1
|
Examining the Effects of Netropsin on the Curvature of DNA A-Tracts Using Electrophoresis. Molecules 2021; 26:molecules26195871. [PMID: 34641414 PMCID: PMC8510488 DOI: 10.3390/molecules26195871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
A-tracts are sequences of repeated adenine bases that, under the proper conditions, are capable of mediating DNA curvature. A-tracts occur naturally in the regulatory regions of many organisms, yet their biological functions are not fully understood. Orienting multiple A-tracts together constructively or destructively in a phase has the potential to create different shapes in the DNA helix axis. One means of detecting these molecular shape differences is from altered DNA mobilities measured using electrophoresis. The small molecule netropsin binds the minor groove of DNA, particularly at AT-rich sequences including A-tracts. Here, we systematically test the hypothesis that netropsin binding eliminates the curvature of A-tracts by measuring the electrophoretic mobilities of seven 98-base pair DNA samples containing different numbers and arrangements of centrally located A-tracts under varying conditions with netropsin. We find that netropsin binding eliminates the mobility difference between the DNA fragments with different A-tract arrangements in a concentration-dependent manner. This work provides evidence for the straightening of A-tracts upon netropsin binding and illustrates an artificial approach to re-sculpt DNA shape.
Collapse
|
2
|
He W, Chen YL, Pollack L, Kirmizialtin S. The structural plasticity of nucleic acid duplexes revealed by WAXS and MD. SCIENCE ADVANCES 2021; 7:7/17/eabf6106. [PMID: 33893104 PMCID: PMC8064643 DOI: 10.1126/sciadv.abf6106] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Double-stranded DNA (dsDNA) and RNA (dsRNA) helices display an unusual structural diversity. Some structural variations are linked to sequence and may serve as signaling units for protein-binding partners. Therefore, elucidating the mechanisms and factors that modulate these variations is of fundamental importance. While the structural diversity of dsDNA has been extensively studied, similar studies have not been performed for dsRNA. Because of the increasing awareness of RNA's diverse biological roles, such studies are timely and increasingly important. We integrate solution x-ray scattering at wide angles (WAXS) with all-atom molecular dynamics simulations to explore the conformational ensemble of duplex topologies for different sequences and salt conditions. These tightly coordinated studies identify robust correlations between features in the WAXS profiles and duplex geometry and enable atomic-level insights into the structural diversity of DNA and RNA duplexes. Notably, dsRNA displays a marked sensitivity to the valence and identity of its associated cations.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, New York, NY, USA
| | - Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Mono- and bis-pyrazolophthalazines: Design, synthesis, cytotoxic activity, DNA/HSA binding and molecular docking studies. Bioorg Med Chem 2021; 30:115944. [PMID: 33352388 DOI: 10.1016/j.bmc.2020.115944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023]
Abstract
In an attempt to find new potent cytotoxic compounds, several mono- and bis-pyrazolophthalazines 4a-m and 6a-h were synthesized through an efficient, one-pot, three- and pseudo five-component synthetic approach. All derivatives were evaluated for their in vitro cytotoxic activities against four human cancer cell lines of A549, HepG2, MCF-7, and HT29. Compound 4e showed low toxicity against normal cell lines (MRC-5 and MCF 10A, IC50 > 200 µM) and excellent cytotoxic activity against A549 cell line with IC50 value of 1.25 ± 0.19 µM, which was 1.8 times more potent than doxorubicin (IC50 = 2.31 ± 0.13 µM). In addition, compound 6c exhibited remarkable cytotoxic activity against A549 and MCF-7 cell lines (IC50 = 1.35 ± 0.12 and 0.49 ± 0.01 µM, respectively), more than two-fold higher than that of doxorubicin. The binding properties of the best active mono- and bis-pyrazolophthalazine (4e and 6c) with HSA and DNA were fully evaluated by various techniques including UV-Vis absorption, circular dichroism (CD), Zeta potential and dynamic light scattering analyses indicating interaction of the compounds with the secondary structure of HSA and significant change of DNA conformation, presumably via a groove binding mechanism. Additionally, molecular docking and site-selective binding studies confirmed the fundamental interaction of compounds 4e and 6c with base pairs of DNA. Compounds 4e and 6c showed promising features to be considered as potential lead structures for further studies in cancer therapy.
Collapse
|
4
|
Structural Effects of the Syntheticcobalt–Manganese-Zinc Ferrite Nanoparticles (Co0.3Mn0.2Zn0.5Fe2O4 NPs) on DNA and its Antiproliferative Effect on T47Dcells. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00657-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Asami H, Kawauchi N, Kohno JY. Photodissociation spectroscopy of protonated guanosine monophosphate based on IR-laser ablation of droplet beam and quadrupole ion trap mass spectrometry. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Pashah Z, Hekmat A, Hesami Tackallou S. Structural effects of Diamond nanoparticles and Paclitaxel combination on calf thymus DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:249-278. [PMID: 30922151 DOI: 10.1080/15257770.2018.1515440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The combination effects of nanodiamonds (NDs) and Paclitaxel (PTX) on the DNA structure were examined. The UV-Visible, steady-state and time-resolved fluorescence spectroscopy, CD, viscosity and zeta potential results showed that PTX + NDs could form a complex via groove binding mechanism. The values of binding constants, ΔG° and ΔH° and ΔS° values showed that PTX + NDs interact strongly with DNA and the hydrophobic force plays main role in this interaction. The ΔG25ο and Tm study indicated the instability of DNA in presence of PTX + NDs. This study demonstrated that NDs could enhance the effect of PTX on DNA structure as well as its affinity and binding to DNA.
