1
|
Sulfolobus islandicus Employs Orc1-2-Mediated DNA Damage Response in Defense against Infection by SSV2. J Virol 2022; 96:e0143822. [PMID: 36448807 PMCID: PMC9769372 DOI: 10.1128/jvi.01438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
All living organisms have evolved DNA damage response (DDR) strategies in coping with threats to the integrity of their genome. In response to DNA damage, Sulfolobus islandicus activates its DDR network in which Orc1-2, an ortholog of the archaeal Orc1/Cdc6 superfamily proteins, plays a central regulatory role. Here, we show that pretreatment with UV irradiation reduced virus genome replication in S. islandicus infected with the fusellovirus SSV2. Like treatment with UV or the DNA-damaging agent 4-nitroquinoline-1-oxide (NQO), infection with SSV2 facilitated the expression of orc1-2 and significantly raised the cellular level of Orc1-2. The inhibitory effect of UV irradiation on the virus DNA level was no longer apparent in the infected culture of an S. islandicus orc1-2 deletion mutant strain. On the other hand, the overexpression of orc1-2 decreased virus genomic DNA by ~102-fold compared to that in the parent strain. Furthermore, as part of the Orc1-2-mediated DDR response genes for homologous recombination repair (HRR), cell aggregation and intercellular DNA transfer were upregulated, whereas genes for cell division were downregulated. However, the HRR pathway remained functional in host inhibition of SSV2 genome replication in the absence of UpsA, a subunit of pili essential for intercellular DNA transfer. In agreement with this finding, lack of the general transcriptional activator TFB3, which controls the expression of the ups genes, only moderately affected SSV2 genome replication. Our results demonstrate that infection of S. islandicus by SSV2 triggers the host DDR pathway that, in return, suppresses virus genome replication. IMPORTANCE Extremophiles thrive in harsh habitats and thus often face a daunting challenge to the integrity of their genome. How these organisms respond to virus infection when their genome is damaged remains unclear. We found that the thermophilic archaeon Sulfolobus islandicus became more inhibitory to genome replication of the virus SSV2 after preinfection UV irradiation than without the pretreatment. On the other hand, like treatment with UV or other DNA-damaging agents, infection of S. islandicus by SSV2 triggers the activation of Orc1-2-mediated DNA damage response, including the activation of homologous recombination repair, cell aggregation and DNA import, and the repression of cell division. The inhibitory effect of pretreatment with UV irradiation on SSV2 genome replication was no longer observed in an S. islandicus mutant lacking Orc1-2. Our results suggest that DNA damage response is employed by S. islandicus as a strategy to defend against virus infection.
Collapse
|
2
|
Suzuki S, Kurosawa N. Participation of UV-regulated Genes in the Response to Helix-distorting DNA Damage in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius. Microbes Environ 2019; 34:363-373. [PMID: 31548441 PMCID: PMC6934391 DOI: 10.1264/jsme2.me19055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/11/2019] [Indexed: 11/15/2022] Open
Abstract
Several species of Sulfolobales have been used as model organisms in the study of response mechanisms to ultraviolet (UV) irradiation in hyperthermophilic crenarchaea. To date, the transcriptional responses of genes involved in the initiation of DNA replication, transcriptional regulation, protein phosphorylation, and hypothetical function have been observed in Sulfolobales species after UV irradiation. However, due to the absence of knockout experiments, the functions of these genes under in situ UV irradiation have not yet been demonstrated. In the present study, we constructed five gene knockout strains (cdc6-2, tfb3, rio1, and two genes encoding the hypothetical proteins, Saci_0951 and Saci_1302) of Sulfolobus acidocaldarius and examined their sensitivities to UV irradiation. The knockout strains exhibited significant sensitivities to UV-B irradiation, indicating that the five UV-regulated genes play an important role in responses to UV irradiation in vivo. Furthermore, Δcdc6-2, Δrio1, ΔSaci_0951, and Δtfb3 were sensitive to a wide variety of helix-distorting DNA lesions, including UV-induced DNA damage, an intra-strand crosslink, and bulky adducts. These results reveal that cdc6-2, tfb3, rio1, and Saci_0951 are play more important roles in broad responses to helix-distorting DNA damage than in specific responses to UV irradiation.
Collapse
Affiliation(s)
- Shoji Suzuki
- Department of Science and Engineering for Sustainable Development, Faculty of Science and Engineering, Soka UniversityTokyoJapan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Development, Faculty of Science and Engineering, Soka UniversityTokyoJapan
| |
Collapse
|
3
|
Sun M, Feng X, Liu Z, Han W, Liang YX, She Q. An Orc1/Cdc6 ortholog functions as a key regulator in the DNA damage response in Archaea. Nucleic Acids Res 2019; 46:6697-6711. [PMID: 29878182 PMCID: PMC6061795 DOI: 10.1093/nar/gky487] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/17/2018] [Indexed: 12/04/2022] Open
Abstract
While bacteria and eukaryotes show distinct mechanisms of DNA damage response (DDR) regulation, investigation of ultraviolet (UV)-responsive expression in a few archaea did not yield any conclusive evidence for an archaeal DDR regulatory network. Nevertheless, expression of Orc1-2, an ortholog of the archaeal origin recognition complex 1/cell division control protein 6 (Orc1/Cdc6) superfamily proteins was strongly activated in Sulfolobus solfataricus and Sulfolobus acidocaldarius upon UV irradiation. Here, a series of experiments were conducted to investigate the possible functions of Orc1-2 in DNA damage repair in Sulfolobus islandicus. Study of DDR in Δorc1-2 revealed that Orc1-2 deficiency abolishes DNA damage-induced differential expression of a large number of genes and the mutant showed hypersensitivity to DNA damage treatment. Reporter gene and DNase I footprinting assays demonstrated that Orc1-2 interacts with a conserved hexanucleotide motif present in several DDR gene promoters and regulates their expression. Manipulation of orc1-2 expression by promoter substitution in this archaeon revealed that a high level of orc1-2 expression is essential but not sufficient to trigger DDR. Together, these results have placed Orc1-2 in the heart of the archaeal DDR regulation, and the resulting Orc1-2-centered regulatory circuit represents the first DDR network identified in Archaea, the third domain of life.
