1
|
Hamar R, Varga M. The zebrafish ( Danio rerio) snoRNAome. NAR Genom Bioinform 2025; 7:lqaf013. [PMID: 40046902 PMCID: PMC11880993 DOI: 10.1093/nargab/lqaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 04/16/2025] Open
Abstract
Small nucleolar RNAs (snoRNAs) are one of the most abundant and evolutionary ancient group of functional non-coding RNAs. They were originally described as guides of post-transcriptional rRNA modifications, but emerging evidence suggests that snoRNAs fulfil an impressive variety of cellular functions. To reveal the true complexity of snoRNA-dependent functions, we need to catalogue first the complete repertoire of snoRNAs in a given cellular context. While the systematic mapping and characterization of "snoRNAomes" for some species have been described recently, this has not been done hitherto for the zebrafish (Danio rerio). Using size-fractionated RNA sequencing data from adult zebrafish tissues, we created an interactive "snoRNAome" database for this species. Our custom-designed analysis pipeline allowed us to identify with high-confidence 67 previously unannotated snoRNAs in the zebrafish genome, resulting in the most complete set of snoRNAs to date in this species. Reanalyzing multiple previously published datasets, we also provide evidence for the dynamic expression of some snoRNAs during the early stages of zebrafish development and tissue-specific expression patterns for others in adults. To facilitate further investigations into the functions of snoRNAs in zebrafish, we created a novel interactive database, snoDanio, which can be used to explore small RNA expression from transcriptomic data.
Collapse
Affiliation(s)
- Renáta Hamar
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| |
Collapse
|
2
|
Nussinov R, Yavuz BR, Jang H. Allostery in Disease: Anticancer Drugs, Pockets, and the Tumor Heterogeneity Challenge. J Mol Biol 2025:169050. [PMID: 40021049 DOI: 10.1016/j.jmb.2025.169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Charting future innovations is challenging. Yet, allosteric and orthosteric anticancer drugs are undergoing a revolution and taxing unresolved dilemmas await. Among the imaginative innovations, here we discuss cereblon and thalidomide derivatives as a means of recruiting neosubstrates and their degradation, allosteric heterogeneous bifunctional drugs like PROTACs, drugging phosphatases, inducers of targeted posttranslational protein modifications, antibody-drug conjugates, exploiting membrane interactions to increase local concentration, stabilizing the folded state, and more. These couple with harnessing allosteric cryptic pockets whose discovery offers more options to modulate the affinity of orthosteric, active site inhibitors. Added to these are strategies to counter drug resistance through drug combinations co-targeting pathways to bypass signaling blockades. Here, we discuss on the molecular and cellular levels, such inspiring advances, provide examples of their applications, their mechanisms and rational. We start with an overview on difficult to target proteins and their properties-rarely, if ever-conceptualized before, discuss emerging innovative drugs, and proceed to the increasingly popular allosteric cryptic pockets-their advantages-and critically, issues to be aware of. We follow with drug resistance and in-depth discussion of tumor heterogeneity. Heterogeneity is a hallmark of highly aggressive cancers, the core of drug resistance unresolved challenge. We discuss potential ways to target heterogeneity by predicting it. The increase in experimental and clinical data, computed (cell-type specific) interactomes, capturing transient cryptic pockets, learned drug resistance, workings of regulatory mechanisms, heterogeneity, and resistance-based cell signaling drug combinations, assisted by AI-driven reasoning and recognition, couple with creative allosteric drug discovery, charting future innovations.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, the United States of America; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, the United States of America; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America
| |
Collapse
|
3
|
Kerestély M, Keresztes D, Szarka L, Kovács BM, Schulc K, Veres DV, Csermely P. System level network data and models attack cancer drug resistance. Br J Pharmacol 2025. [PMID: 39909489 DOI: 10.1111/bph.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 02/07/2025] Open
Abstract
Drug resistance is responsible for >90% of cancer related deaths. Cancer drug resistance is a system level network phenomenon covering the entire cell. Small-scale interactomes and signalling network models of drug resistance guide directed drug development. Recently, proteome-wide human interactome and signalling network data have become available, which have been extended by drug-target interactions, drug resistance-inducing mutations, as well as by several cancer and drug resistance-related multi-omics datasets. System level signalling network models have become available examining therapy resistance, performing in silico clinical trials, and conducting large, in silico drug combination screens. Drug resistance network data and models have become interoperable and reliable. These advances paved the road for building proteome-wide drug resistance models.