Collapse
Affiliation(s)
- Zahra Pashah
- a Department of Biology , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Azadeh Hekmat
- a Department of Biology , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Saeed Hesami Tackallou
- b Department of Biology , Central Tehran Branch, Islamic Azad University , Tehran , Iran
| |
Collapse
|
7
|
Han K, Venable RM, Bryant AM, Legacy CJ, Shen R, Li H, Roux B, Gericke A, Pastor RW. Graph-Theoretic Analysis of Monomethyl Phosphate Clustering in Ionic Solutions. J Phys Chem B 2018; 122:1484-1494. [PMID: 29293344 DOI: 10.1021/acs.jpcb.7b10730] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
All-atom molecular dynamics simulations combined with graph-theoretic analysis reveal that clustering of monomethyl phosphate dianion (MMP2-) is strongly influenced by the types and combinations of cations in the aqueous solution. Although Ca2+ promotes the formation of stable and large MMP2- clusters, K+ alone does not. Nonetheless, clusters are larger and their link lifetimes are longer in mixtures of K+ and Ca2+. This "synergistic" effect depends sensitively on the Lennard-Jones interaction parameters between Ca2+ and the phosphorus oxygen and correlates with the hydration of the clusters. The pronounced MMP2- clustering effect of Ca2+ in the presence of K+ is confirmed by Fourier transform infrared spectroscopy. The characterization of the cation-dependent clustering of MMP2- provides a starting point for understanding cation-dependent clustering of phosphoinositides in cell membranes.
Collapse
Affiliation(s)
- Kyungreem Han
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Anne-Marie Bryant
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| | - Christopher J Legacy
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| | - Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Hui Li
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
8
|
Ramos JP, Le VH, Lewis EA. Role of Water in Netropsin Binding to an A2T2 Hairpin DNA Site: Osmotic Stress Experiments. J Phys Chem B 2013; 117:15958-65. [DOI: 10.1021/jp408077m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph P. Ramos
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Vu H. Le
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Edwin A. Lewis
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
9
|
Poomsuk N, Siriwong K. Structural properties and stability of PNA with (2′R,4′R)- and (2′R,4′S)-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid backbone binding to DNA: A molecular dynamics simulation study. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Hancock SP, Ghane T, Cascio D, Rohs R, Di Felice R, Johnson RC. Control of DNA minor groove width and Fis protein binding by the purine 2-amino group. Nucleic Acids Res 2013; 41:6750-60. [PMID: 23661683 PMCID: PMC3711457 DOI: 10.1093/nar/gkt357] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The width of the DNA minor groove varies with sequence and can be a major determinant of DNA shape recognition by proteins. For example, the minor groove within the center of the Fis–DNA complex narrows to about half the mean minor groove width of canonical B-form DNA to fit onto the protein surface. G/C base pairs within this segment, which is not contacted by the Fis protein, reduce binding affinities up to 2000-fold over A/T-rich sequences. We show here through multiple X-ray structures and binding properties of Fis–DNA complexes containing base analogs that the 2-amino group on guanine is the primary molecular determinant controlling minor groove widths. Molecular dynamics simulations of free-DNA targets with canonical and modified bases further demonstrate that sequence-dependent narrowing of minor groove widths is modulated almost entirely by the presence of purine 2-amino groups. We also provide evidence that protein-mediated phosphate neutralization facilitates minor groove compression and is particularly important for binding to non-optimally shaped DNA duplexes.
Collapse
Affiliation(s)
- Stephen P Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | |
Collapse
|
11
|
Schonhoft JD, Kosowicz JG, Stivers JT. DNA translocation by human uracil DNA glycosylase: role of DNA phosphate charge. Biochemistry 2013; 52:2526-35. [PMID: 23506309 DOI: 10.1021/bi301561d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human DNA repair glycosylases must encounter and inspect each DNA base in the genome to discover damaged bases that may be present at a density of <1 in 10 million normal base pairs. This remarkable example of specific molecular recognition requires a reduced dimensionality search process (facilitated diffusion) that involves both hopping and sliding along the DNA chain. Despite the widely accepted importance of facilitated diffusion in protein-DNA interactions, the molecular features of DNA that influence hopping and sliding are poorly understood. Here we explore the role of the charged DNA phosphate backbone in sliding and hopping by human uracil DNA glycosylase (hUNG), which is an exemplar that efficiently locates rare uracil bases in both double-stranded DNA and single-stranded DNA. Substitution of neutral methylphosphonate groups for anionic DNA phosphate groups weakened nonspecific DNA binding affinity by 0.4-0.5 kcal/mol per substitution. In contrast, sliding of hUNG between uracil sites embedded in duplex and single-stranded DNA substrates persisted unabated when multiple methylphosphonate linkages were inserted between the sites. Thus, a continuous phosphodiester backbone negative charge is not essential for sliding over nonspecific DNA binding sites. We consider several alternative mechanisms for these results. A model consistent with previous structural and nuclear magnetic resonance dynamic results invokes the presence of open and closed conformational states of hUNG. The open state is short-lived and has weak or nonexistent interactions with the DNA backbone that are conducive for sliding, and the populated closed state has stronger interactions with the phosphate backbone. These data suggest that the fleeting sliding form of hUNG is a distinct weakly interacting state that facilitates rapid movement along the DNA chain and resembles the transition state for DNA dissociation.