Collapse
Affiliation(s)
- Mengmeng Sun
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Xu Feng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Zhenzhen Liu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Wenyuan Han
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Yun Xiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
4
|
Increase of positive supercoiling in a hyperthermophilic archaeon after UV irradiation. Extremophiles 2018; 23:141-149. [PMID: 30467661 DOI: 10.1007/s00792-018-1068-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Diverse DNA repair mechanisms are essential to all living organisms. Some of the most widespread repair systems allow recovery of genome integrity in the face of UV radiation. Here, we show that the hyperthermophilic archaeon Thermococcus nautili possesses a remarkable ability to recovery from extreme chromosomal damage. Immediately following UV irradiation, chromosomal DNA of T. nautili is fragmented beyond recognition. However, the extensive UV-induced double-stranded breaks (DSB) are repaired over the course of several hours, allowing restoration of growth. DSBs also disrupted plasmid DNA in this species. Similar to the chromosome, plasmid integrity was restored during an outgrowth period. Intriguingly, the topology of recovered pTN1 plasmids differed from control strain by being more positively supercoiled. As reverse gyrase (RG) is the only enzyme capable of inducing positive supercoiling, our results suggest the activation of RG activity by UV-induced stress. We suggest simple UV stress could be used to study archaeal DNA repair and responses to DSB.
Collapse
|
5
|
Stantial N, Dumpe J, Pietrosimone K, Baltazar F, Crowley DJ. Transcription-coupled repair of UV damage in the halophilic archaea. DNA Repair (Amst) 2016; 41:63-68. [DOI: 10.1016/j.dnarep.2016.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/22/2016] [Accepted: 03/21/2016] [Indexed: 12/01/2022]
|
6
|
DNA Processing Proteins Involved in the UV-Induced Stress Response of Sulfolobales. J Bacteriol 2015; 197:2941-51. [PMID: 26148716 DOI: 10.1128/jb.00344-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The ups operon of Sulfolobus species is highly induced upon UV stress. Previous studies showed that the pili encoded by this operon are involved in cellular aggregation, which is essential for subsequent DNA exchange between cells, resulting in homologous recombination. The presence of this pilus system increases the fitness of Sulfolobus cells under UV light-induced stress conditions, as the transfer of DNA takes place in order to repair UV-induced DNA lesions via homologous recombination. Four conserved genes (saci_1497 to saci_1500) which encode proteins with putative DNA processing functions are present downstream of the ups operon. In this study, we show that after UV treatment the cellular aggregation of strains with saci_1497, saci_1498, and saci_1500 deletions is similar to that of wild-type strains; their survival rates, however, were reduced and similar to or lower than those of the pilus deletion strains, which could not aggregate anymore. DNA recombination assays indicated that saci_1498, encoding a ParB-like protein, plays an important role in DNA transfer. Moreover, biochemical analysis showed that the endonuclease III encoded by saci_1497 nicks UV-damaged DNA. In addition, RecQ-like helicase Saci_1500 is able to unwind homologous recombination intermediates, such as Holliday junctions. Interestingly, a saci_1500 deletion mutant was more sensitive to UV light but not to the replication-stalling agents hydroxyurea and methyl methanesulfonate, suggesting that Saci_1500 functions specifically in the UV damage pathway. Together these results suggest a role of Saci_1497 to Saci_1500 in the repair or transfer of DNA that takes place after UV-induced damage to the genomic DNA of Sulfolobus acidocaldarius. IMPORTANCE Sulfolobales species increase their fitness after UV stress by a UV-inducible pilus system that enables high rates of DNA exchange between cells. Downstream of the pilus operon, three genes that seem to play a role in the repair or transfer of the DNA between Sulfolobus cells were identified, and their possible functions are discussed. Next to the previously described role of UV-inducible pili in the exchange of DNA, we have thereby increased our knowledge of DNA transfer at the level of DNA processing. This paper therefore contributes to the overall understanding of the DNA exchange mechanism among Sulfolobales cells.
Collapse
|
7
|
A standardized protocol for the UV induction of Sulfolobus spindle-shaped virus 1. Extremophiles 2014; 19:539-46. [PMID: 25479832 DOI: 10.1007/s00792-014-0717-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The Fuselloviridae prototype member Sulfolobus spindle-shaped virus 1 is a model of UV-inducible viruses infecting Crenarchaeota. Previous works on SSV1 UV induction were bases on empirically determined parameters that have not yet been standardized. Thus, in many peer reviewed literature, it is not clear how the fluence and irradiance have been determined. Here, we describe a protocol for the UV induction of SSV1 replication, which is based on the combination of the following instrumentally monitored parameters: (1) the fluence; (2) the irradiance; (3) the exposure time, and (4) the exposure distance. With the aim of finding a good balance between the viral replication induction and the host cells viability, UV-irradiated cultures were monitored for their ability to recover in the aftermath of the UV exposure. This UV irradiation procedure has been set up using the well-characterized Sulfolobus solfataricus P2 strain as model system to study host-virus interaction.
Collapse
|
8
|
Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea. Int J Mol Sci 2014; 15:17162-87. [PMID: 25257534 PMCID: PMC4200833 DOI: 10.3390/ijms150917162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 01/20/2023] Open
Abstract
In all organisms of the three living domains (Bacteria, Archaea, Eucarya) chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair). Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C), chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.