Collapse
Affiliation(s)
- Márk Kerestély
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Dávid Keresztes
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Levente Szarka
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Borbála M Kovács
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Klára Schulc
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - Dániel V Veres
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
- Turbine Simulated Cell Technologies, Budapest, Hungary
| | - Peter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Kim J, Bang H, Seong C, Kim ES, Kim SY. Transcription factors and hormone receptors: Sex‑specific targets for cancer therapy (Review). Oncol Lett 2025; 29:93. [PMID: 39691589 PMCID: PMC11650965 DOI: 10.3892/ol.2024.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Despite advancements in diagnostic and therapeutic technologies, cancer continues to pose a challenge to disease-free longevity in humans. Numerous factors contribute to the onset and progression of cancer, among which sex differences, as an intrinsic biological condition, warrant further attention. The present review summarizes the roles of hormone receptors estrogen receptor α (ERα), estrogen receptor β (ERβ) and androgen receptor (AR) in seven types of cancer: Breast, prostate, ovarian, lung, gastric, colon and liver cancer. Key cancer-related transcription factors known to be activated through interactions with these hormone receptors have also been discussed. To assess the impact of sex hormone receptors on different cancer types, hormone-related transcription factors were analyzed using the SignaLink 3.0 database. Further analysis focused on six key transcription factors: CCCTC-binding factor, forkhead box A1, retinoic acid receptor α, PBX homeobox 1, GATA binding protein 2 and CDK inhibitor 1A. The present review demonstrates that these transcription factors significantly influence hormone receptor activity across various types of cancer, and elucidates the complex interactions between these transcription factors and hormone receptors, offering new insights into their roles in cancer progression. The findings suggest that targeting these common transcription factors could improve the efficacy of hormone therapy and provide a unified approach to treating various types of cancer. Understanding the dual and context-dependent roles of these transcription factors deepens the current understanding of the molecular mechanisms underlying hormone-driven tumor progression and could lead to more effective targeted therapeutic strategies.
Collapse
Affiliation(s)
- Juyeon Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyobin Bang
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Cheyun Seong
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
5
|
Keresztes D, Kerestély M, Szarka L, Kovács BM, Schulc K, Veres DV, Csermely P. Cancer drug resistance as learning of signaling networks. Biomed Pharmacother 2025; 183:117880. [PMID: 39884030 DOI: 10.1016/j.biopha.2025.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
Drug resistance is a major cause of tumor mortality. Signaling networks became useful tools for driving pharmacological interventions against cancer drug resistance. Signaling datasets now cover the entire human cell. Recently, network adaptation became understood as a learning process. We review rapidly increasing evidence showing that the development of cancer drug resistance can be described as learning of signaling networks. During drug adaptation, the network forgets drug-affected pathways by desensitization and relearns by strengthening alternative pathways. Thus, resistant cancer cells develop a drug resistance memory. We show that all key players of cellular learning (i.e., IDPs, protein translocation, microRNAs/lncRNAs, scaffolding proteins and epigenetic/chromatin memory) have important roles in the development of cancer drug resistance. Moreover, all of them are central components of the epithelial-mesenchymal transition leading to metastases and resistance. Phenotypic plasticity was recently listed as a hallmark of cancer. We review how network plasticity induces rare, pre-existent drug-resistant cells in the absence of drug treatment. Key network methods assessing the development of drug resistance and network pharmacological interventions against drug resistance are summarized. Finally, we highlight the class of cellular memory drugs affecting cellular learning and forgetting, and we summarize current challenges to prevent or break drug resistance using network models.
Collapse
Affiliation(s)
- Dávid Keresztes
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Márk Kerestély
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Levente Szarka
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Borbála M Kovács
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Klára Schulc
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary; Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Dániel V Veres
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary; Turbine Simulated Cell Technologies, Budapest, Hungary
| | - Peter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Šimon M, Čater M, Kunej T, Morton NM, Horvat S. A bioinformatics toolbox to prioritize causal genetic variants in candidate regions. Trends Genet 2025; 41:33-46. [PMID: 39414414 DOI: 10.1016/j.tig.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
This review addresses the significant challenge of identifying causal genetic variants within quantitative trait loci (QTLs) for complex traits and diseases. Despite progress in detecting the ever-larger number of such loci, establishing causality remains daunting. We advocate for integrating bioinformatics and multiomics analyses to streamline the prioritization of candidate genes' variants. Our case study on the Pla2g4e gene, identified previously as a positional candidate obesity gene through genetic mapping and expression studies, demonstrates how applying multiomic data filtered through regulatory elements containing SNPs can refine the search for causative variants. This approach can yield results that guide more efficient experimental strategies, accelerating genetic research toward functional validation and therapeutic development.
