1
|
Akama Y, Yoshida R, Ozaki S, Kawakami H, Katayama T. SSB promotes DnaB helicase passage through DnaA complexes at the replication origin oriC for bidirectional replication. J Biochem 2025; 177:305-316. [PMID: 39776183 PMCID: PMC11952115 DOI: 10.1093/jb/mvaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
For bidirectional replication in Escherichia coli, higher order complexes are formed at the replication origin oriC by the initiator protein DnaA, which locally unwinds the left edge of oriC to promote the loading of two molecules of DnaB helicases onto the unwound region via dynamic interactions with the helicase-loader DnaC and the oriC-bound DnaA complex. One of the two helicases must translocate rightwards through oriC-bound DnaA complex. Here, we used a synthetic forked oriC DNA, which mimics the unwound state of oriC, to examine DnaB translocation through the oriC-bound DnaA complex. We found that DnaB helicase alone cannot pass through the oriC-bound DnaA complex without the help of single-strand binding protein (SSB). In the presence of SSB, DnaB passed through this complex along with its helicase function, releasing DnaA molecules. In addition, DnaB helicase activity is known to be inhibited by oversupply of DnaC, but this inhibition was relieved by SSB. These results suggest a mechanism that when two DnaB helicases are loaded at oriC, one translocates leftwards to expand the DnaA-unwound region and allows SSB binding to the single-stranded DNA, and such SSB molecules then stimulate translocation of the other helicase rightwards through the oriC-bound DnaA complex.
Collapse
Affiliation(s)
- Yusuke Akama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryusei Yoshida
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hironori Kawakami
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Kovács ZJ, Ecsédi P, Harami GM, Pálinkás J, Botros M, Mahmudova L, Katran V, Érfalvy D, Cervenak M, Smeller L, Kovács M. Fine-tuned interactions between globular and disordered regions of single-stranded DNA binding (SSB) protein are required for dynamic condensation under physiological conditions. Protein Sci 2025; 34:e70109. [PMID: 40143738 PMCID: PMC11947617 DOI: 10.1002/pro.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/25/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025]
Abstract
Increasing evidence points to the importance of liquid-liquid phase separation (LLPS)-driven protein condensation in both eukaryotic and bacterial cell physiology. The formation of condensates may involve interactions between both structured (globular) domains and intrinsically disordered protein regions and requires multivalency that is often brought about by oligomerization. Here we dissect such contributions by assessing engineered variants of bacterial (Escherichia coli) single-stranded DNA binding (SSB) protein whose condensation has recently been implicated in bacterial genome metabolism. A truncated SSB variant (SSBdC, lacking the conserved C-terminal peptide (CTP)) was used to assess the importance of interactions between SSB's globular oligonucleotide/oligosaccharide binding (OB) domain and the CTP. We show that OB-CTP interactions are essential for dynamic condensation in physiological (crowded, glutamate-rich) environments. Via assessment of a protein variant (SSBH55Y) from the known thermosensitive ssb-1 mutant, we also show that the perturbation of OB-OB contacts significantly impairs the stability of SSB tetramers and results in thermally induced protein aggregation, underscoring the importance of multivalence brought about by stereospecific contacts. Our data point to adaptive fine-tuning of SSB interactions to physiological condensation and demonstrate that SSB represents a versatile system for selective engineering of condensation-driving interactions between globular and disordered regions.
