taylor Potter
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Mohsen Hooshyar
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | | | - Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Daniel Burnside
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada.
| | - Houman Moteshareie
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Myron Smith
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
6
|
Cañonero L, Pautasso C, Galello F, Sigaut L, Pietrasanta L, Arroyo J, Bermúdez-Moretti M, Portela P, Rossi S. Heat stress regulates the expression of TPK1 gene at transcriptional and post-transcriptional levels in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119209. [PMID: 34999138 DOI: 10.1016/j.bbamcr.2021.119209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
In Saccharomyces cerevisiae cAMP regulates different cellular processes through PKA. The specificity of the response of the cAMP-PKA pathway is highly regulated. Here we address the mechanism through which the cAMP-PKA pathway mediates its response to heat shock and thermal adaptation in yeast. PKA holoenzyme is composed of a regulatory subunit dimer (Bcy1) and two catalytic subunits (Tpk1, Tpk2, or Tpk3). PKA subunits are differentially expressed under certain growth conditions. Here we demonstrate the increased abundance and half-life of TPK1 mRNA and the assembly of this mRNA in cytoplasmic foci during heat shock at 37 °C. The resistance of the foci to cycloheximide-induced disassembly along with the polysome profiling analysis suggest that TPK1 mRNA is impaired for entry into translation. TPK1 expression was also evaluated during a recurrent heat shock and thermal adaptation. Tpk1 protein level is significantly increased during the recovery periods. The crosstalk of cAMP-PKA pathway and CWI signalling was also studied. Wsc3 sensor and some components of the CWI pathway are necessary for the TPK1 expression upon heat shock. The assembly in foci upon thermal stress depends on Wsc3. Tpk1 expression is lower in a wsc3∆ mutant than in WT strain during thermal adaptation and thus the PKA levels are also lower. An increase in Tpk1 abundance in the PKA holoenzyme in response to heat shock is presented, suggesting that a recurrent stress enhanced the fitness for the coming favourable conditions. Therefore, the regulation of TPK1 expression by thermal stress contributes to the specificity of cAMP-PKA signalling.
Collapse
Affiliation(s)
- Luciana Cañonero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Constanza Pautasso
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lorena Sigaut
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Lia Pietrasanta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|