Collapse
Affiliation(s)
- Martin Šimon
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Maša Čater
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Tanja Kunej
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Nicholas M Morton
- Department of Biosciences, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | - Simon Horvat
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia.
| |
Collapse
|
7
|
Musilova J, Vafek Z, Puniya BL, Zimmer R, Helikar T, Sedlar K. Augusta: From RNA-Seq to gene regulatory networks and Boolean models. Comput Struct Biotechnol J 2024; 23:783-790. [PMID: 38312198 PMCID: PMC10837063 DOI: 10.1016/j.csbj.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Computational models of gene regulations help to understand regulatory mechanisms and are extensively used in a wide range of areas, e.g., biotechnology or medicine, with significant benefits. Unfortunately, there are only a few computational gene regulatory models of whole genomes allowing static and dynamic analysis due to the lack of sophisticated tools for their reconstruction. Here, we describe Augusta, an open-source Python package for Gene Regulatory Network (GRN) and Boolean Network (BN) inference from the high-throughput gene expression data. Augusta can reconstruct genome-wide models suitable for static and dynamic analyses. Augusta uses a unique approach where the first estimation of a GRN inferred from expression data is further refined by predicting transcription factor binding motifs in promoters of regulated genes and by incorporating verified interactions obtained from databases. Moreover, a refined GRN is transformed into a draft BN by searching in the curated model database and setting logical rules to incoming edges of target genes, which can be further manually edited as the model is provided in the SBML file format. The approach is applicable even if information about the organism under study is not available in the databases, which is typically the case for non-model organisms including most microbes. Augusta can be operated from the command line and, thus, is easy to use for automated prediction of models for various genomes. The Augusta package is freely available at github.com/JanaMus/Augusta. Documentation and tutorials are available at augusta.readthedocs.io.
Collapse
Affiliation(s)
- Jana Musilova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno 61600, Czech Republic
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln 68588, NE, USA
| | - Zdenek Vafek
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln 68588, NE, USA
- Institute of Forensic Engineering, Brno University of Technology, Brno 61200, Czech Republic
| | - Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln 68588, NE, USA
| | - Ralf Zimmer
- Department of Informatics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Tomas Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln 68588, NE, USA
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno 61600, Czech Republic
- Department of Informatics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| |
Collapse
|
8
|
Turek C, Ölbei M, Stirling T, Fekete G, Tasnádi E, Gul L, Bohár B, Papp B, Jurkowski W, Ari E. mulea: An R package for enrichment analysis using multiple ontologies and empirical false discovery rate. BMC Bioinformatics 2024; 25:334. [PMID: 39425047 PMCID: PMC11490090 DOI: 10.1186/s12859-024-05948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
Traditional gene set enrichment analyses are typically limited to a few ontologies and do not account for the interdependence of gene sets or terms, resulting in overcorrected p-values. To address these challenges, we introduce mulea, an R package offering comprehensive overrepresentation and functional enrichment analysis. mulea employs a progressive empirical false discovery rate (eFDR) method, specifically designed for interconnected biological data, to accurately identify significant terms within diverse ontologies. mulea expands beyond traditional tools by incorporating a wide range of ontologies, encompassing Gene Ontology, pathways, regulatory elements, genomic locations, and protein domains. This flexibility enables researchers to tailor enrichment analysis to their specific questions, such as identifying enriched transcriptional regulators in gene expression data or overrepresented protein domains in protein sets. To facilitate seamless analysis, mulea provides gene sets (in standardised GMT format) for 27 model organisms, covering 22 ontology types from 16 databases and various identifiers resulting in almost 900 files. Additionally, the muleaData ExperimentData Bioconductor package simplifies access to these pre-defined ontologies. Finally, mulea's architecture allows for easy integration of user-defined ontologies, or GMT files from external sources (e.g., MSigDB or Enrichr), expanding its applicability across diverse research areas. mulea is distributed as a CRAN R package downloadable from https://cran.r-project.org/web/packages/mulea/ and https://github.com/ELTEbioinformatics/mulea . It offers researchers a powerful and flexible toolkit for functional enrichment analysis, addressing limitations of traditional tools with its progressive eFDR and by supporting a variety of ontologies. Overall, mulea fosters the exploration of diverse biological questions across various model organisms.
Collapse
Affiliation(s)
- Cezary Turek
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Márton Ölbei
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, The Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Tamás Stirling
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Research Group, Temesvári Krt. 62, 6726, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Research Group, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Ervin Tasnádi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Doctoral School of Computer Science, University of Szeged, Árpád Tér 2, 6720, Szeged, Hungary
| | - Leila Gul
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, The Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Balázs Bohár
- Department of Metabolism, Digestion and Reproduction, Imperial College London, The Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Department of Genetics, ELTE Eötvös Loránd University, Pázmány P. Stny. 1/C, 1117, Budapest, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Research Group, Temesvári Krt. 62, 6726, Szeged, Hungary
| | | | - Eszter Ari
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
- HCEMM-BRC Metabolic Systems Biology Research Group, Temesvári Krt. 62, 6726, Szeged, Hungary.
