1
|
Chen W, Wang YJ. Multifaceted roles of OCT4 in tumor microenvironment: biology and therapeutic implications. Oncogene 2025:10.1038/s41388-025-03408-x. [PMID: 40229384 DOI: 10.1038/s41388-025-03408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
OCT4 (Octamer-binding transcription factor 4, encoded by the POU5F1 gene) is a master transcription factor for maintaining the self-renewal and pluripotency of pluripotent stem cells, as well as a pioneer factor regulating epigenetics-driven cell reprogramming and cell fate conversion. It is also detected in a variety of cancer tissues and particularly in a small subpopulation of cancer cells known as cancer stem cells (CSCs). Accumulating evidence has revealed that CSCs are a dynamic population, exhibiting shift between multipotency and differentiation states, or quiescence and proliferation states. Such cellular plasticity of CSCs is profoundly influenced by dynamic interplay between CSCs and the tumor microenvironment (TME). Here, we review recent evidence showing that OCT4 expressed in CSCs plays a multifaceted role in shaping the TME by interacting with the cellular TME components, including cancer-associated fibroblasts, tumor endothelial cells, tumor-infiltrating immune cells, as well as the non-cellular TME components, such as extracellular matrix (ECM), metabolites, soluble factors (e.g., growth factors, cytokines and chemokines), and intra-tumoral microbiota. Together, OCT4 regulates crucial processes encompassing ECM remodeling, epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and immune responses. The complex and bidirectional interactions between OCT4-expressing CSCs and the TME create a supportive niche for tumor growth, invasion, and resistance to therapy. Better understanding OCT4's roles in such interactions can provide deeper insights into potential therapeutic strategies and targets for disrupting the supportive environment of tumors. The emerging therapies targeting OCT4 in CSCs might hold promise to resensitize therapeutic-resistant cancer cells, and to eradicate all cancer cells when combined with other therapies targeting the bulk of differentiated cancer cells as well as the TME.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Moos HK, Patel R, Flaherty SK, Loverde SM, Nikolova EN. H2A.Z facilitates Sox2-nucleosome interaction by promoting DNA and histone H3 tail mobility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641691. [PMID: 40093108 PMCID: PMC11908261 DOI: 10.1101/2025.03.06.641691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Epigenetic regulation of eukaryotic chromatin structure and function can be modulated by histone variants and post-translational modifications. The conserved variant H2A.Z has been functionally linked to pioneer factors Sox2 and Oct4 that open chromatin and initiate cell fate-specific expression programs. However, the molecular basis for their interaction remains unknown. Using biochemistry, nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations, we examine the role of H2A.Z nucleosome dynamics in pioneer factor binding. We find that H2A.Z facilitates Sox2 and Oct4 binding at distinct locations in 601 nucleosomes. We further link this to increased DNA accessibility and perturbed dynamics of the H3 N-terminal tail, which we show competes with Sox2 for DNA binding. Our simulations validate a coupling between H2A.Z-mediated DNA unwrapping and altered H3 N-tail conformations with fewer contacts to DNA and the H2A.Z C- terminal tail. This destabilizing effect of H2A.Z is DNA sequence dependent and enhanced with the less stable Lin28B nucleosome. Collectively, our findings suggest that H2A.Z promotes pioneer factor binding by increasing access to DNA and reducing competition with H3 tails. This could have broader implications for how epigenetic marks or oncogenic mutations tune pioneer factor engagement with chromatin and thus affect its structure and recognition.
Collapse
|
3
|
Zhou BR, Orris B, Guan R, Lian T, Bai Y. Structural insights into the recognition of native nucleosomes by pioneer transcription factors. Curr Opin Struct Biol 2025; 92:103024. [PMID: 40024204 DOI: 10.1016/j.sbi.2025.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/04/2025]
Abstract
Pioneer transcription factors possess the unique ability to bind to nucleosomal DNA and locally open closed chromatin, enabling the binding of additional chromatin-associated factors. These factors are pivotal in determining cell fate. Structural studies of pioneer transcription factors interacting with nucleosomes have predominantly relied on model systems incorporating canonical DNA motifs within synthetic, strongly positioned DNA. However, recent advances have revealed structures of several pioneer transcription factors bound to their native nucleosome targets at gene enhancers involved in cell reprogramming. These findings offer fresh insights into how pioneer transcription factors recognize and disrupt compact chromatin. In this review, we summarize these recent discoveries and explore their broader implications.