Collapse
|
9
|
Genome stability: recent insights in the topoisomerase reverse gyrase and thermophilic DNA alkyltransferase. Extremophiles 2014; 18:895-904. [DOI: 10.1007/s00792-014-0662-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/18/2014] [Indexed: 10/24/2022]
|
10
|
Rolfsmeier ML, Laughery MF, Haseltine CA. Repair of DNA Double-Strand Breaks Induced by Ionizing Radiation Damage Correlates with Upregulation of Homologous Recombination Genes in Sulfolobus solfataricus. J Mol Biol 2011; 414:485-98. [DOI: 10.1016/j.jmb.2011.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/05/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
|
11
|
Single-stranded DNA binding activity of XPBI, but not XPBII, from Sulfolobus tokodaii causes double-stranded DNA melting. Extremophiles 2010; 15:67-76. [PMID: 21132514 DOI: 10.1007/s00792-010-0338-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
Abstract
XPB helicase is the largest subunit of transcription factor IIH (TFIIH), a ten-subunit protein complex essential for transcription initiation and nucleotide excision repair (NER) in Eukarya. Two XPB homologues (XPBI and XPBII) are present in the genome of most crenarchaeota, one of the two major phyla of archaea; however, the biochemical properties have not been fully characterized and their cellular roles have not been clearly defined. Here, we report that XPBI from the hyperthermophilic crenarchaeon Sulfolobus tokodaii (StoXPBI) is able to destabilize double-stranded DNA (dsDNA) helix independent of ATP (designated as dsDNA melting activity). This activity is inhibited by single-stranded DNA (ssDNA) and relies on the unique N-terminal domain of StoXPBI, which is also likely responsible for the intrinsic strong ssDNA binding activity of StoXPBI as revealed by deletion analysis. We demonstrate that the ATPase activity of StoXPBII is remarkably stimulated by StoBax1, a nuclease partner of StoXPBII. The role of the unique dsDNA melting activity of XPBI in NER in archaea was discussed.
Collapse
|
12
|
Valenti A, Perugino G, Varriale A, D'Auria S, Rossi M, Ciaramella M. The archaeal topoisomerase reverse gyrase is a helix-destabilizing protein that unwinds four-way DNA junctions. J Biol Chem 2010; 285:36532-41. [PMID: 20851892 DOI: 10.1074/jbc.m110.169029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Four-way junctions are non-B DNA structures that originate as intermediates of recombination and repair (Holliday junctions) or from the intrastrand annealing of palindromic sequences (cruciforms). These structures have important functional roles but may also severely interfere with DNA replication and other genetic processes; therefore, they are targeted by regulatory and architectural proteins, and dedicated pathways exist for their removal. Although it is well known that resolution of Holliday junctions occurs either by recombinases or by specialized helicases, less is known on the mechanisms dealing with secondary structures in nucleic acids. Reverse gyrase is a DNA topoisomerase, specific to microorganisms living at high temperatures, which comprises a type IA topoisomerase fused to an SF2 helicase-like module and catalyzes ATP hydrolysis-dependent DNA positive supercoiling. Reverse gyrase is likely involved in regulation of DNA structure and stability and might also participate in the cell response to DNA damage. By applying FRET technology to multiplex fluorophore gel imaging, we show here that reverse gyrase induces unwinding of synthetic four-way junctions as well as forked DNA substrates, following a mechanism independent of both the ATPase and the strand-cutting activity of the enzyme. The reaction requires high temperature and saturating protein concentrations. Our results suggest that reverse gyrase works like an ATP-independent helix-destabilizing protein specific for branched DNA structures. The results are discussed in light of reverse gyrase function and their general relevance for protein-mediated unwinding of complex DNA structures.
Collapse
Affiliation(s)
- Anna Valenti
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
13
|
McRobbie AM, Carter LG, Kerou M, Liu H, McMahon SA, Johnson KA, Oke M, Naismith JH, White MF. Structural and functional characterisation of a conserved archaeal RadA paralog with antirecombinase activity. J Mol Biol 2009; 389:661-73. [PMID: 19414020 PMCID: PMC3387904 DOI: 10.1016/j.jmb.2009.04.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/20/2009] [Accepted: 04/27/2009] [Indexed: 12/25/2022]
Abstract
DNA recombinases (RecA in bacteria, Rad51 in eukarya and RadA in archaea) catalyse strand exchange between homologous DNA molecules, the central reaction of homologous recombination, and are among the most conserved DNA repair proteins known. RecA is the sole protein responsible for this reaction in bacteria, whereas there are several Rad51 paralogs that cooperate to catalyse strand exchange in eukaryotes. All archaea have at least one (and as many as four) RadA paralog, but their function remains unclear. Herein, we show that the three RadA paralogs encoded by the Sulfolobus solfataricus genome are expressed under normal growth conditions and are not UV inducible. We demonstrate that one of these proteins, Sso2452, which is representative of the large archaeal RadC subfamily of archaeal RadA paralogs, functions as an ATPase that binds tightly to single-stranded DNA. However, Sso2452 is not an active recombinase in vitro and inhibits D-loop formation by RadA. We present the high-resolution crystal structure of Sso2452, which reveals key structural differences from the canonical RecA family recombinases that may explain its functional properties. The possible roles of the archaeal RadA paralogs in vivo are discussed.
Collapse
Affiliation(s)
| | | | - Melina Kerou
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Huanting Liu
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Stephen A. McMahon
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Kenneth A. Johnson
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Muse Oke
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - James H. Naismith
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Malcolm F. White
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
14
|
Biswas T, Pero JM, Joseph CG, Tsodikov OV. DNA-Dependent ATPase Activity of Bacterial XPB Helicases. Biochemistry 2009; 48:2839-48. [DOI: 10.1021/bi8022416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tapan Biswas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Jessica M. Pero
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Caleb G. Joseph
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Oleg V. Tsodikov
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| |
Collapse
|
15
|
Fröls S, White MF, Schleper C. Reactions to UV damage in the model archaeon Sulfolobus solfataricus. Biochem Soc Trans 2009; 37:36-41. [PMID: 19143598 DOI: 10.1042/bst0370036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Mechanisms involved in DNA repair and genome maintenance are essential for all organisms on Earth and have been studied intensively in bacteria and eukaryotes. Their analysis in extremely thermophilic archaea offers the opportunity to discover strategies for maintaining genome integrity of the relatively little explored third domain of life, thereby shedding light on the diversity and evolution of these central and important systems. These studies might also reveal special adaptations that are essential for life at high temperature. A number of investigations of the hyperthermophilic and acidophilic crenarchaeote Sulfolobus solfataricus have been performed in recent years. Mostly, the reactions to DNA damage caused by UV light have been analysed. Whole-genome transcriptomics have demonstrated that a UV-specific response in S. solfataricus does not involve the transcriptional induction of DNA-repair genes and it is therefore different from the well-known SOS response in bacteria. Nevertheless, the UV response in S. solfataricus is impressively complex and involves many different levels of action, some of which have been elucidated and shed light on novel strategies for DNA repair, while others involve proteins of unknown function whose actions in the cell remain to be elucidated. The present review summarizes and discusses recent investigations on the UV response of S. solfataricus on both the molecular biological and the cellular levels.