- Department of Genetics, ELTE Eötvös Loránd University, Pázmány P. Stny. 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
9
|
Song J, Song Z, Zhang J, Gong Y. Privacy-Preserving Identification of Cancer Subtype-Specific Driver Genes Based on Multigenomics Data with Privatedriver. J Comput Biol 2024; 31:99-116. [PMID: 38271572 DOI: 10.1089/cmb.2023.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Identifying cancer subtype-specific driver genes from a large number of irrelevant passengers is crucial for targeted therapy in cancer treatment. Recently, the rapid accumulation of large-scale cancer genomics data from multiple institutions has presented remarkable opportunities for identification of cancer subtype-specific driver genes. However, the insufficient subtype samples, privacy issues, and heterogenous of aberration events pose great challenges in precisely identifying cancer subtype-specific driver genes. To address this, we introduce privatedriver, the first model for identifying subtype-specific driver genes that integrates genomics data from multiple institutions in a data privacy-preserving collaboration manner. The process of identifying subtype-specific cancer driver genes using privatedriver involves the following two steps: genomics data integration and collaborative training. In the integration process, the aberration events from multiple genomics data sources are combined for each institution using the forward and backward propagation method of NetICS. In the collaborative training process, each institution utilizes the federated learning framework to upload encrypted model parameters instead of raw data of all institutions to train a global model by using the non-negative matrix factorization algorithm. We applied privatedriver on head and neck squamous cell and colon cancer from The Cancer Genome Atlas website and evaluated it with two benchmarks using macro-Fscore. The comparison analysis demonstrates that privatedriver achieves comparable results to centralized learning models and outperforms most other nonprivacy preserving models, all while ensuring the confidentiality of patient information. We also demonstrate that, for varying predicted driver gene distributions in subtype, our model fully considers the heterogeneity of subtype and identifies subtype-specific driver genes corresponding to the given prognosis and therapeutic effect. The success of privatedriver reveals the feasibility and effectiveness of identifying cancer subtype-specific driver genes in a data protection manner, providing new insights for future privacy-preserving driver gene identification studies.
Collapse
Affiliation(s)
- Junrong Song
- School of Information; Kunming, P.R. China
- Yunnan Key Laboratory of Service Computing; Yunnan University of Finance and Economics, Kunming, P.R. China
| | - Zhiming Song
- School of Information; Kunming, P.R. China
- Yunnan Key Laboratory of Service Computing; Yunnan University of Finance and Economics, Kunming, P.R. China
| | - Jinpeng Zhang
- School of Information; Kunming, P.R. China
- Yunnan Key Laboratory of Service Computing; Yunnan University of Finance and Economics, Kunming, P.R. China
- The School of Computer Science and Engineering, Yunnan University, Kunming, P.R. China
| | | |
Collapse
|
10
|
Martini L, Baek SH, Lo I, Raby BA, Silverman E, Weiss S, Glass K, Halu A. Detecting and dissecting signaling crosstalk via the multilayer network integration of signaling and regulatory interactions. Nucleic Acids Res 2024; 52:e5. [PMID: 37953325 PMCID: PMC10783515 DOI: 10.1093/nar/gkad1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/27/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
The versatility of cellular response arises from the communication, or crosstalk, of signaling pathways in a complex network of signaling and transcriptional regulatory interactions. Understanding the various mechanisms underlying crosstalk on a global scale requires untargeted computational approaches. We present a network-based statistical approach, MuXTalk, that uses high-dimensional edges called multilinks to model the unique ways in which signaling and regulatory interactions can interface. We demonstrate that the signaling-regulatory interface is located primarily in the intermediary region between signaling pathways where crosstalk occurs, and that multilinks can differentiate between distinct signaling-transcriptional mechanisms. Using statistically over-represented multilinks as proxies of crosstalk, we infer crosstalk among 60 signaling pathways, expanding currently available crosstalk databases by more than five-fold. MuXTalk surpasses existing methods in terms of model performance metrics, identifies additions to manual curation efforts, and pinpoints potential mediators of crosstalk. Moreover, it accommodates the inherent context-dependence of crosstalk, allowing future applications to cell type- and disease-specific crosstalk.