Collapse
Affiliation(s)
- Joseph D Schonhoft
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
12
|
Dans PD, Darré L, Machado MR, Zeida A, Brandner AF, Pantano S. Assessing the Accuracy of the SIRAH Force Field to Model DNA at Coarse Grain Level. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-319-02624-4_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
13
|
|
14
|
Furse KE, Corcelli SA. Effects of an unnatural base pair replacement on the structure and dynamics of DNA and neighboring water and ions. J Phys Chem B 2011; 114:9934-45. [PMID: 20614919 DOI: 10.1021/jp105761b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Incorporating small molecule probes into biomolecular systems to report on local structure and dynamics is a powerful strategy that underlies a wide variety of experimental techniques, including fluorescence, electron paramagnetic resonance (EPR), and Forster resonance energy transfer (FRET) measurements. When an unnatural probe is inserted into a protein or DNA, the degree to which the presence of the probe has perturbed the local structure and dynamics it was intended to study is always an important concern. Here, molecular dynamics (MD) simulations are used to systematically study the effect of replacing a DNA base pair with a fluorescent probe, coumarin 102 deoxyriboside, at six unique sites along an A-tract DNA dodecamer. While the overall structure of the DNA oligonucleotide remains intact, replacement of A*T base pairs leads to widespread structural and dynamic perturbations up to four base pairs away from the probe site, including widening of the minor groove and increased DNA flexibility. New DNA conformations, not observed in the native sequence, are sometimes found in the vicinity of the probe and its partner abasic site analog. Strong correlations are demonstrated between DNA surface topology and water mobility.
Collapse
Affiliation(s)
- K E Furse
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
15
|
The energetic contribution of induced electrostatic asymmetry to DNA bending by a site-specific protein. J Mol Biol 2010; 406:285-312. [PMID: 21167173 DOI: 10.1016/j.jmb.2010.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/30/2010] [Accepted: 12/04/2010] [Indexed: 11/21/2022]
Abstract
DNA bending can be promoted by reducing the net negative electrostatic potential around phosphates on one face of the DNA, such that electrostatic repulsion among phosphates on the opposite face drives bending toward the less negative surface. To provide the first assessment of energetic contribution to DNA bending when electrostatic asymmetry is induced by a site-specific DNA binding protein, we manipulated the electrostatics in the EcoRV endonuclease-DNA complex by mutation of cationic side chains that contact DNA phosphates and/or by replacement of a selected phosphate in each strand with uncharged methylphosphonate. Reducing the net negative charge at two symmetrically located phosphates on the concave DNA face contributes -2.3 kcal mol(-1) to -0.9 kcal mol(-1) (depending on position) to complex formation. In contrast, reducing negative charge on the opposing convex face produces a penalty of +1.3 kcal mol(-1). Förster resonance energy transfer experiments show that the extent of axial DNA bending (about 50°) is little affected in modified complexes, implying that modification affects the energetic cost but not the extent of DNA bending. Kinetic studies show that the favorable effects of induced electrostatic asymmetry on equilibrium binding derive primarily from a reduced rate of complex dissociation, suggesting stabilization of the specific complex between protein and markedly bent DNA. A smaller increase in the association rate may suggest that the DNA in the initial encounter complex is mildly bent. The data imply that protein-induced electrostatic asymmetry makes a significant contribution to DNA bending but is not itself sufficient to drive full bending in the specific EcoRV-DNA complex.