Collapse
Affiliation(s)
- Sabrina Fröls
- Department of Genetics in Ecology, University of Vienna, Althanstrasse 14, A 1090 Vienna, Austria
| | | | | |
Collapse
|
16
|
Ferroplasma acidarmanus RPA2 facilitates efficient unwinding of forked DNA substrates by monomers of FacXPD helicase. J Mol Biol 2008; 383:982-98. [PMID: 18801373 DOI: 10.1016/j.jmb.2008.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/22/2008] [Accepted: 09/01/2008] [Indexed: 12/11/2022]
Abstract
The strand-separation activity that is important for many cellular DNA processing machineries is provided by DNA helicases. In order to understand the physiological properties of a helicase acting in the context of its macromolecular machinery, it is imperative to identify the proteins that interact with the enzyme and to analyze how these proteins affect its helicase activities. The archaeal Rad3 helicase XPD (xeroderma pigmentosum group D protein) from Ferroplasma acidarmanus (FacXPD) is a superfamily II 5'-->3' DNA helicase. Similar to its mammalian homolog working as an integral part of the transcription factor IIH complex, FacXPD may play an important role in nucleotide excision repair (NER) and transcription initiation. Interaction between FacXPD and other archaeal NER proteins likely modulates their respective activities. Replication protein A (RPA), a single-stranded DNA (ssDNA)-binding protein, is one of the NER proteins that functionally interact with the human transcription factor IIH complex. There are two RPA proteins in F. acidarmanus: FacRPA1, a homodimer of two monomers consisting of two oligonucleotide/oligosaccharide binding folds, and FacRPA2, a monomer containing a single oligonucleotide/oligosaccharide binding fold. In this study, we analyzed the effect of these ssDNA-binding proteins on FacXPD helicase activity. We found that FacRPA2 stimulates DNA unwinding by FacXPD helicase through a novel mechanism by providing a helix-destabilizing function. In contrast, FacRPA1 fails to stimulate helicase activity to the same extent as FacRPA2 and competes with FacXPD for binding to the ssDNA-double-stranded DNA junction. We conclude that the FacRPA2-coated fork is a preferred and likely physiological substrate that a monomer of FacXPD can unwind with a processivity sufficient for expansion of the NER or transcription bubble. We also suggest that duplex melting by a cognate ssDNA-binding protein coordinated with translocation by a helicase may represent a common strategy for duplex unwinding by the Rad3 family of helicases.
Collapse
|
17
|
Boubriak I, Ng WL, DasSarma P, DasSarma S, Crowley DJ, McCready SJ. Transcriptional responses to biologically relevant doses of UV-B radiation in the model archaeon, Halobacterium sp. NRC-1. SALINE SYSTEMS 2008; 4:13. [PMID: 18759987 PMCID: PMC2556686 DOI: 10.1186/1746-1448-4-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 08/29/2008] [Indexed: 11/25/2022]
Abstract
Background Most studies of the transcriptional response to UV radiation in living cells have used UV doses that are much higher than those encountered in the natural environment, and most focus on short-wave UV (UV-C) at 254 nm, a wavelength that never reaches the Earth's surface. We have studied the transcriptional response of the sunlight-tolerant model archaeon, Halobacterium sp. NRC-1, to low doses of mid-wave UV (UV-B) to assess its response to UV radiation that is likely to be more biologically relevant. Results Halobacterium NRC-1 cells were irradiated with UV-B at doses equivalent to 30 J/m2 and 5 J/m2 of UV-C. Transcriptional profiling showed that only 11 genes were up-regulated 1.5-fold or more by both UV-B doses. The most strongly up-regulated gene was radA1 (vng2473), the archaeal homologue of RAD51/recA recombinase. The others included arj1 (vng779) (recJ-like exonuclease), top6A (vng884) and top6B (vng885) (coding for Topoisomerase VI subunits), and nrdJ (vng1644) (which encodes a subunit of ribonucleotide reductase). We have found that four of the consistently UV-B up-regulated genes, radA1 (vng2473), vng17, top6B (vng885) and vng280, share a common 11-base pair motif in their promoter region, TTTCACTTTCA. Similar sequences were found in radA promoters in other halophilic archaea, as well as in the radA promoter of Methanospirillum hungatei. We analysed the transcriptional response of a repair-deficient ΔuvrA (vng2636) ΔuvrC (vng2381) double-deletion mutant and found common themes between it and the response in repair proficient cells. Conclusion Our results show a core set of genes is consistently up-regulated after exposure to UV-B light at low, biologically relevant doses. Eleven genes were up-regulated, in wild-type cells, after two UV-B doses (comparable to UV-C doses of 30 J/m2 and 5 J/m2), and only four genes were up-regulated by all doses of UV-B and UV-C that we have used in this work and previously. These results suggest that high doses of UV-C radiation do not necessarily provide a good model for the natural response to environmental UV. We have found an 11-base pair motif upstream of the TATA box in four of the UV-B up-regulated genes and suggest that this motif is the binding site for a transcriptional regulator involved in their response to UV damage in this model archaeon.