Collapse
Affiliation(s)
- Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Benjamin Orris
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA.
| |
Collapse
|
4
|
Freund MM, Harrison MM, Torres-Zelada EF. Exploring the reciprocity between pioneer factors and development. Development 2024; 151:dev201921. [PMID: 38958075 PMCID: PMC11266817 DOI: 10.1242/dev.201921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Development is regulated by coordinated changes in gene expression. Control of these changes in expression is largely governed by the binding of transcription factors to specific regulatory elements. However, the packaging of DNA into chromatin prevents the binding of many transcription factors. Pioneer factors overcome this barrier owing to unique properties that enable them to bind closed chromatin, promote accessibility and, in so doing, mediate binding of additional factors that activate gene expression. Because of these properties, pioneer factors act at the top of gene-regulatory networks and drive developmental transitions. Despite the ability to bind target motifs in closed chromatin, pioneer factors have cell type-specific chromatin occupancy and activity. Thus, developmental context clearly shapes pioneer-factor function. Here, we discuss this reciprocal interplay between pioneer factors and development: how pioneer factors control changes in cell fate and how cellular environment influences pioneer-factor binding and activity.
Collapse
Affiliation(s)
- Meghan M. Freund
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Eliana F. Torres-Zelada
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| |
Collapse
|
5
|
Brandani GB, Gu C, Gopi S, Takada S. Multiscale Bayesian simulations reveal functional chromatin condensation of gene loci. PNAS NEXUS 2024; 3:pgae226. [PMID: 38881841 PMCID: PMC11179106 DOI: 10.1093/pnasnexus/pgae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Chromatin, the complex assembly of DNA and associated proteins, plays a pivotal role in orchestrating various genomic functions. To aid our understanding of the principles underlying chromatin organization, we introduce Hi-C metainference, a Bayesian approach that integrates Hi-C contact frequencies into multiscale prior models of chromatin. This approach combines both bottom-up (the physics-based prior) and top-down (the data-driven posterior) strategies to characterize the 3D organization of a target genomic locus. We first demonstrate the capability of this method to accurately reconstruct the structural ensemble and the dynamics of a system from contact information. We then apply the approach to investigate the Sox2, Pou5f1, and Nanog loci of mouse embryonic stem cells using a bottom-up chromatin model at 1 kb resolution. We observe that the studied loci are conformationally heterogeneous and organized as crumpled globules, favoring contacts between distant enhancers and promoters. Using nucleosome-resolution simulations, we then reveal how the Nanog gene is functionally organized across the multiple scales of chromatin. At the local level, we identify diverse tetranucleosome folding motifs with a characteristic distribution along the genome, predominantly open at cis-regulatory elements and compact in between. At the larger scale, we find that enhancer-promoter contacts are driven by the transient condensation of chromatin into compact domains stabilized by extensive internucleosome interactions. Overall, this work highlights the condensed, but dynamic nature of chromatin in vivo, contributing to a deeper understanding of gene structure-function relationships.