Collapse
|
16
|
Přecechtělová J, Novák P, Munzarová ML, Kaupp M, Sklenář V. Phosphorus Chemical Shifts in a Nucleic Acid Backbone from Combined Molecular Dynamics and Density Functional Calculations. J Am Chem Soc 2010; 132:17139-48. [DOI: 10.1021/ja104564g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jana Přecechtělová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic, and Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Petr Novák
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic, and Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Markéta L. Munzarová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic, and Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic, and Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Vladimír Sklenář
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic, and Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
17
|
Fadda E, Pomès R. On the molecular basis of uracil recognition in DNA: comparative study of T-A versus U-A structure, dynamics and open base pair kinetics. Nucleic Acids Res 2010; 39:767-80. [PMID: 20876689 PMCID: PMC3025553 DOI: 10.1093/nar/gkq812] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uracil (U) can be found in DNA as a mismatch paired either to adenine (A) or to guanine (G). Removal of U from DNA is performed by a class of enzymes known as uracil–DNA–glycosylases (UDG). Recent studies suggest that recognition of U–A and U–G mismatches by UDG takes place via an extra-helical mechanism. In this work, we use molecular dynamics simulations to analyze the structure, dynamics and open base pair kinetics of U–A base pairs relative to their natural T–A counterpart in 12 dodecamers. Our results show that the presence of U does not alter the local conformation of B-DNA. Breathing dynamics and base pair closing kinetics are only weakly dependent on the presence of U versus T, with open T–A and U–A pairs lifetimes in the nanosecond timescale. Additionally, we observed spontaneous base flipping in U–A pairs. We analyze the structure and dynamics for this event and compare the results to available crystallographic data of open base pair conformations. Our results are in agreement with both structural and kinetic data derived from NMR imino proton exchange measurements, providing the first detailed description at the molecular level of elusive events such as spontaneous base pair opening and flipping in mismatched U–A sequences in DNA. Based on these results, we propose that base pair flipping can occur spontaneously at room temperature via a 3-step mechanism with an open base pair intermediate. Implications for the molecular basis of U recognition by UDG are discussed.
Collapse
Affiliation(s)
- Elisa Fadda
- School of Chemistry, National University of Ireland, Galway (NUIG), Galway, Ireland.
| | | |
Collapse
|
18
|
Perepelytsya SM, Volkov SN. Intensities of DNA ion-phosphate modes in the low-frequency Raman spectra. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 31:201-205. [PMID: 20198501 DOI: 10.1140/epje/i2010-10566-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/10/2009] [Indexed: 05/28/2023]
Abstract
The Raman intensities of counterion vibrations with respect to the phosphate groups of the double-helix backbone (ion-phosphate modes) in the low-frequency spectra (< 200 cm(-1)) of B -DNA with different alkali metal counterions have been calculated using the model for DNA conformational vibrations and the valence-optic approach. The results have showed that the spectra of DNA with heavy counterions (Rb(+) and Cs(+)) differ from the spectra of DNA with light counterions (Na(+) and K(+)). The calculated spectra of DNA with heavy counterions are characterized by intensive modes of ion-phosphate vibrations that form one united band near 115 cm(-1). Ion-phosphate modes in the spectra of DNA with light counterions are characterized by higher frequencies (near 180 cm(-1)) and much lower intensity. Our calculations explain why the modes of ion-phosphate vibrations are observed in Cs-DNA spectra rather than in Na-DNA. The determined sensitivity of the intensities of DNA low-frequency spectra to the counterion type proves the existence of the ion-phosphate modes.
Collapse
Affiliation(s)
- S M Perepelytsya
- Bogolyubov Institute for Theoretical Physics, NAS of Ukraine, 14-b Metrologichna St., 03680, Kiev, Ukraine.
| | | |
Collapse
|
19
|
Popova AM, Kálai T, Hideg K, Qin PZ. Site-specific DNA structural and dynamic features revealed by nucleotide-independent nitroxide probes. Biochemistry 2009; 48:8540-50. [PMID: 19650666 DOI: 10.1021/bi900860w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In site-directed spin labeling, a covalently attached nitroxide probe containing a chemically inert unpaired electron is utilized to obtain information on the local environment of the parent macromolecule. Studies presented here examine the feasibility of probing local DNA structural and dynamic features using a class of nitroxide probes that are linked to chemically substituted phosphorothioate positions at the DNA backbone. Two members of this family, designated as R5 and R5a, were attached to eight different sites of a dodecameric DNA duplex without severely perturbing the native B-form conformation. Measured X-band electron paramagnetic resonance (EPR) spectra, which report on nitroxide rotational motions, were found to vary depending on the location of the label (e.g., duplex center vs termini) and the surrounding DNA sequence. This indicates that R5 and R5a can provide information on the DNA local environment at the level of an individual nucleotide. As these probes can be attached to arbitrary nucleotides within a nucleic acid sequence, they may provide a means to "scan" a given DNA molecule in order to interrogate its local structural and dynamic features.
Collapse
Affiliation(s)
- Anna M Popova
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
20
|
Mallajosyula SS, Pati SK. Conformational tuning of magnetic interactions in metal-DNA complexes. Angew Chem Int Ed Engl 2009; 48:4977-81. [PMID: 19472237 DOI: 10.1002/anie.200806056] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The alignment of Cu(2+) ions along a modified DNA helix is studied with either hydroxypyridone (H) or bis(salicylaldehyde)ethylenediamine (S-en) metalated base pairs (MBPs). The conformational motion of H-MBP leads to the interlinking of the H-MBPs by an extended Cu-O network that is ferromagnetic, whereas the conformational freezing of the S-en-MBP leads to an ordered pairwise-stacked arrangement that is weakly antoferrimagnetic.