Collapse
Affiliation(s)
- Leonardo Martini
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, 00185, Italy
| | - Seung Han Baek
- Division of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ian Lo
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Arda Halu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Iannuccelli M, Vitriolo A, Licata L, Lo Surdo P, Contino S, Cheroni C, Capocefalo D, Castagnoli L, Testa G, Cesareni G, Perfetto L. Curation of causal interactions mediated by genes associated with autism accelerates the understanding of gene-phenotype relationships underlying neurodevelopmental disorders. Mol Psychiatry 2024; 29:186-196. [PMID: 38102483 PMCID: PMC11078740 DOI: 10.1038/s41380-023-02317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Autism spectrum disorder (ASD) comprises a large group of neurodevelopmental conditions featuring, over a wide range of severity and combinations, a core set of manifestations (restricted sociality, stereotyped behavior and language impairment) alongside various comorbidities. Common and rare variants in several hundreds of genes and regulatory regions have been implicated in the molecular pathogenesis of ASD along a range of causation evidence strength. Despite significant progress in elucidating the impact of few paradigmatic individual loci, such sheer complexity in the genetic architecture underlying ASD as a whole has hampered the identification of convergent actionable hubs hypothesized to relay between the vastness of risk alleles and the core phenotypes. In turn this has limited the development of strategies that can revert or ameliorate this condition, calling for a systems-level approach to probe the cross-talk of cooperating genes in terms of causal interaction networks in order to make convergences experimentally tractable and reveal their clinical actionability. As a first step in this direction, we have captured from the scientific literature information on the causal links between the genes whose variants have been associated with ASD and the whole human proteome. This information has been annotated in a computer readable format in the SIGNOR database and is made freely available in the resource website. To link this information to cell functions and phenotypes, we have developed graph algorithms that estimate the functional distance of any protein in the SIGNOR causal interactome to phenotypes and pathways. The main novelty of our approach resides in the possibility to explore the mechanistic links connecting the suggested gene-phenotype relations.
Collapse
Affiliation(s)
- Marta Iannuccelli
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Vitriolo
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
| | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Prisca Lo Surdo
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Silvia Contino
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy
| | - Cristina Cheroni
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
| | - Daniele Capocefalo
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy
| | - Giuseppe Testa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy.
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy.
| | - Livia Perfetto
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
12
|
Csabai L, Bohár B, Türei D, Prabhu S, Földvári-Nagy L, Madgwick M, Fazekas D, Módos D, Ölbei M, Halka T, Poletti M, Kornilova P, Kadlecsik T, Demeter A, Szalay-Bekő M, Kapuy O, Lenti K, Vellai T, Gul L, Korcsmáros T. AutophagyNet: high-resolution data source for the analysis of autophagy and its regulation. Autophagy 2024; 20:188-201. [PMID: 37589496 PMCID: PMC10761021 DOI: 10.1080/15548627.2023.2247737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023] Open
Abstract
Macroautophagy/autophagy is a highly-conserved catabolic procss eliminating dysfunctional cellular components and invading pathogens. Autophagy malfunction contributes to disorders such as cancer, neurodegenerative and inflammatory diseases. Understanding autophagy regulation in health and disease has been the focus of the last decades. We previously provided an integrated database for autophagy research, the Autophagy Regulatory Network (ARN). For the last eight years, this resource has been used by thousands of users. Here, we present a new and upgraded resource, AutophagyNet. It builds on the previous database but contains major improvements to address user feedback and novel needs due to the advancement in omics data availability. AutophagyNet contains updated interaction curation and integration of over 280,000 experimentally verified interactions between core autophagy proteins and their protein, transcriptional and post-transcriptional regulators as well as their potential upstream pathway connections. AutophagyNet provides annotations for each core protein about their role: 1) in different types of autophagy (mitophagy, xenophagy, etc.); 2) in distinct stages of autophagy (initiation, expansion, termination, etc.); 3) with subcellular and tissue-specific localization. These annotations can be used to filter the dataset, providing customizable download options tailored to the user's needs. The resource is available in various file formats (e.g. CSV, BioPAX and PSI-MI), and data can be analyzed and visualized directly in Cytoscape. The multi-layered regulation of autophagy can be analyzed by combining AutophagyNet with tissue- or cell type-specific (multi-)omics datasets (e.g. transcriptomic or proteomic data). The resource is publicly accessible at http://autophagynet.org.Abbreviations: ARN: Autophagy Regulatory Network; ATG: autophagy related; BCR: B cell receptor pathway; BECN1: beclin 1; GABARAP: GABA type A receptor-associated protein; IIP: innate immune pathway; LIR: LC3-interacting region; lncRNA: long non-coding RNA; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; miRNA: microRNA; NHR: nuclear hormone receptor; PTM: post-translational modification; RTK: receptor tyrosine kinase; TCR: T cell receptor; TLR: toll like receptor.