Collapse
Affiliation(s)
- Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Chenyang Gu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Orsetti A, van Oosten D, Vasarhelyi RG, Dănescu TM, Huertas J, van Ingen H, Cojocaru V. Structural dynamics in chromatin unraveling by pioneer transcription factors. Biophys Rev 2024; 16:365-382. [PMID: 39099839 PMCID: PMC11297019 DOI: 10.1007/s12551-024-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Pioneer transcription factors are proteins with a dual function. First, they regulate transcription by binding to nucleosome-free DNA regulatory elements. Second, they bind to DNA while wrapped around histone proteins in the chromatin and mediate chromatin opening. The molecular mechanisms that connect the two functions are yet to be discovered. In recent years, pioneer factors received increased attention mainly because of their crucial role in promoting cell fate transitions that could be used for regenerative therapies. For example, the three factors required to induce pluripotency in somatic cells, Oct4, Sox2, and Klf4 were classified as pioneer factors and studied extensively. With this increased attention, several structures of complexes between pioneer factors and chromatin structural units (nucleosomes) have been resolved experimentally. Furthermore, experimental and computational approaches have been designed to study two unresolved, key scientific questions: First, do pioneer factors induce directly local opening of nucleosomes and chromatin fibers upon binding? And second, how do the unstructured tails of the histones impact the structural dynamics involved in such conformational transitions? Here we review the current knowledge about transcription factor-induced nucleosome dynamics and the role of the histone tails in this process. We discuss what is needed to bridge the gap between the static views obtained from the experimental structures and the key structural dynamic events in chromatin opening. Finally, we propose that integrating nuclear magnetic resonance spectroscopy with molecular dynamics simulations is a powerful approach to studying pioneer factor-mediated dynamics of nucleosomes and perhaps small chromatin fibers using native DNA sequences.
Collapse
Affiliation(s)
- Andrea Orsetti
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Daphne van Oosten
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | | | - Theodor-Marian Dănescu
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Jan Huertas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Vlad Cojocaru
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
7
|
Portillo-Ledesma S, Schlick T. Regulation of chromatin architecture by protein binding: insights from molecular modeling. Biophys Rev 2024; 16:331-343. [PMID: 39099845 PMCID: PMC11297222 DOI: 10.1007/s12551-024-01195-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/22/2024] [Indexed: 08/06/2024] Open
Abstract
Histone and non-histone proteins play key roles in the activation and repression of genes. In addition to experimental studies of their regulation of gene expression, molecular modeling at the nucleosome, chromatin, and chromosome levels can contribute insights into the molecular mechanisms involved. In this review, we provide an overview for protein-bound chromatin modeling, and describe how our group has integrated protein binding into genome systems across the scales, from all-atom to coarse-grained models, using explicit to implicit descriptions. We describe the associated applications to protein binding effects and biological mechanisms of genome folding and gene regulation. We end by illustrating the application of machine learning tools like AlphaFold2 to proteins relevant to chromatin systems.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 USA
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 USA
| | - Tamar Schlick
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 USA
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200122 China
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 USA
| |
Collapse
|
8
|
Barral A, Zaret KS. Pioneer factors: roles and their regulation in development. Trends Genet 2024; 40:134-148. [PMID: 37940484 PMCID: PMC10873006 DOI: 10.1016/j.tig.2023.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Pioneer factors are a subclass of transcription factors that can bind and initiate opening of silent chromatin regions. Pioneer factors subsequently regulate lineage-specific genes and enhancers and, thus, activate the zygotic genome after fertilization, guide cell fate transitions during development, and promote various forms of human cancers. As such, pioneer factors are useful in directed cell reprogramming. In this review, we define the structural and functional characteristics of pioneer factors, how they bind and initiate opening of closed chromatin regions, and the consequences for chromatin dynamics and gene expression during cell differentiation. We also discuss emerging mechanisms that modulate pioneer factors during development.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Peng Y, Song W, Teif VB, Ovcharenko I, Landsman D, Panchenko AR. Detection of new pioneer transcription factors as cell-type-specific nucleosome binders. eLife 2024; 12:RP88936. [PMID: 38293962 PMCID: PMC10945518 DOI: 10.7554/elife.88936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Wrapping of DNA into nucleosomes restricts accessibility to DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, initiate local chromatin opening, and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding, and regulation remain unknown. We have developed a computational method to predict the cell-type-specific ability of transcription factors to bind nucleosomes by integrating ChIP-seq, MNase-seq, and DNase-seq data with details of nucleosome structure. We have demonstrated the ability of our approach in discriminating pioneer from canonical transcription factors and predicted new potential pioneer transcription factors in H1, K562, HepG2, and HeLa-S3 cell lines. Last, we systematically analyzed the interaction modes between various pioneer transcription factors and detected several clusters of distinctive binding sites on nucleosomal DNA.