Collapse
Affiliation(s)
- Sairam S Mallajosyula
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bangalore 560 064, India
| | | |
Collapse
|
21
|
Mallajosyula S, Pati S. Conformational Tuning of Magnetic Interactions in Metal-DNA Complexes. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200806056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Mallajosyula SS, Pati SK. Benzimidazole-Modified Single-Stranded DNA: Stable Scaffolds for 1-Dimensional Spintronics Constructs. J Phys Chem B 2008; 112:16982-9. [DOI: 10.1021/jp8080782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sairam S. Mallajosyula
- Theoretical Sciences Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur, Bangalore, India 560064
| | - Swapan K. Pati
- Theoretical Sciences Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur, Bangalore, India 560064
| |
Collapse
|
23
|
Mallajosyula SS, Pati SK. Vanadium−Benzimidazole-Modified sDNA: A One-Dimensional Half-Metallic Ferromagnet. J Phys Chem B 2007; 111:13877-80. [DOI: 10.1021/jp710274j] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sairam S. Mallajosyula
- Theoretical Sciences Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur Campus, Bangalore 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur Campus, Bangalore 560064, India
| |
Collapse
|
24
|
Cannistraro VJ, Taylor JS. Ability of polymerase eta and T7 DNA polymerase to bypass bulge structures. J Biol Chem 2007; 282:11188-96. [PMID: 17303570 DOI: 10.1074/jbc.m608478200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA misalignment occurs in homopolymer tracts during replication and can lead to frameshift mutations. Polymerase (pol) recognition of primer-templates containing bulge structures and the transmission of a bulge through a polymerase binding site or replication complex are important components of frameshift mutagenesis. In this report, we describe the interaction of the catalytic core of pol eta with primer-templates containing bulge structures by single round primer extension. We found that pol eta could stabilize a frayed primer terminus, which enhances its ability to extend primer-templates containing bulges. Based on methylphosphonate-DNA mapping, pol eta interacts with the single strand template but not appreciably with the template strand of the DNA stem greater than two nucleotides from the primer terminus. These latter characteristics, combined with the ability to stabilize a frayed primer terminus, may explain why primer-templates containing template bulges are extended so efficiently by pol eta. Although pol eta could accommodate large bulges and continue synthesis without obstruction, bulge structures in the template, but not in the primer, caused termination of the T7 DNA replication complex. Terminations occurred when the template bulge neared the helix-loop-helix domain of the polymerase thumb. Terminations were not observed, however, when bulge structures approached the site of interaction of the DNA with the extended thumb and thioredoxin. At low temperature, however, terminations did occur at this site.
Collapse
|
25
|
Yonetani Y, Kono H, Fujii S, Sarai A, Go N. DNA deformability and hydration studied by molecular dynamics simulation. MOLECULAR SIMULATION 2007. [DOI: 10.1080/08927020601052971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Hamelberg D, Mongan J, McCammon JA. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 2006; 120:11919-29. [PMID: 15268227 DOI: 10.1063/1.1755656] [Citation(s) in RCA: 1127] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.
Collapse
Affiliation(s)
- Donald Hamelberg
- NSF Center for Theoretical Biological Physics and Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093-0365, USA.
| | | | | |
Collapse
|
27
|
Wozniak LA, Janicka M, Bukowiecka-Matusiak M. Consequences ofP-Chirality in Chimeric 2′-O-Methyloligoribonucleotides with Stereoregular Methylphosphonothioate Linkages. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
D'Agostino L, di Pietro M, Di Luccia A. Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation. FEBS J 2005; 272:3777-87. [PMID: 16045750 DOI: 10.1111/j.1742-4658.2005.04782.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a previous study we showed that natural polyamines interact in the nuclear environment with phosphate groups to form molecular aggregates [nuclear aggregates of polyamines (NAPs)] with estimated molecular mass values of 8000, 4800 and 1000 Da. NAPs were found to interact with genomic DNA, influence its conformation and interfere with the action of nucleases. In the present work, we demonstrated that NAPs protect naked genomic DNA from DNase I, whereas natural polyamines (spermine, spermidine and putrescine) fail to do so. In the context of DNA protection, NAPs induced noticeable changes in DNA conformation, which were revealed by temperature-dependent modifications of DNA electrophoretic properties. In addition, we presented, for NAPs, a structural model of polyamine aggregation into macropolycyclic compounds. We believe that NAPs are the sole biological forms by which polyamines efficiently protect genomic DNA against DNase I, while maintaining its dynamic structure.