Collapse
Affiliation(s)
- Luca Csabai
- Earlham Institute, Norwich, UK
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Bohár
- Earlham Institute, Norwich, UK
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dénes Türei
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | | | - László Földvári-Nagy
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Matthew Madgwick
- Earlham Institute, Norwich, UK
- Quadram Institute, Norwich Research Park, Norwich, UK
| | - Dávid Fazekas
- Earlham Institute, Norwich, UK
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dezső Módos
- Earlham Institute, Norwich, UK
- Quadram Institute, Norwich Research Park, Norwich, UK
| | - Márton Ölbei
- Earlham Institute, Norwich, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Themis Halka
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Martina Poletti
- Earlham Institute, Norwich, UK
- Quadram Institute, Norwich Research Park, Norwich, UK
| | | | - Tamás Kadlecsik
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | | | - Orsolya Kapuy
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Katalin Lenti
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- ELKH/MTA-ELTE Genetics Research Group, Budapest, Hungary
| | - Lejla Gul
- Earlham Institute, Norwich, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tamás Korcsmáros
- Earlham Institute, Norwich, UK
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- Quadram Institute, Norwich Research Park, Norwich, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
13
|
Hosseini-Gerami L, Hernansaiz Ballesteros R, Liu A, Broughton H, Collier DA, Bender A. MAVEN: compound mechanism of action analysis and visualisation using transcriptomics and compound structure data in R/Shiny. BMC Bioinformatics 2023; 24:344. [PMID: 37715141 PMCID: PMC10502988 DOI: 10.1186/s12859-023-05416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/18/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Understanding the Mechanism of Action (MoA) of a compound is an often challenging but equally crucial aspect of drug discovery that can help improve both its efficacy and safety. Computational methods to aid MoA elucidation usually either aim to predict direct drug targets, or attempt to understand modulated downstream pathways or signalling proteins. Such methods usually require extensive coding experience and results are often optimised for further computational processing, making them difficult for wet-lab scientists to perform, interpret and draw hypotheses from. RESULTS To address this issue, we in this work present MAVEN (Mechanism of Action Visualisation and Enrichment), an R/Shiny app which allows for GUI-based prediction of drug targets based on chemical structure, combined with causal reasoning based on causal protein-protein interactions and transcriptomic perturbation signatures. The app computes a systems-level view of the mechanism of action of the input compound. This is visualised as a sub-network linking predicted or known targets to modulated transcription factors via inferred signalling proteins. The tool includes a selection of MSigDB gene set collections to perform pathway enrichment on the resulting network, and also allows for custom gene sets to be uploaded by the researcher. MAVEN is hence a user-friendly, flexible tool for researchers without extensive bioinformatics or cheminformatics knowledge to generate interpretable hypotheses of compound Mechanism of Action. CONCLUSIONS MAVEN is available as a fully open-source tool at https://github.com/laylagerami/MAVEN with options to install in a Docker or Singularity container. Full documentation, including a tutorial on example data, is available at https://laylagerami.github.io/MAVEN .
Collapse
Affiliation(s)
- Layla Hosseini-Gerami
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Ignota Labs, London, UK.
| | - Rosa Hernansaiz Ballesteros
- Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg University, Heidelberg, Germany
| | - Anika Liu
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Howard Broughton
- Eli Lilly and Company Centre de Investigacion, Alcobendas, Spain
| | - David Andrew Collier
- Eli Lilly and Company, Bracknell, UK
- King's College London, and Genetics and Genomics Consulting, Surrey, UK
| | - Andreas Bender
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Misetic H, Keddar MR, Jeannon JP, Ciccarelli FD. Mechanistic insights into the interactions between cancer drivers and the tumour immune microenvironment. Genome Med 2023; 15:40. [PMID: 37277866 DOI: 10.1186/s13073-023-01197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND The crosstalk between cancer and the tumour immune microenvironment (TIME) has attracted significant interest in the latest years because of its impact on cancer evolution and response to treatment. Despite this, cancer-specific tumour-TIME interactions and their mechanistic insights are still poorly understood. METHODS Here, we compute the significant interactions occurring between cancer-specific genetic drivers and five anti- and pro-tumour TIME features in 32 cancer types using Lasso regularised ordinal regression. Focusing on head and neck squamous cancer (HNSC), we rebuild the functional networks linking specific TIME driver alterations to the TIME state they associate with. RESULTS The 477 TIME drivers that we identify are multifunctional genes whose alterations are selected early in cancer evolution and recur across and within cancer types. Tumour suppressors and oncogenes have an opposite effect on the TIME and the overall anti-tumour TIME driver burden is predictive of response to immunotherapy. TIME driver alterations predict the immune profiles of HNSC molecular subtypes, and perturbations in keratinization, apoptosis and interferon signalling underpin specific driver-TIME interactions. CONCLUSIONS Overall, our study delivers a comprehensive resource of TIME drivers, gives mechanistic insights into their immune-regulatory role, and provides an additional framework for patient prioritisation to immunotherapy. The full list of TIME drivers and associated properties are available at http://www.network-cancer-genes.org .