Collapse
Affiliation(s)
- Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal UniversityWuhanChina
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Wei Song
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe ParkColchesterUnited Kingdom
| | - Ivan Ovcharenko
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - David Landsman
- National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen’s UniversityKingstonCanada
- Department of Biology and Molecular Sciences, Queen’s UniversityKingstonCanada
- School of Computing, Queen’s UniversityKingstonCanada
- Ontario Institute of Cancer ResearchTorontoCanada
| |
Collapse
|
10
|
MacCarthy CM, Wu G, Malik V, Menuchin-Lasowski Y, Velychko T, Keshet G, Fan R, Bedzhov I, Church GM, Jauch R, Cojocaru V, Schöler HR, Velychko S. Highly cooperative chimeric super-SOX induces naive pluripotency across species. Cell Stem Cell 2024; 31:127-147.e9. [PMID: 38141611 DOI: 10.1016/j.stem.2023.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/02/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023]
Abstract
Our understanding of pluripotency remains limited: iPSC generation has only been established for a few model species, pluripotent stem cell lines exhibit inconsistent developmental potential, and germline transmission has only been demonstrated for mice and rats. By swapping structural elements between Sox2 and Sox17, we built a chimeric super-SOX factor, Sox2-17, that enhanced iPSC generation in five tested species: mouse, human, cynomolgus monkey, cow, and pig. A swap of alanine to valine at the interface between Sox2 and Oct4 delivered a gain of function by stabilizing Sox2/Oct4 dimerization on DNA, enabling generation of high-quality OSKM iPSCs capable of supporting the development of healthy all-iPSC mice. Sox2/Oct4 dimerization emerged as the core driver of naive pluripotency with its levels diminished upon priming. Transient overexpression of the SK cocktail (Sox+Klf4) restored the dimerization and boosted the developmental potential of pluripotent stem cells across species, providing a universal method for naive reset in mammals.
Collapse
Affiliation(s)
| | - Guangming Wu
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; International Bio Island, Guangzhou, China; MingCeler Biotech, Guangzhou, China
| | - Vikas Malik
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Taras Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gal Keshet
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rui Fan
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ivan Bedzhov
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Vlad Cojocaru
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; University of Utrecht, Utrecht, the Netherlands; STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
11
|
Peng Y, Song W, Teif VB, Ovcharenko I, Landsman D, Panchenko AR. Detection of new pioneer transcription factors as cell-type specific nucleosome binders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540098. [PMID: 37425841 PMCID: PMC10327179 DOI: 10.1101/2023.05.10.540098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Wrapping of DNA into nucleosomes restricts accessibility to the DNA and may affect the recognition of binding motifs by transcription factors. A certain class of transcription factors, the pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, may initiate local chromatin opening and facilitate the binding of co-factors in a cell-type-specific manner. For the majority of human pioneer transcription factors, the locations of their binding sites, mechanisms of binding and regulation remain unknown. We have developed a computational method to predict the cell-type-specific ability of transcription factors to bind nucleosomes by integrating ChIP-seq, MNase-seq and DNase-seq data with details of nucleosome structure. We have demonstrated the ability of our approach in discriminating pioneer from canonical transcription factors and predicted new potential pioneer transcription factors in H1, K562, HepG2 and HeLa cell lines. Lastly, we systemically analyzed the interaction modes between various pioneer transcription factors and detected several clusters of distinctive binding sites on nucleosomal DNA.