Collapse
Affiliation(s)
- Luciano D'Agostino
- Department of Clinical and Experimental Medicine, Federico II University of Naples, Italy.
| | | | | |
Collapse
|
29
|
Kurpiewski MR, Engler LE, Wozniak LA, Kobylanska A, Koziolkiewicz M, Stec WJ, Jen-Jacobson L. Mechanisms of coupling between DNA recognition specificity and catalysis in EcoRI endonuclease. Structure 2005; 12:1775-88. [PMID: 15458627 DOI: 10.1016/j.str.2004.07.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Revised: 07/25/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
Proteins that bind to specific sites on DNA often do so in order to carry out catalysis or specific protein-protein interaction while bound to the recognition site. Functional specificity is enhanced if this second function is coupled to correct DNA site recognition. To analyze the structural and energetic basis of coupling between recognition and catalysis in EcoRI endonuclease, we have studied stereospecific phosphorothioate (PS) or methylphosphonate (PMe) substitutions at the scissile phosphate GpAATTC or at the adjacent phosphate GApATTC in combination with molecular-dynamics simulations of the catalytic center with bound Mg2+. The results show the roles in catalysis of individual phosphoryl oxygens and of DNA distortion and suggest that a "crosstalk ring" in the complex couples recognition to catalysis and couples the two catalytic sites to each other.
Collapse
Affiliation(s)
- Michael R Kurpiewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Range K, Mayaan E, Maher LJ, York DM. The contribution of phosphate-phosphate repulsions to the free energy of DNA bending. Nucleic Acids Res 2005; 33:1257-68. [PMID: 15741179 PMCID: PMC552960 DOI: 10.1093/nar/gki272] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA bending is important for the packaging of genetic material, regulation of gene expression and interaction of nucleic acids with proteins. Consequently, it is of considerable interest to quantify the energetic factors that must be overcome to induce bending of DNA, such as base stacking and phosphate–phosphate repulsions. In the present work, the electrostatic contribution of phosphate–phosphate repulsions to the free energy of bending DNA is examined for 71 bp linear and bent-form model structures. The bent DNA model was based on the crystallographic structure of a full turn of DNA in a nucleosome core particle. A Green's function approach based on a linear-scaling smooth conductor-like screening model was applied to ascertain the contribution of individual phosphate–phosphate repulsions and overall electrostatic stabilization in aqueous solution. The effect of charge neutralization by site-bound ions was considered using Monte Carlo simulation to characterize the distribution of ion occupations and contribution of phosphate repulsions to the free energy of bending as a function of counterion load. The calculations predict that the phosphate–phosphate repulsions account for ∼30% of the total free energy required to bend DNA from canonical linear B-form into the conformation found in the nucleosome core particle.
Collapse
Affiliation(s)
| | | | - L. J. Maher
- Department of Biochemistry and Molecular Biology. Mayo Clinic College of MedicineRochester, MN 55905, USA
| | - Darrin M. York
- To whom correspondence should be addressed. Tel: +1 612 624 8042; Fax: +1 612 626 7541;
| |
Collapse
|
31
|
Chaires JB, Ren J, Hamelberg D, Kumar A, Pandya V, Boykin DW, Wilson WD. Structural selectivity of aromatic diamidines. J Med Chem 2004; 47:5729-42. [PMID: 15509172 DOI: 10.1021/jm049491e] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Competition dialysis was used to study the interactions of 13 substituted aromatic diamidine compounds with 13 nucleic acid structures and sequences. The results show a striking selectivity of these compounds for the triplex structure poly dA:(poly dT)2, a novel aspect of their interaction with nucleic acids not previously described. The triplex selectivity of selected compounds was confirmed by thermal denaturation studies. Triplex selectivity was found to be modulated by the location of amidine substituents on the core phenyl-furan-phenyl ring scaffold. Molecular models were constructed to rationalize the triplex selectivity of DB359, the most selective compound in the series. Its triplex selectivity was found to arise from optimal ring stacking on base triplets, along with proper positioning of its amidine substituents to occupy the minor and the major-minor grooves of the triplex. New insights into the molecular recognition of nucleic acid structures emerged from these studies, adding to the list of available design principles for selectively targeting DNA and RNA.
Collapse
Affiliation(s)
- Jonathan B Chaires
- James Graham Brown Cancer Center, Department of Medicine, Health Sciences Center, University of Louisville, 529 S. Jackson St., Louisville, Kentucky 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Korolev N, Lyubartsev AP, Laaksonen A, Nordenskiöld L. A molecular dynamics simulation study of polyamine? and sodium?DNA. Interplay between polyamine binding and DNA structure. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 33:671-82. [PMID: 15146298 DOI: 10.1007/s00249-004-0410-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/02/2004] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
Four different molecular dynamics (MD) simulations have been performed for infinitely long ordered DNA molecules with different counterions, namely the two natural polyamines spermidine(3+) (Spd3+) and putrescine(2+) (Put2+), the synthetic polyamine diaminopropane(2+) (DAP2+), and the simple monovalent cation Na+. All systems comprised a periodical hexagonal cell with three identical DNA decamers, 15 water molecules per nucleotide, and counterions balancing the DNA charge. The simulation setup mimics the DNA state in oriented DNA fibers, previously studied using NMR and other experimental methods. In this paper the interplay between polyamine binding and local DNA structure is analyzed by investigating how and if the minor groove width of DNA depends on the presence and dynamics of the counterions. The results of the MD simulations reveal principal differences in the polyamine-DNA interactions between the natural [spermine(4+), Spd3+, Put2+] and the synthetic (DAP2+) polyamines.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | | | | | | |
Collapse
|
33
|
Mukherjee S, Bhattacharyya D. Effect of phosphorothioate chirality on the grooves of DNA double helices: a molecular dynamics study. Biopolymers 2004; 73:269-82. [PMID: 14755583 DOI: 10.1002/bip.10550] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phosphorothioate oligonucleotides (PS-ODNs) have gained considerable attention in drug therapy, primarily as potent antisense or antigene oligomers, which bind to specific DNA or mRNA sequences and lead to transcriptional or translational arrest. These are obtained by substituting one of the anionic oxygen of the phosphate group by a sulfur atom, which introduces chirality to the phosphorus atom of the DNA backbone. In this molecular dynamics simulation study, structural parameters like groove widths, environmental parameters like hydration or cation binding, and electrostatic energy surfaces of both the chiral forms of DNA/PS-DNA duplexes were assessed and compared with that of a normal DNA. Results indicate that, PS-S form with its sulfur atoms facing the minor groove has a widened minor groove, while the scenario is reverse for the PS-R form. Further analysis reveals the existence of several factors like large van der Waals radius of sulfur and the effect it has on its neighboring hydration pattern along with the net electrostatic environment, influencing such structural alterations. This also indicates, for the first time, the effect of absolute phosphorothioate chirality on the global structure of a DNA/PS-DNA hybrid that otherwise resembles a regular B-DNA structure.