Collapse
Affiliation(s)
- Hrvoje Misetic
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE11UL, UK
| | - Mohamed Reda Keddar
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE11UL, UK
| | - Jean-Pierre Jeannon
- Department of Head & Neck Surgery, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE11UL, UK.
| |
Collapse
|
15
|
Pandey AK, Loscalzo J. Network medicine: an approach to complex kidney disease phenotypes. Nat Rev Nephrol 2023:10.1038/s41581-023-00705-0. [PMID: 37041415 DOI: 10.1038/s41581-023-00705-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Scientific reductionism has been the basis of disease classification and understanding for more than a century. However, the reductionist approach of characterizing diseases from a limited set of clinical observations and laboratory evaluations has proven insufficient in the face of an exponential growth in data generated from transcriptomics, proteomics, metabolomics and deep phenotyping. A new systematic method is necessary to organize these datasets and build new definitions of what constitutes a disease that incorporates both biological and environmental factors to more precisely describe the ever-growing complexity of phenotypes and their underlying molecular determinants. Network medicine provides such a conceptual framework to bridge these vast quantities of data while providing an individualized understanding of disease. The modern application of network medicine principles is yielding new insights into the pathobiology of chronic kidney diseases and renovascular disorders by expanding the understanding of pathogenic mediators, novel biomarkers and new options for renal therapeutics. These efforts affirm network medicine as a robust paradigm for elucidating new advances in the diagnosis and treatment of kidney disorders.
Collapse
Affiliation(s)
- Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Jaskiewicz K, Maleszka-Kurpiel M, Matuszewska E, Kabza M, Rydzanicz M, Malinowski R, Ploski R, Matysiak J, Gajecka M. The Impaired Wound Healing Process Is a Major Factor in Remodeling of the Corneal Epithelium in Adult and Adolescent Patients With Keratoconus. Invest Ophthalmol Vis Sci 2023; 64:22. [PMID: 36811882 PMCID: PMC9970004 DOI: 10.1167/iovs.64.2.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Purpose Keratoconus (KTCN) is the most common corneal ectasia, characterized by pathological cone formation. Here, to provide an insight into the remodeling of the corneal epithelium (CE) during the course of the disease, we evaluated topographic regions of the CE of adult and adolescent patients with KTCN. Methods The CE samples from 17 adult and 6 adolescent patients with KTCN, and 5 control CE samples were obtained during the CXL and PRK procedures, respectively. Three topographic regions, central, middle, and peripheral, were separated toward RNA sequencing and MALDI-TOF/TOF Tandem Mass Spectrometry. Data from transcriptomic and proteomic investigations were consolidated with the morphological and clinical findings. Results The critical elements of the wound healing process, epithelial-mesenchymal transition, cell-cell communications, and cell-extracellular matrix interactions were altered in the particular corneal topographic regions. Abnormalities in pathways of neutrophils degranulation, extracellular matrix processing, apical junctions, IL, and IFN signaling were revealed to cooperatively disorganize the epithelial healing. Deregulation of the epithelial healing, G2M checkpoints, apoptosis, and DNA repair pathways in the middle CE topographic region in KTCN explains the presence of morphological changes in the corresponding doughnut pattern (a thin cone center surrounded by a thickened annulus). Despite similar morphological characteristics of CE samples in adolescents and adults with KTCN, their transcriptomic features were different. Values of the posterior corneal elevation differentiated adults with KTCN from adolescents with KTCN and correlated with the expression of TCHP, SPATA13, CNOT3, WNK1, TGFB2, and KRT12 genes. Conclusions Identified molecular, morphological, and clinical features indicate the effect of impaired wound healing on corneal remodeling in KTCN CE.
Collapse
Affiliation(s)
| | - Magdalena Maleszka-Kurpiel
- Optegra Eye Health Care Clinic in Poznan, Poznan, Poland,Department of Optometry, Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences, Poznan, Poland
| | - Eliza Matuszewska
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Kabza
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Robert Malinowski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Jan Matysiak
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
17
|
Kumar S, Sarmah DT, Asthana S, Chatterjee S. konnect2prot: a web application to explore the protein properties in a functional protein-protein interaction network. Bioinformatics 2022; 39:6955601. [PMID: 36545703 PMCID: PMC9848060 DOI: 10.1093/bioinformatics/btac815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The regulation of proteins governs the biological processes and functions and, therefore, the organisms' phenotype. So there is an unmet need for a systematic tool for identifying the proteins that play a crucial role in information processing in a protein-protein interaction (PPI) network. However, the current protein databases and web servers still lag behind to provide an end-to-end pipeline that can leverage the topological understanding of a context-specific PPI network to identify the influential spreaders. Addressing this, we developed a web application, 'konnect2prot' (k2p), which can generate context-specific directional PPI network from the input proteins and detect their biological and topological importance in the network. RESULTS We pooled together a large amount of ontological knowledge, parsed it down into a functional network, and gained insight into the molecular underpinnings of the disease development by creating a one-stop junction for PPI data. k2p contains both local and global information about a protein, such as protein class, disease mutations, ligands and PDB structure, enriched processes and pathways, multi-disease interactome and hubs and bottlenecks in the directional network. It also identifies spreaders in the network and maps them to disease hallmarks to determine whether they can affect the disease state or not. AVAILABILITY AND IMPLEMENTATION konnect2prot is freely accessible using the link https://konnect2prot.thsti.in. The code repository is https://github.com/samrat-lab/k2p_bioinfo-2022.