Collapse
Affiliation(s)
- Ivan Boubriak
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.,Institute of Cell Biology and Genetic Engineering, UAS, 148 Zabolotnogo Street, Kiev, 03143, Ukraine
| | - Wooi Loon Ng
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Priya DasSarma
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt St., Suite 236, Baltimore, MD 21202, USA
| | - Shiladitya DasSarma
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt St., Suite 236, Baltimore, MD 21202, USA.,Molecular and Structural Biology Program, Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - David J Crowley
- Natural Sciences Department, Assumption College, 500 Salisbury Street, Worcester, Massachusetts 01609, USA
| | - Shirley J McCready
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| |
Collapse
|
18
|
Goosen N, Moolenaar GF. Repair of UV damage in bacteria. DNA Repair (Amst) 2008; 7:353-79. [DOI: 10.1016/j.dnarep.2007.09.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
|
19
|
Pugh RA, Honda M, Leesley H, Thomas A, Lin Y, Nilges MJ, Cann IKO, Spies M. The iron-containing domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNA-double-stranded DNA junction. J Biol Chem 2007; 283:1732-1743. [PMID: 18029358 DOI: 10.1074/jbc.m707064200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Helicases often achieve functional specificity through utilization of unique structural features incorporated into an otherwise conserved core. The archaeal Rad3 (xeroderma pigmentosum group D protein (XPD)) helicase is a prototypical member of the Rad3 family, distinct from other related (superfamily II) SF2 enzymes because of a unique insertion containing an iron-sulfur (FeS) cluster. This insertion may represent an auxiliary domain responsible for modifying helicase activity or for conferring specificity for selected DNA repair intermediates. The importance of the FeS cluster for the fine-tuning of Rad3-DNA interactions is illustrated by several clinically relevant point mutations in the FeS domain of human Bach1 (FancJ) and XPD helicases that result in distinct disease phenotypes. Here we analyzed the substrate specificity of the Rad3 (XPD) helicase from Ferroplasma acidarmanus (FacRad3) and probed the importance of the FeS cluster for Rad3-DNA interactions. We found that the FeS cluster stabilizes secondary structure of the auxiliary domain important for coupling of single-stranded (ss) DNA-dependent ATP hydrolysis to ssDNA translocation. Additionally, we observed specific quenching of the Cy5 fluorescent dye when the FeS cluster of a bound helicase is positioned in close proximity to a Cy5 fluorophore incorporated into the DNA molecule. Taking advantage of this Cy5 quenching, we developed an equilibrium assay for analysis of the Rad3 interactions with various DNA substrates. We determined that the FeS cluster-containing domain recognizes the ssDNA-double-stranded DNA junction and positions the helicase in an orientation consistent with duplex unwinding. Although it interacts specifically with the junction, the enzyme binds tightly to ssDNA, and the single-stranded regions of the substrate are the major contributors to the energetics of FacRad3-substrate interactions.
Collapse
Affiliation(s)
- Robert A Pugh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Masayoshi Honda
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Haley Leesley
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Alvin Thomas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Yuyen Lin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Mark J Nilges
- Illinois EPR Research Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Isaac K O Cann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Maria Spies
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
| |
Collapse
|
20
|
Sheng D, Zhu S, Wei T, Ni J, Shen Y. The in vitro activity of a Rad55 homologue from Sulfolobus tokodaii, a candidate mediator in RadA-catalyzed homologous recombination. Extremophiles 2007; 12:147-57. [DOI: 10.1007/s00792-007-0113-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 09/17/2007] [Indexed: 11/29/2022]
|
21
|
Abella M, Rodríguez S, Paytubi S, Campoy S, White MF, Barbé J. The Sulfolobus solfataricus radA paralogue sso0777 is DNA damage inducible and positively regulated by the Sta1 protein. Nucleic Acids Res 2007; 35:6788-97. [PMID: 17921500 PMCID: PMC2175319 DOI: 10.1093/nar/gkm782] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 12/14/2022] Open
Abstract
Little is known about the regulation of the DNA damage-mediated gene expression in archaea. Here we report that the addition of actinomycin D to Sulfolobus solfataricus cultures triggers the expression of the radA paralogue sso0777. Furthermore, a specific retarded band is observed when electrophoretic mobility shift assays (EMSAs) with crude S. solfataricus cell extracts and the sso0777 promoter were carried out. The protein that binds to this promoter was isolated and identified as Sta1. Footprinting experiments have shown that the Sta1 DNA-binding site is included in the ATTTTTTATTTTCACATGTAAGATGTTTATT sequence, which is located upstream the putative TTG translation starting codon of the sso0777 gene. Additionally, gel electrophoretic mobility retardation experiments using mutant sso0777 promoter derivatives show the presence of three essential motifs (TTATT, CANGNA and TTATT) that are absolutely required for Sta1 DNA binding. Finally, in vitro transcription experiments confirm that Sta1 functions as an activator for sso0777 gene expression being the first identified archaeal regulatory protein associated with the DNA damage-mediated induction of gene expression.
Collapse
Affiliation(s)
- Marc Abella
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona 08193 Bellaterra, Spain, Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK and Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
| | - Sonia Rodríguez
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona 08193 Bellaterra, Spain, Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK and Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
| | - Sonia Paytubi
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona 08193 Bellaterra, Spain, Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK and Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
| | - Susana Campoy
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona 08193 Bellaterra, Spain, Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK and Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
| | - Malcolm F. White
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona 08193 Bellaterra, Spain, Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK and Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
| | - Jordi Barbé
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona 08193 Bellaterra, Spain, Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK and Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
| |
Collapse
|
22
|
Fröls S, Gordon PMK, Panlilio MA, Duggin IG, Bell SD, Sensen CW, Schleper C. Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage. J Bacteriol 2007; 189:8708-18. [PMID: 17905990 PMCID: PMC2168930 DOI: 10.1128/jb.01016-07] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to characterize the genome-wide transcriptional response of the hyperthermophilic, aerobic crenarchaeote Sulfolobus solfataricus to UV damage, we used high-density DNA microarrays which covered 3,368 genetic features encoded on the host genome, as well as the genes of several extrachromosomal genetic elements. While no significant up-regulation of genes potentially involved in direct DNA damage reversal was observed, a specific transcriptional UV response involving 55 genes could be dissected. Although flow cytometry showed only modest perturbation of the cell cycle, strong modulation of the transcript levels of the Cdc6 replication initiator genes was observed. Up-regulation of an operon encoding Mre11 and Rad50 homologs pointed to induction of recombinational repair. Consistent with this, DNA double-strand breaks were observed between 2 and 8 h after UV treatment, possibly resulting from replication fork collapse at damaged DNA sites. The strong transcriptional induction of genes which potentially encode functions for pilus formation suggested that conjugational activity might lead to enhanced exchange of genetic material. In support of this, a statistical microscopic analysis demonstrated that large cell aggregates formed upon UV exposure. Together, this provided supporting evidence to a link between recombinational repair and conjugation events.