Collapse
Affiliation(s)
- Yunhui Peng
- current address: Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Wei Song
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Vladimir B. Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Ivan Ovcharenko
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David Landsman
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Anna R. Panchenko
- Department of Pathology and Molecular Medicine, Queen’s University, ON, Canada
- Department of Biology and Molecular Sciences, Queen’s University, ON, Canada
- School of Computing, Queen’s University, ON, Canada
- Ontario Institute of Cancer Research, Toronto, ON, Canada
| |
Collapse
|
12
|
Guan R, Lian T, Zhou BR, Wheeler D, Bai Y. Structural mechanism of LIN28B nucleosome targeting by OCT4. Mol Cell 2023; 83:1970-1982.e6. [PMID: 37327775 PMCID: PMC10276192 DOI: 10.1016/j.molcel.2023.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/31/2023] [Accepted: 05/19/2023] [Indexed: 06/18/2023]
Abstract
Pioneer transcription factors are essential for cell fate changes by targeting closed chromatin. OCT4 is a crucial pioneer factor that can induce cell reprogramming. However, the structural basis of how pioneer factors recognize the in vivo nucleosomal DNA targets is unknown. Here, we determine the high-resolution structures of the nucleosome containing human LIN28B DNA and its complexes with the OCT4 DNA binding region. Three OCT4s bind the pre-positioned nucleosome by recognizing non-canonical DNA sequences. Two use their POUS domains while the other uses the POUS-loop-POUHD region; POUHD serves as a wedge to unwrap ∼25 base pair DNA. Our analysis of previous genomic data and determination of the ESRRB-nucleosome-OCT4 structure confirmed the generality of these structural features. Moreover, biochemical studies suggest that multiple OCT4s cooperatively open the H1-condensed nucleosome array containing the LIN28B nucleosome. Thus, our study suggests a mechanism of how OCT4 can target the nucleosome and open closed chromatin.
Collapse
Affiliation(s)
- Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Shi D, Huang Y, Bai C. Studies of the Mechanism of Nucleosome Dynamics: A Review on Multifactorial Regulation from Computational and Experimental Cases. Polymers (Basel) 2023; 15:polym15071763. [PMID: 37050377 PMCID: PMC10096840 DOI: 10.3390/polym15071763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The nucleosome, which organizes the long coil of genomic DNA in a highly condensed, polymeric way, is thought to be the basic unit of chromosomal structure. As the most important protein–DNA complex, its structural and dynamic features have been successively revealed in recent years. However, its regulatory mechanism, which is modulated by multiple factors, still requires systemic discussion. This study summarizes the regulatory factors of the nucleosome’s dynamic features from the perspective of histone modification, DNA methylation, and the nucleosome-interacting factors (transcription factors and nucleosome-remodeling proteins and cations) and focuses on the research exploring the molecular mechanism through both computational and experimental approaches. The regulatory factors that affect the dynamic features of nucleosomes are also discussed in detail, such as unwrapping, wrapping, sliding, and stacking. Due to the complexity of the high-order topological structures of nucleosomes and the comprehensive effects of regulatory factors, the research on the functional modulation mechanism of nucleosomes has encountered great challenges. The integration of computational and experimental approaches, the construction of physical modes for nucleosomes, and the application of deep learning techniques will provide promising opportunities for further exploration.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yuxin Huang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
14
|
Malaga Gadea FC, Nikolova EN. Structural Plasticity of Pioneer Factor Sox2 and DNA Bendability Modulate Nucleosome Engagement and Sox2-Oct4 Synergism. J Mol Biol 2023; 435:167916. [PMID: 36495920 PMCID: PMC10184184 DOI: 10.1016/j.jmb.2022.167916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Pioneer transcription factors (pTFs) can bind directly to silent chromatin and promote vital transcriptional programs. Here, by integrating high-resolution nuclear magnetic resonance (NMR) spectroscopy with biochemistry, we reveal new structural and mechanistic insights into the interaction of pluripotency pTFs and functional partners Sox2 and Oct4 with nucleosomes. We find that the affinity and conformation of Sox2 for solvent-exposed nucleosome sites depend strongly on their position and DNA sequence. Sox2, which is partially disordered but becomes structured upon DNA binding and bending, forms a super-stable nucleosome complex at superhelical location +5 (SHL+5) with similar affinity and conformation to that with naked DNA. However, at suboptimal internal and end-positioned sites where DNA may be harder to deform, Sox2 favors partially unfolded and more dynamic states that are encoded in its intrinsic flexibility. Importantly, Sox2 structure and DNA bending can be stabilized by synergistic Oct4 binding, but only on adjacent motifs near the nucleosome edge and with the full Oct4 DNA-binding domain. Further mutational studies reveal that strategically impaired Sox2 folding is coupled to reduced DNA bending and inhibits nucleosome binding and Sox2-Oct4 cooperation, while increased nucleosomal DNA flexibility enhances Sox2 association. Together, our findings fit a model where the site-specific DNA bending propensity and structural plasticity of Sox2 govern distinct modes of nucleosome engagement and modulate Sox2-Oct4 synergism. The principles outlined here can potentially guide pTF site selection in the genome and facilitate interaction with other chromatin factors or chromatin opening in vivo.