Collapse
Affiliation(s)
| | | | - Shailendra Asthana
- Non-communicable Disease Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | | |
Collapse
|
18
|
Lo Surdo P, Iannuccelli M, Contino S, Castagnoli L, Licata L, Cesareni G, Perfetto L. SIGNOR 3.0, the SIGnaling network open resource 3.0: 2022 update. Nucleic Acids Res 2022; 51:D631-D637. [PMID: 36243968 PMCID: PMC9825604 DOI: 10.1093/nar/gkac883] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023] Open
Abstract
The SIGnaling Network Open Resource (SIGNOR 3.0, https://signor.uniroma2.it) is a public repository that captures causal information and represents it according to an 'activity-flow' model. SIGNOR provides freely-accessible static maps of causal interactions that can be tailored, pruned and refined to build dynamic and predictive models. Each signaling relationship is annotated with an effect (up/down-regulation) and with the mechanism (e.g. binding, phosphorylation, transcriptional activation, etc.) causing the regulation of the target entity. Since its latest release, SIGNOR has undergone a significant upgrade including: (i) a new website that offers an improved user experience and novel advanced search and graph tools; (ii) a significant content growth adding up to a total of approx. 33,000 manually-annotated causal relationships between more than 8900 biological entities; (iii) an increase in the number of manually annotated pathways, currently including pathways deregulated by SARS-CoV-2 infection or involved in neurodevelopment synaptic transmission and metabolism, among others; (iv) additional features such as new model to represent metabolic reactions and a new confidence score assigned to each interaction.
Collapse
Affiliation(s)
| | - Marta Iannuccelli
- Department of Biology, University of Rome ‘Tor Vergata’, Rome 00133, Italy
| | - Silvia Contino
- Department of Biology, University of Rome ‘Tor Vergata’, Rome 00133, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Rome ‘Tor Vergata’, Rome 00133, Italy
| | | | | | - Livia Perfetto
- To whom correspondence should be addressed. Tel: +39 0672594315;
| |
Collapse
|
19
|
Collin CB, Gebhardt T, Golebiewski M, Karaderi T, Hillemanns M, Khan FM, Salehzadeh-Yazdi A, Kirschner M, Krobitsch S, Kuepfer L. Computational Models for Clinical Applications in Personalized Medicine—Guidelines and Recommendations for Data Integration and Model Validation. J Pers Med 2022; 12:jpm12020166. [PMID: 35207655 PMCID: PMC8879572 DOI: 10.3390/jpm12020166] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
The future development of personalized medicine depends on a vast exchange of data from different sources, as well as harmonized integrative analysis of large-scale clinical health and sample data. Computational-modelling approaches play a key role in the analysis of the underlying molecular processes and pathways that characterize human biology, but they also lead to a more profound understanding of the mechanisms and factors that drive diseases; hence, they allow personalized treatment strategies that are guided by central clinical questions. However, despite the growing popularity of computational-modelling approaches in different stakeholder communities, there are still many hurdles to overcome for their clinical routine implementation in the future. Especially the integration of heterogeneous data from multiple sources and types are challenging tasks that require clear guidelines that also have to comply with high ethical and legal standards. Here, we discuss the most relevant computational models for personalized medicine in detail that can be considered as best-practice guidelines for application in clinical care. We define specific challenges and provide applicable guidelines and recommendations for study design, data acquisition, and operation as well as for model validation and clinical translation and other research areas.
Collapse
Affiliation(s)
- Catherine Bjerre Collin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 N Copenhagen, Denmark; (C.B.C.); (T.K.)
| | - Tom Gebhardt
- Department of Systems Biology and Bioinformatics, University of Rostock, 18057 Rostock, Germany; (T.G.); (M.H.); (F.M.K.)
| | - Martin Golebiewski
- Heidelberg Institute for Theoretical Studies gGmbH, 69118 Heidelberg, Germany;
| | - Tugce Karaderi
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 N Copenhagen, Denmark; (C.B.C.); (T.K.)
- Center for Health Data Science, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 N Copenhagen, Denmark
| | - Maximilian Hillemanns
- Department of Systems Biology and Bioinformatics, University of Rostock, 18057 Rostock, Germany; (T.G.); (M.H.); (F.M.K.)
| | - Faiz Muhammad Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, 18057 Rostock, Germany; (T.G.); (M.H.); (F.M.K.)
| | | | - Marc Kirschner
- Forschungszentrum Jülich GmbH, Project Management Jülich, 52425 Jülich, Germany; (M.K.); (S.K.)
| | - Sylvia Krobitsch
- Forschungszentrum Jülich GmbH, Project Management Jülich, 52425 Jülich, Germany; (M.K.); (S.K.)
| | | | - Lars Kuepfer
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Correspondence: ; Tel.: +49-241-8085900
| |
Collapse
|