Collapse
Affiliation(s)
- Sabrina Fröls
- Center of Geobiology, Dept. Biology, Jahnebakken 5, N-5020 Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
23
|
Robinson NP, Blood KA, McCallum SA, Edwards PAW, Bell SD. Sister chromatid junctions in the hyperthermophilic archaeon Sulfolobus solfataricus. EMBO J 2007; 26:816-24. [PMID: 17255945 PMCID: PMC1794387 DOI: 10.1038/sj.emboj.7601529] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 12/07/2006] [Indexed: 01/28/2023] Open
Abstract
Although the Archaea exhibit an intriguing combination of bacterial- and eukaryotic-like features, it is not known how these prokaryotic cells segregate their chromosomes before the process of cell division. In the course of our analysis of the third replication origin in the archaeon Sulfolobus solfataricus, we identify and characterise sister chromatid junctions in this prokaryote. This pairing appears to be mediated by hemicatenane-like structures, and we provide evidence that these junctions persist in both replicating and postreplicative cells. These data, in conjunction with fluorescent in situ hybridisation analyses, suggest that Sulfolobus chromosomes have a significant period of postreplicative sister chromatid synapsis, a situation that is more reminiscent of eukaryotic than bacterial chromosome segregation mechanisms.
Collapse
Affiliation(s)
- Nicholas P Robinson
- Medical Research Council Cancer Cell Unit, Hutchison MRC Research Centre, Cambridge, UK
| | - Katherine A Blood
- Department of Pathology, Hutchison MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Simon A McCallum
- Medical Research Council Cancer Cell Unit, Hutchison MRC Research Centre, Cambridge, UK
| | - Paul A W Edwards
- Department of Pathology, Hutchison MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Stephen D Bell
- Medical Research Council Cancer Cell Unit, Hutchison MRC Research Centre, Cambridge, UK
- Medical Research Council Cancer Cell Unit, Hutchison Medical Research Council Centre, Hills Road, Cambridge CB2 2XZ, UK. Tel.: +44 1223 763 311; Fax: +44 1223 763 296; E-mail: or
| |
Collapse
|
24
|
Götz D, Paytubi S, Munro S, Lundgren M, Bernander R, White MF. Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol 2007; 8:R220. [PMID: 17931420 PMCID: PMC2246294 DOI: 10.1186/gb-2007-8-10-r220] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 08/09/2007] [Accepted: 10/11/2007] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND DNA damage leads to cellular responses that include the increased expression of DNA repair genes, repression of DNA replication and alterations in cellular metabolism. Archaeal information processing pathways resemble those in eukaryotes, but archaeal damage response pathways remain poorly understood. RESULTS We analyzed the transcriptional response to UV irradiation in two related crenarchaea, Sulfolobus solfataricus and Sulfolobus acidocaldarius. Sulfolobus species encounter high levels of DNA damage in nature, as they inhabit high temperature, aerobic environments and are exposed to sunlight. No increase in expression of DNA repair genes following UV irradiation was observed. There was, however, a clear transcriptional response, including repression of DNA replication and chromatin proteins. Differential effects on the expression of the three transcription factor B (tfb) genes hint at a mechanism for the modulation of transcriptional patterns in response to DNA damage. TFB3, which is strongly induced following UV irradiation, competes with TFB1 for binding to RNA polymerase in vitro, and may act as a repressor of transcription or an alternative transcription factor for certain promoters. CONCLUSION A clear response to DNA damage was observed, with down-regulation of the DNA replication machinery, changes in transcriptional regulatory proteins, and up-regulation of the biosynthetic enzymes for beta-carotene, which has UV protective properties, and proteins that detoxify reactive oxygen species. However, unlike eukaryotes and bacteria, there was no induction of DNA repair proteins in response to DNA damage, probably because these are expressed constitutively to deal with increased damage arising due to high growth temperatures.
Collapse
Affiliation(s)
- Dorothee Götz
- Aquapharm Bio-Discoveries, European Centre for Marine Biotechnology, Dunbeg, Oban PA37 1QA, UK
| | - Sonia Paytubi
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Stacey Munro
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Magnus Lundgren
- Department of Molecular Evolution, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
| | - Rolf Bernander
- Department of Molecular Evolution, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
| | - Malcolm F White
- Department of Molecular Evolution, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
| |
Collapse
|
25
|
Dorazi R, Götz D, Munro S, Bernander R, White MF. Equal rates of repair of DNA photoproducts in transcribed and non-transcribed strands in Sulfolobus solfataricus. Mol Microbiol 2006; 63:521-9. [PMID: 17163966 DOI: 10.1111/j.1365-2958.2006.05516.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleotide excision repair (NER) pathway removes bulky lesions such as photoproducts from DNA. In both bacteria and eukarya, lesions located in transcribed strands are repaired significantly faster than those located in non-transcribed strands due to damage signalling by stalled RNA polymerase molecules: a phenomenon known as transcription-coupled repair (TCR). TCR requires a mechanism for coupling the detection of stalled RNA polymerase molecules to the NER pathway, provided in bacteria by the Mfd protein. In the third domain of life, archaea, the pathway of NER is not well defined, there are no Mfd homologues and the existence of TCR has not been investigated. In this report we looked at rates of removal of photoproducts in three different operons of the crenarchaeon Sulfolobus solfataricus following UV irradiation. We found no evidence for significantly faster repair in the transcribed strands of these three operons. The rate of global genome repair in S. solfataricus is relatively rapid, and this may obviate the requirement for a specialized TCR pathway. Significantly faster repair kinetics were observed in the presence of visible light, consistent with the presence of a gene for photolyase in the genome of S. solfataricus.