Collapse
Affiliation(s)
- Zoltán J. Kovács
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
- HUN‐REN–ELTE Motor Pharmacology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Péter Ecsédi
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Gábor M. Harami
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - János Pálinkás
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Mina Botros
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Lamiya Mahmudova
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Viktoria Katran
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Dávid Érfalvy
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Miklós Cervenak
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - László Smeller
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Mihály Kovács
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
- HUN‐REN–ELTE Motor Pharmacology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
3
|
Zakharova K, Liu M, Greenwald JR, Caldwell BC, Qi Z, Wysocki VH, Bell CE. Structural Basis for the Interaction of Redβ Single-Strand Annealing Protein with Escherichia coli Single-Stranded DNA-Binding Protein. J Mol Biol 2024; 436:168590. [PMID: 38663547 DOI: 10.1016/j.jmb.2024.168590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
Redβ is a protein from bacteriophage λ that binds to single-stranded DNA (ssDNA) to promote the annealing of complementary strands. Together with λ-exonuclease (λ-exo), Redβ is part of a two-component DNA recombination system involved in multiple aspects of genome maintenance. The proteins have been exploited in powerful methods for bacterial genome engineering in which Redβ can anneal an electroporated oligonucleotide to a complementary target site at the lagging strand of a replication fork. Successful annealing in vivo requires the interaction of Redβ with E. coli single-stranded DNA-binding protein (SSB), which coats the ssDNA at the lagging strand to coordinate access of numerous replication proteins. Previous mutational analysis revealed that the interaction between Redβ and SSB involves the C-terminal domain (CTD) of Redβ and the C-terminal tail of SSB (SSB-Ct), the site for binding of numerous host proteins. Here, we have determined the x-ray crystal structure of Redβ CTD in complex with a peptide corresponding to the last nine residues of SSB (MDFDDDIPF). Formation of the complex is predominantly mediated by hydrophobic interactions between two phenylalanine side chains of SSB (Phe-171 and Phe-177) and an apolar groove on the CTD, combined with electrostatic interactions between the C-terminal carboxylate of SSB and Lys-214 of the CTD. Mutation of any of these residues to alanine significantly disrupts the interaction of full-length Redβ and SSB proteins. Structural knowledge of this interaction will help to expand the utility of Redβ-mediated recombination to a wider range of bacterial hosts for applications in synthetic biology.
Collapse
Affiliation(s)
- Katerina Zakharova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Mengqi Liu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Jacelyn R Greenwald
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Brian C Caldwell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Zihao Qi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Vicki H Wysocki
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Charles E Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Pipalović G, Filić Ž, Ćehić M, Paradžik T, Zahradka K, Crnolatac I, Vujaklija D. Impact of C-terminal domains of paralogous single-stranded DNA binding proteins from Streptomyces coelicolor on their biophysical properties and biological functions. Int J Biol Macromol 2024; 268:131544. [PMID: 38614173 DOI: 10.1016/j.ijbiomac.2024.131544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Single-stranded DNA-binding proteins (SSB) are crucial in DNA metabolism. While Escherichia coli SSB is extensively studied, the significance of its C-terminal domain has only recently emerged. This study explored the significance of C-domains of two paralogous Ssb proteins in S. coelicolor. Mutational analyses of C-domains uncovered a novel role of SsbA during sporulation-specific cell division and demonstrated that the C-tip is non-essential for survival. In vitro methods revealed altered biophysical and biochemical properties of Ssb proteins with modified C-domains. Determined hydrodynamic properties suggested that the C-domains of SsbA and SsbB occupy a globular position proposed to mediate cooperative binding. Only SsbA was found to form biomolecular condensates independent of the C-tip. Interestingly, the truncated C-domain of SsbA increased the molar enthalpy of unfolding. Additionally, calorimetric titrations revealed that C-domain mutations affected ssDNA binding. Moreover, this analysis showed that the SsbA C-tip aids binding most likely by regulating the position of the flexible C-domain. It also highlighted ssDNA-induced conformational mobility restrictions of all Ssb variants. Finally, the gel mobility shift assay confirmed that the intrinsically disordered linker is essential for cooperative binding of SsbA. These findings highlight the important role of the C-domain in the functioning of SsbA and SsbB proteins.