Collapse
Affiliation(s)
- Fabiana C Malaga Gadea
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Evgenia N Nikolova
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
15
|
Tan DS, Cheung SL, Gao Y, Weinbuch M, Hu H, Shi L, Ti SC, Hutchins AP, Cojocaru V, Jauch R. The homeodomain of Oct4 is a dimeric binder of methylated CpG elements. Nucleic Acids Res 2023; 51:1120-1138. [PMID: 36631980 PMCID: PMC9943670 DOI: 10.1093/nar/gkac1262] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Oct4 is essential to maintain pluripotency and has a pivotal role in establishing the germline. Its DNA-binding POU domain was recently found to bind motifs with methylated CpG elements normally associated with epigenetic silencing. However, the mode of binding and the consequences of this capability has remained unclear. Here, we show that Oct4 binds to a compact palindromic DNA element with a methylated CpG core (CpGpal) in alternative states of pluripotency and during cellular reprogramming towards induced pluripotent stem cells (iPSCs). During cellular reprogramming, typical Oct4 bound enhancers are uniformly demethylated, with the prominent exception of the CpGpal sites where DNA methylation is often maintained. We demonstrate that Oct4 cooperatively binds the CpGpal element as a homodimer, which contrasts with the ectoderm-expressed POU factor Brn2. Indeed, binding to CpGpal is Oct4-specific as other POU factors expressed in somatic cells avoid this element. Binding assays combined with structural analyses and molecular dynamic simulations show that dimeric Oct4-binding to CpGpal is driven by the POU-homeodomain whilst the POU-specific domain is detached from DNA. Collectively, we report that Oct4 exerts parts of its regulatory function in the context of methylated DNA through a DNA recognition mechanism that solely relies on its homeodomain.
Collapse
Affiliation(s)
- Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shun Lai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ya Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Maike Weinbuch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China,Institute for Molecular Medicine, Ulm University, Ulm, Germany
| | - Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Liyang Shi
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shih-Chieh Ti
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Andrew P Hutchins
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Vlad Cojocaru
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania,Computational Structural Biology Group, Utrecht University, The Netherlands,Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ralf Jauch
- To whom correspondence should be addressed. Tel: +852 3917 9511; Fax: +852 28559730;
| |
Collapse
|
16
|
Brandani GB, Gopi S, Yamauchi M, Takada S. Molecular dynamics simulations for the study of chromatin biology. Curr Opin Struct Biol 2022; 77:102485. [PMID: 36274422 DOI: 10.1016/j.sbi.2022.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022]
Abstract
The organization of Eukaryotic DNA into chromatin has profound implications for the processing of genetic information. In the past years, molecular dynamics (MD) simulations proved to be a powerful tool to investigate the mechanistic basis of chromatin biology. We review recent all-atom and coarse-grained MD studies revealing how the structure and dynamics of chromatin underlie its biological functions. We describe the latest method developments; the structural fluctuations of nucleosomes and the various factors affecting them; the organization of chromatin fibers, with particular emphasis on its liquid-like character; the interactions and dynamics of transcription factors on chromatin; and how chromatin organization is modulated by molecular motors acting on DNA.
Collapse
Affiliation(s)
- Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan.
| | - Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | - Masataka Yamauchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| |
Collapse
|