Collapse
Affiliation(s)
- Robert Dorazi
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | | | | | | | |
Collapse
|
26
|
Romano V, Napoli A, Salerno V, Valenti A, Rossi M, Ciaramella M. Lack of strand-specific repair of UV-induced DNA lesions in three genes of the archaeon Sulfolobus solfataricus. J Mol Biol 2006; 365:921-9. [PMID: 17113105 DOI: 10.1016/j.jmb.2006.10.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/11/2006] [Accepted: 10/16/2006] [Indexed: 01/12/2023]
Abstract
In all organisms, specialized systems are devoted to repair of DNA lesions induced by exposure to UV light. In both Eucarya and Bacteria, UV-induced pyrimidine dimers in the transcribed strand of active genes are repaired at a faster rate compared to the non-transcribed strand and the rest of the genome. Preferential repair of transcribed strands requires the Transcription-Repair Coupling Factor in Escherichia coli and the CSA and CSB proteins in humans. These factors are needed for coupling of transcription to nucleotide excision repair (NER), a major pathway for repair of UV-induced lesions. Whereas transcription-coupled NER (TC-NER) is an evolutionary conserved process, not all active genes show preferential repair of transcribed strands. The existence of a NER pathway in the Archaea has not been demonstrated directly, yet it is suggested by the presence and properties of homologues of NER nucleases and helicases. However, none of the proteins responsible for the lesion recognition steps or for TC-NER has been found in archaeal genomes. Moreover, the kinetics of gene or strand-specific repair has never been investigated in any organism of this domain. We have analysed the kinetics of repair of UV-induced DNA damage in the transcribed and non-transcribed strands of three genes of the hyperthermophilic archaeon Sulfolobus solfataricus. We found that in all three genes the two strands are repaired with the same efficiency with each other and with the genome in general, thus providing no evidence of strand bias or transcription coupling of the repair process in the genes analysed. Further studies will be required to test the existence of a transcription-coupled repair pathway in other archaeal genes and to elucidate the mechanism of UV lesion recognition and repair in Archaea.
Collapse
Affiliation(s)
- Vincenza Romano
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Crowley DJ, Boubriak I, Berquist BR, Clark M, Richard E, Sullivan L, DasSarma S, McCready S. The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1. SALINE SYSTEMS 2006; 2:11. [PMID: 16970815 PMCID: PMC1590041 DOI: 10.1186/1746-1448-2-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Accepted: 09/13/2006] [Indexed: 11/09/2022]
Abstract
Background Sequenced archaeal genomes contain a variety of bacterial and eukaryotic DNA repair gene homologs, but relatively little is known about how these microorganisms actually perform DNA repair. At least some archaea, including the extreme halophile Halobacterium sp. NRC-1, are able to repair ultraviolet light (UV) induced DNA damage in the absence of light-dependent photoreactivation but this 'dark' repair capacity remains largely uncharacterized. Halobacterium sp. NRC-1 possesses homologs of the bacterial uvrA, uvrB, and uvrC nucleotide excision repair genes as well as several eukaryotic repair genes and it has been thought that multiple DNA repair pathways may account for the high UV resistance and dark repair capacity of this model halophilic archaeon. We have carried out a functional analysis, measuring repair capability in uvrA, uvrB and uvrC deletion mutants. Results Deletion mutants lacking functional uvrA, uvrB or uvrC genes, including a uvrA uvrC double mutant, are hypersensitive to UV and are unable to remove cyclobutane pyrimidine dimers or 6–4 photoproducts from their DNA after irradiation with 150 J/m2 of 254 nm UV-C. The UV sensitivity of the uvr mutants is greatly attenuated following incubation under visible light, emphasizing that photoreactivation is highly efficient in this organism. Phylogenetic analysis of the Halobacterium uvr genes indicates a complex ancestry. Conclusion Our results demonstrate that homologs of the bacterial nucleotide excision repair genes uvrA, uvrB, and uvrC are required for the removal of UV damage in the absence of photoreactivating light in Halobacterium sp. NRC-1. Deletion of these genes renders cells hypersensitive to UV and abolishes their ability to remove cyclobutane pyrimidine dimers and 6–4 photoproducts in the absence of photoreactivating light. In spite of this inability to repair UV damaged DNA, uvrA, uvrB and uvrC deletion mutants are substantially less UV sensitive than excision repair mutants of E. coli or yeast. This may be due to efficient damage tolerance mechanisms such as recombinational lesion bypass, bypass DNA polymerase(s) and the existence of multiple genomes in Halobacterium. Phylogenetic analysis provides no clear evidence for lateral transfer of these genes from bacteria to archaea.