Collapse
Affiliation(s)
- Goran Pipalović
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Želimira Filić
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Mirsada Ćehić
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Tina Paradžik
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Ksenija Zahradka
- Division of Molecular Biology, Institute Ruđer Bošković, Zagreb, Croatia
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry, Institute Ruđer Bošković, Zagreb, Croatia.
| | - Dušica Vujaklija
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia.
| |
Collapse
|
5
|
Sandler SJ, Bonde NJ, Wood EA, Cox MM, Keck JL. The intrinsically disordered linker in the single-stranded DNA-binding protein influences DNA replication restart and recombination pathways in Escherichia coli K-12. J Bacteriol 2024; 206:e0033023. [PMID: 38470036 PMCID: PMC11025327 DOI: 10.1128/jb.00330-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Tetrameric single-stranded (ss) DNA-binding proteins (SSBs) stabilize ssDNA intermediates formed during genome maintenance reactions in Bacteria. SSBs also recruit proteins important for these processes through direct SSB-protein interactions, including proteins involved in DNA replication restart and recombination processes. SSBs are composed of an N-terminal oligomerization and ssDNA-binding domain, a C-terminal acidic tip that mediates SSB-protein interactions, and an internal intrinsically disordered linker (IDL). Deletions and insertions into the IDL are well tolerated with few phenotypes, although the largest deletions and insertions exhibit some sensitivity to DNA-damaging agents. To define specific DNA metabolism processes dependent on IDL length, ssb mutants that lack 16, 26, 37, or 47 residues of the 57-residue IDL were tested for synthetic phenotypes with mutations in DNA replication restart or recombination genes. We also tested the impact of integrating a fluorescent domain within the SSB IDL using an ssb::mTur2 insertion mutation. Only the largest deletion tested or the insertion mutation causes sensitivity in any of the pathways. Mutations in two replication restart pathways (PriA-B1 and PriA-C) showed synthetic lethalities or small colony phenotypes with the largest deletion or insertion mutations. Recombination gene mutations del(recBCD) and del(ruvABC) show synthetic phenotypes only when combined with the largest ssb deletion. These results suggest that a minimum IDL length is important in some genome maintenance reactions in Escherichia coli. These include pathways involving PriA-PriB1, PriA-PriC, RecFOR, and RecG. The mTur2 insertion in the IDL may also affect SSB interactions in some processes, particularly the PriA-PriB1 and PriA-PriC replication restart pathways.IMPORTANCEssb is essential in Escherichia coli due to its roles in protecting ssDNA and coordinating genome maintenance events. While the DNA-binding core and acidic tip have well-characterized functions, the purpose of the intrinsically disordered linker (IDL) is poorly understood. In vitro studies have revealed that the IDL is important for cooperative ssDNA binding and phase separation. However, single-stranded (ss) DNA-binding protein (SSB) variants with large deletions and insertions in the IDL support normal cell growth. We find that the PriA-PriB1 and PriA-C replication restart, as well as the RecFOR- and RecG-dependent recombination, pathways are sensitive to IDL length. This suggests that cooperativity, phase separation, or a longer spacer between the core and acidic tip of SSB may be important for specific cellular functions.