Collapse
Affiliation(s)
- Shayantani Mukherjee
- Biophysics Division, Saha Institute of Nuclear Physics, 37 Belgachia Road, Kolkata 700037, India
| | | |
Collapse
|
34
|
Trieb M, Rauch C, Wellenzohn B, Wibowo F, Loerting T, Mayer E, Liedl KR. Daunomycin Intercalation Stabilizes Distinct Backbone Conformations of DNA. J Biomol Struct Dyn 2004; 21:713-24. [PMID: 14769064 DOI: 10.1080/07391102.2004.10506961] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Daunomycin is a widely used antibiotic of the anthracycline family. In the present study we reveal the structural properties and important intercalator-DNA interactions by means of molecular dynamics. As most of the X-ray structures of DNA-daunomycin intercalated complexes are short hexamers or octamers of DNA with two drug molecules per doublehelix we calculated a self complementary 14-mer oligodeoxyribonucleotide duplex d(CGCGCGATCGCGCG)2 in the B-form with two putative intercalation sites at the 5'-CGA-3' step on both strands. Consequently we are able to look at the structure of a 1:1 complex and exclude crystal packing effects normally encountered in most of the X-ray crystallographic studies conducted so far. We performed different 10 to 20 ns long molecular dynamics simulations of the uncomplexed DNA structure, the DNA-daunomycin complex and a 1:2 complex of DNA-daunomycin where the two intercalator molecules are stacked into the two opposing 5'-CGA-3' steps. Thereby--in contrast to X-ray structures--a comparison of a complex of only one with a complex of two intercalators per doublehelix is possible. The chromophore of daunomycin is intercalated between the 5'-CG-3' bases while the daunosamine sugar moiety is placed in the minor groove. We observe a flexibility of the dihedral angle at the glycosidic bond, leading to three different positions of the ammonium group responsible for important contacts in the minor groove. Furthermore a distinct pattern of BI and BII around the intercalation site is induced and stabilized. This indicates a transfer of changes in the DNA geometry caused by intercalation to the DNA backbone.
Collapse
Affiliation(s)
- Michael Trieb
- Institute of General Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
35
|
Cannistraro VJ, Taylor JS. DNA-thumb interactions and processivity of T7 DNA polymerase in comparison to yeast polymerase eta. J Biol Chem 2004; 279:18288-95. [PMID: 14871898 DOI: 10.1074/jbc.m400282200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The replicative polymerase of bacteriophage T7 is structurally and mechanistically well characterized. The crystal structure of T7 DNA polymerase or gene 5 protein complexed to its processivity factor, Escherichia coli thioredoxin, a primer-template, and a dideoxynucleotide reveals how this enzyme interacts with the 3'-end of the primer-template, but does not show how thioredoxin confers processivity to the polymerase. In the crystal structure highly conserved amino acids Asn(335) and Ser(338) of the thumb subdomain of T7 DNA polymerase are seen to interact with phosphates 7 and 8 of the DNA template strand. Results with a mutant T7 DNA polymerase in which aliphatic residues are substituted for these amino acids and experiments with different length and methylphosphonate-modified primer-templates demonstrate that these interactions are essential for processive synthesis and d(A.T)(n) tract bypass. Our data with methylphosphonate-modified DNA suggests that thioredoxin confers processivity to T7 DNA polymerase in part by causing an interaction with the phosphate backbone or minor groove of DNA. Residues Asn(335) and Ser(338) may also function with a nearby helix-loop-helix motif located at residues 339-372 to enclose the DNA during processive synthesis. Our results suggest that this structure must be held close to the DNA by ionic interactions to function. These interactions also allow for DNA sliding but physically block the passage of a 3T bulge in the template. In contrast, yeast polymerase eta, a polymerase that non-mutagenically repairs cis-syn thymidine dimers, allows the same bulge to slide past its thumb subdomain during synthesis. A relaxed thumb interaction with the DNA could account for the notably low processivity of polymerase eta.