Collapse
Affiliation(s)
- David J Crowley
- Natural Sciences Department, Assumption College, 500 Salisbury Street, Worcester, Massachusetts 01609 USA
| | - Ivan Boubriak
- School of Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Brian R Berquist
- University of Maryland Biotechnology Institute Center of Marine Biotechnology Baltimore, Maryland 21042 USA
| | - Monika Clark
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235 USA
| | - Emily Richard
- Natural Sciences Department, Assumption College, 500 Salisbury Street, Worcester, Massachusetts 01609 USA
| | - Lynn Sullivan
- Natural Sciences Department, Assumption College, 500 Salisbury Street, Worcester, Massachusetts 01609 USA
| | - Shiladitya DasSarma
- University of Maryland Biotechnology Institute Center of Marine Biotechnology Baltimore, Maryland 21042 USA
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland 21201 USA
| | - Shirley McCready
- School of Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
28
|
Williams E, Lowe TM, Savas J, DiRuggiero J. Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation. Extremophiles 2006; 11:19-29. [PMID: 16896524 DOI: 10.1007/s00792-006-0002-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 05/16/2006] [Indexed: 12/15/2022]
Abstract
The remarkable survival of the hyperthermophilic archaeon Pyrococcus furiosus to ionizing radiation was previously demonstrated. Using a time course study and whole-genome microarray analyses of mRNA transcript levels, the genes and regulatory pathways involved in the repair of lesions produced by ionizing irradiation (oxidative damage and DNA strand breaks) in P. furiosus were investigated. Data analyses showed that radA, encoding the archaeal homolog of the RecA/Rad51 recombinase, was moderately up regulated by irradiation and that a putative DNA-repair gene cluster was specifically induced by exposure to ionizing radiation. This novel repair system appears to be unique to thermophilic archaea and bacteria and is suspected to be involved in translesion synthesis. Genes that encode for a putative Dps-like iron-chelating protein and two membrane-bound oxidoreductases were differentially expressed following gamma irradiation, potentially in response to oxidative stress. Surprisingly, the many systems involved in oxygen detoxification and redox homeostasis appeared to be constitutively expressed. Finally, we identified several transcriptional regulators and protein kinases highly regulated in response to gamma irradiation.
Collapse
Affiliation(s)
- Ernest Williams
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
29
|
Valenti A, Napoli A, Ferrara MC, Nadal M, Rossi M, Ciaramella M. Selective degradation of reverse gyrase and DNA fragmentation induced by alkylating agent in the archaeon Sulfolobus solfataricus. Nucleic Acids Res 2006; 34:2098-108. [PMID: 16617150 PMCID: PMC1440885 DOI: 10.1093/nar/gkl115] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reverse gyrase is a peculiar DNA topoisomerase, specific of hyperthermophilic Archaea and Bacteria, which has the unique ability of introducing positive supercoiling into DNA molecules. Although the function of the enzyme has not been established directly, it has been suggested to be involved in DNA protection and repair. We show here that the enzyme is degraded after treatment of Sulfolobus solfataricus cells with the alkylating agent MMS. MMS-induced reverse gyrase degradation is highly specific, since (i) neither hydroxyurea (HU) nor puromycin have a similar effect, and (ii) topoisomerase VI and two chromatin components are not degraded. Reverse gyrase degradation does not depend on protein synthesis. Experiments in vitro show that direct exposure of cell extracts to MMS does not induce reverse gyrase degradation; instead, extracts from MMS-treated cells contain some factor(s) able to degrade the enzyme in extracts from control cells. In vitro, degradation is blocked by incubation with divalent metal chelators, suggesting that reverse gyrase is selectively degraded by a metal-dependent protease in MMS-treated cells. In addition, we find a striking concurrence of extensive genomic DNA degradation and reverse gyrase loss in MMS-treated cells. These results support the hypothesis that reverse gyrase plays an essential role in DNA thermoprotection and repair in hyperthermophilic organisms.
Collapse
Affiliation(s)
| | | | | | - Marc Nadal
- Université de Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, CNRSFRE 2445, Equipe MicrobiologieBâtiment Buffon, 45 Avenue des Etats-Unis 78035 Versailles Cedex, France
| | | | - Maria Ciaramella
- To whom correspondence should be addressed. Tel: 390816132247; Fax: 390816132248;
| |
Collapse
|
30
|
Kelman Z, White MF. Archaeal DNA replication and repair. Curr Opin Microbiol 2005; 8:669-76. [PMID: 16242991 DOI: 10.1016/j.mib.2005.10.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 10/05/2005] [Indexed: 11/22/2022]
Abstract
Since the first archaeal genome was sequenced, much attention has been focused on the study of these unique microorganisms. We have learnt that although archaeal DNA metabolic processes (replication, recombination and repair) are more similar to the metabolic processes of Eukarya than those of Bacteria, Archaea are not simply 'mini Eukarya'. They are, in fact, a mosaic of the eukaryal and bacterial systems that also possess archaeal-specific features. Recent biochemical and structural studies of the proteins that participate in archaeal DNA replication and repair have increased our understanding of these processes.
Collapse
Affiliation(s)
- Zvi Kelman
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | | |
Collapse
|
31
|
Napoli A, Valenti A, Salerno V, Nadal M, Garnier F, Rossi M, Ciaramella M. Reverse Gyrase Recruitment to DNA after UV Light Irradiation in Sulfolobus solfataricus. J Biol Chem 2004; 279:33192-8. [PMID: 15190074 DOI: 10.1074/jbc.m402619200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of DNA damage triggers a complex biological response concerning not only repair systems but also virtually every cell function. DNA topoisomerases regulate the level of DNA supercoiling in all DNA transactions. Reverse gyrase is a peculiar DNA topoisomerase, specific to hyperthermophilic microorganisms, which contains a helicase and a topoisomerase IA domain that has the unique ability to introduce positive supercoiling into DNA molecules. We show here that reverse gyrase of the archaean Sulfolobus solfataricus is mobilized to DNA in vivo after UV irradiation. The enzyme, either purified or in cell extracts, forms stable covalent complexes with UV-damaged DNA in vitro. We also show that the reverse gyrase translocation to DNA in vivo and the stabilization of covalent complexes in vitro are specific effects of UV light irradiation and do not occur with the intercalating agent actinomycin D. Our results suggest that reverse gyrase might participate, directly or indirectly, in the cell response to UV light-induced DNA damage. This is the first direct evidence of the recruitment of a topoisomerase IA enzyme to DNA after the induction of DNA damage. The interaction between helicase and topoisomerase activities has been previously proposed to facilitate aspects of DNA replication or recombination in both Bacteria and Eukarya. Our results suggest a general role of the association of such activities in maintaining genome integrity and a mutual effect of DNA topology and repair.
Collapse
Affiliation(s)
- Alessandra Napoli
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|