Collapse
Affiliation(s)
- Steven J. Sandler
- Department of Microbiology, University of Massachusetts at Amherst, Amherst, Massachusetts, USA
| | - Nina J. Bonde
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Bonde NJ, Kozlov AG, Cox MM, Lohman TM, Keck JL. Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli. Crit Rev Biochem Mol Biol 2024; 59:99-127. [PMID: 38770626 PMCID: PMC11209772 DOI: 10.1080/10409238.2024.2330372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 05/22/2024]
Abstract
The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander G. Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Bonde NJ, Wood EA, Myers KS, Place M, Keck JL, Cox MM. Identification of recG genetic interactions in Escherichia coli by transposon sequencing. J Bacteriol 2023; 205:e0018423. [PMID: 38019006 PMCID: PMC10870727 DOI: 10.1128/jb.00184-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE DNA damage and subsequent DNA repair processes are mutagenic in nature and an important driver of evolution in prokaryotes, including antibiotic resistance development. Genetic screening approaches, such as transposon sequencing (Tn-seq), have provided important new insights into gene function and genetic relationships. Here, we employed Tn-seq to gain insight into the function of the recG gene, which renders Escherichia coli cells moderately sensitive to a variety of DNA-damaging agents when they are absent. The reported recG genetic interactions can be used in combination with future screens to aid in a more complete reconstruction of DNA repair pathways in bacteria.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael Place
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Henry C, Kaur G, Cherry ME, Henrikus SS, Bonde N, Sharma N, Beyer H, Wood EA, Chitteni-Pattu S, van Oijen A, Robinson A, Cox M. RecF protein targeting to post-replication (daughter strand) gaps II: RecF interaction with replisomes. Nucleic Acids Res 2023; 51:5714-5742. [PMID: 37125644 PMCID: PMC10287930 DOI: 10.1093/nar/gkad310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023] Open
Abstract
The bacterial RecF, RecO, and RecR proteins are an epistasis group involved in loading RecA protein into post-replication gaps. However, the targeting mechanism that brings these proteins to appropriate gaps is unclear. Here, we propose that targeting may involve a direct interaction between RecF and DnaN. In vivo, RecF is commonly found at the replication fork. Over-expression of RecF, but not RecO or a RecF ATPase mutant, is extremely toxic to cells. We provide evidence that the molecular basis of the toxicity lies in replisome destabilization. RecF over-expression leads to loss of genomic replisomes, increased recombination associated with post-replication gaps, increased plasmid loss, and SOS induction. Using three different methods, we document direct interactions of RecF with the DnaN β-clamp and DnaG primase that may underlie the replisome effects. In a single-molecule rolling-circle replication system in vitro, physiological levels of RecF protein trigger post-replication gap formation. We suggest that the RecF interactions, particularly with DnaN, reflect a functional link between post-replication gap creation and gap processing by RecA. RecF's varied interactions may begin to explain how the RecFOR system is targeted to rare lesion-containing post-replication gaps, avoiding the potentially deleterious RecA loading onto thousands of other gaps created during replication.
Collapse
Affiliation(s)
- Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Gurleen Kaur
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Megan E Cherry
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Nina J Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Nischal Sharma
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Hope A Beyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| |
Collapse
|
9
|
Osorio Garcia MA, Wood EA, Keck JL, Cox MM. Interaction with single-stranded DNA-binding protein (SSB) modulates Escherichia coli RadD DNA repair activities. J Biol Chem 2023; 299:104773. [PMID: 37142225 DOI: 10.1016/j.jbc.2023.104773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
The bacterial RadD enzyme is important for multiple genome maintenance pathways, including RecA DNA strand exchange and RecA-independent suppression of DNA crossover template switching. However, much remains unknown about the precise roles of RadD. One potential clue into RadD mechanisms is its direct interaction with the single-stranded DNA binding protein (SSB), which coats single-stranded DNA exposed during genome maintenance reactions in cells. Interaction with SSB stimulates the ATPase activity of RadD. To probe the mechanism and importance of RadD:SSB complex formation, we identified a pocket on RadD that is essential for binding SSB. In a mechanism shared with many other SSB-interacting proteins, RadD uses a hydrophobic pocket framed by basic residues to bind the C-terminal end of SSB. We found that RadD variants that substitute acidic residues for basic residues in the SSB binding site impair RadD:SSB complex formation and eliminate SSB stimulation of RadD ATPase activity in vitro. Additionally, mutant E. coli strains carrying charge reversal radD changes display increased sensitivity to DNA damaging agents synergistically with deletions of radA and recG, although the phenotypes of the SSB-binding radD mutants are not as severe as a full radD deletion. This suggests that cellular RadD requires an intact the interaction with SSB for full RadD function.
Collapse
Affiliation(s)
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin, Madison, Madison, WI 53706
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA.
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin, Madison, Madison, WI 53706.
| |
Collapse
|