Collapse
|
36
|
Trieb M, Rauch C, Wellenzohn B, Wibowo F, Loerting T, Liedl KR. Dynamics of DNA: BI and BII Phosphate Backbone Transitions. J Phys Chem B 2004. [DOI: 10.1021/jp037079p] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Trieb
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Christine Rauch
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Bernd Wellenzohn
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Fajar Wibowo
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| |
Collapse
|
37
|
Pan Y, MacKerell AD. Altered structural fluctuations in duplex RNA versus DNA: a conformational switch involving base pair opening. Nucleic Acids Res 2004; 31:7131-40. [PMID: 14654688 PMCID: PMC291876 DOI: 10.1093/nar/gkg941] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA and RNA are known to have different structural properties. In the present study, molecular dynamics (MD) simulations on a series of RNA and DNA duplexes indicate differential structural flexibility for the two classes of oligonucleotides. In duplex RNA, multiple base pairs experienced local opening events into the major groove on the nanosecond time scale, while such events were not observed in the DNA simulations. Three factors are indicated to be responsible for the base opening events in RNA: solvent-base interactions, 2'OH(n)-O4'(n+1) intra-strand hydrogen bonding, and enhanced rigid body motion of RNA at the nucleoside level. Water molecules in the major groove of RNA contribute to initiation of base pair opening. Stabilization of the base pair open state is due to a 'conformational switch' comprised of 2'OH(n)-O4'(n+1) hydrogen bonding and a rigid body motion of the nucleoside moiety in RNA. This rigid body motion is associated with decreased flexibility of the glycosyl linkage and sugar moieties in A-form structures. The observed opening rates in RNA are consistent with the imino proton exchange experiments for AU base pairs, although not for GC base pairs, while structural and flexibility changes associated with the proposed conformational switch are consistent with survey data of RNA and DNA crystal structures. The possible relevance of base pair opening events in RNA to its many biological functions is discussed.
Collapse
Affiliation(s)
- Yongping Pan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
38
|
Abstract
The fine structure of the DNA double helix and a number of its physical properties depend upon nucleotide sequence. This includes minor groove width, the propensity to undergo the B-form to A-form transition, sequence-directed curvature, and cation localization. Despite the multitude of studies conducted on DNA, it is still difficult to appreciate how these fundamental properties are linked to each other at the level of nucleotide sequence. We demonstrate that several sequence-dependent properties of DNA can be attributed, at least in part, to the sequence-specific localization of cations in the major and minor grooves. We also show that effects of cation localization on DNA structure are easier to understand if we divide all DNA sequences into three principal groups: A-tracts, G-tracts, and generic DNA. The A-tract group of sequences has a peculiar helical structure (i.e., B*-form) with an unusually narrow minor groove and high base-pair propeller twist. Both experimental and theoretical studies have provided evidence that the B*-form helical structure of A-tracts requires cations to be localized in the minor groove. G-tracts, on the other hand, have a propensity to undergo the B-form to A-form transition with increasing ionic strength. This property of G-tracts is directly connected to the observation that cations are preferentially localized in the major groove of G-tract sequences. Generic DNA, which represents the vast majority of DNA sequences, has a more balanced occupation of the major and minor grooves by cations than A-tracts or G-tracts and is thereby stabilized in the canonical B-form helix. Thus, DNA secondary structure can be viewed as a tug of war between the major and minor grooves for cations, with A-tracts and G-tracts each having one groove that dominates the other for cation localization. Finally, the sequence-directed curvature caused by A-tracts and G-tracts can, in both cases, be explained by the cation-dependent mismatch of A-tract and G-tract helical structures with the canonical B-form helix of generic DNA (i.e., a cation-dependent junction model).
Collapse
Affiliation(s)
- Nicholas V Hud
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta 30332, USA.
| | | |
Collapse
|
39
|
Woods KK, Lan T, McLaughlin LW, Williams LD. The role of minor groove functional groups in DNA hydration. Nucleic Acids Res 2003; 31:1536-40. [PMID: 12595562 PMCID: PMC149833 DOI: 10.1093/nar/gkg240] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Revised: 12/11/2002] [Accepted: 12/24/2002] [Indexed: 11/14/2022] Open
Abstract
Here we describe the crystal structure of modified [d(CGCGAATTCGCG)]2 refined to 2.04 A. The modification, which affects only the two thymines at the central ApT step, involves isosteric removal of the 2-keto oxygen atoms and substitution of the N1 nitrogen with carbon. The crystal structure reveals the ability of this modified thymine to effectively base pair with adenine in [d(CGCGAAtTCGCG)]2. The structure also suggests that the minor groove 'spine of hydration' is destabilized but essentially intact.
Collapse
Affiliation(s)
- Kristen Kruger Woods
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|