1
|
Zhang J, Qian J, Zou Q, Zhou F, Kurgan L. Recent Advances in Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences. Methods Mol Biol 2025; 2870:1-19. [PMID: 39543027 DOI: 10.1007/978-1-0716-4213-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The secondary structures (SSs) and supersecondary structures (SSSs) underlie the three-dimensional structure of proteins. Prediction of the SSs and SSSs from protein sequences enjoys high levels of use and finds numerous applications in the development of a broad range of other bioinformatics tools. Numerous sequence-based predictors of SS and SSS were developed and published in recent years. We survey and analyze 45 SS predictors that were released since 2018, focusing on their inputs, predictive models, scope of their prediction, and availability. We also review 32 sequence-based SSS predictors, which primarily focus on predicting coiled coils and beta-hairpins and which include five methods that were published since 2018. Substantial majority of these predictive tools rely on machine learning models, including a variety of deep neural network architectures. They also frequently use evolutionary sequence profiles. We discuss details of several modern SS and SSS predictors that are currently available to the users and which were published in higher impact venues.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| | - Jingjing Qian
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Feng Zhou
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China
| | - Lukasz Kurgan
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, Virginia, VA, USA.
| |
Collapse
|
2
|
Banerjee S, Fraser K, Crone DE, Patel JC, Bondos SE, Bystroff C. Challenges and Solutions for Leave-One-Out Biosensor Design in the Context of a Rugged Fitness Landscape. SENSORS (BASEL, SWITZERLAND) 2024; 24:6380. [PMID: 39409420 PMCID: PMC11478963 DOI: 10.3390/s24196380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
The leave-one-out (LOO) green fluorescent protein (GFP) approach to biosensor design combines computational protein design with split protein reconstitution. LOO-GFPs reversibly fold and gain fluorescence upon encountering the target peptide, which can be redefined by computational design of the LOO site. Such an approach can be used to create reusable biosensors for the early detection of emerging biological threats. Enlightening biophysical inferences for nine LOO-GFP biosensor libraries are presented, with target sequences from dengue, influenza, or HIV, replacing beta strands 7, 8, or 11. An initially low hit rate was traced to components of the energy function, manifesting in the over-rewarding of over-tight side chain packing. Also, screening by colony picking required a low library complexity, but designing a biosensor against a peptide of at least 12 residues requires a high-complexity library. This double-bind was solved using a "piecemeal" iterative design strategy. Also, designed LOO-GFPs fluoresced in the unbound state due to unwanted dimerization, but this was solved by fusing a fully functional prototype LOO-GFP to a fiber-forming protein, Drosophila ultrabithorax, creating a biosensor fiber. One influenza hemagglutinin biosensor is characterized here in detail, showing a shifted excitation/emission spectrum, a micromolar affinity for the target peptide, and an unexpected photo-switching ability.
Collapse
Affiliation(s)
- Shounak Banerjee
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA;
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.F.); (D.E.C.); (J.C.P.)
| | - Keith Fraser
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.F.); (D.E.C.); (J.C.P.)
| | - Donna E. Crone
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.F.); (D.E.C.); (J.C.P.)
| | - Jinal C. Patel
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.F.); (D.E.C.); (J.C.P.)
| | - Sarah E. Bondos
- Medical Physiology, Texas A&M University, College Station, TX 77843, USA;
| | - Christopher Bystroff
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.F.); (D.E.C.); (J.C.P.)
- Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
3
|
Pal D, Dey S, Ghosh P, Bhattacharya DK, Das S, Maji B. A unique approach for protein secondary structure comparison under TOPS representation. J Biomol Struct Dyn 2024:1-13. [PMID: 38698728 DOI: 10.1080/07391102.2024.2333449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024]
Abstract
To unravel the intricate connection between protein function and protein structure, it is imperative to comprehensively evaluate protein secondary structure similarity from various perspectives. While numerous techniques have been suggested for comparing protein secondary structure elements (SSE), there continues to be a substantial need for finding alternative ways of comparing the same. In this paper, Topology of Protein Structure (TOPS) representations of protein secondary structures are considered to offer a new alignment-free method for evaluating similarities/dissimilarities of protein secondary structures. Initially, a two-dimensional numerical representation of the SSE is created, associating each point with a mass reflecting its frequency of occurrence. Then the means of coordinate values are determined by averaging weighted sums, and these mean values are subsequently used to calculate moments-of-inertia. Next, a four-component descriptor is generated out of the eigenvalues of the matrix and the mean values of the represented coordinates. Thereafter, Manhattan distance measure is used to obtain the distance matrix. This is finally applied to obtain the phylogenetic trees under the use of NJ method. SSE considered in the proposed method comprises 36-elements from the Chew-Kedem database giving five different taxa: globin, alpha-beta, tim-barrel, beta, and alpha. Phylogenetic trees were created for these SSE through the application of various methods: Clustal-Omega, LZ-Complexity, SED, TOPS + and TOC, to facilitate comparative analysis. Phylogenetic tree of the proposed method outperformed results of the previous methods when applied to the same SSE. Therefore, the method effectively constructs phylogenetic tree for analyzing protein secondary structure comparison.
Collapse
Affiliation(s)
- Debrupa Pal
- Computer Application, Narula Institute of Technology, Kolkata, India
- Electronics and Communication Engineering, National Institute of Technology, Durgapur, India
| | - Sudeshna Dey
- Computer Science and Engineering, Narula Institute of Technology, Kolkata, India
| | - Papri Ghosh
- Computer Science and Engineering, Narula Institute of Technology, Kolkata, India
| | | | - Subhram Das
- Computer Science and Engineering, Narula Institute of Technology, Kolkata, India
| | - Bansibadan Maji
- Electronics and Communication Engineering, National Institute of Technology, Durgapur, India
| |
Collapse
|
4
|
Heal JW, Bartlett GJ, Wood CW, Thomson AR, Woolfson DN. Applying graph theory to protein structures: an Atlas of coiled coils. Bioinformatics 2019; 34:3316-3323. [PMID: 29722888 PMCID: PMC6157074 DOI: 10.1093/bioinformatics/bty347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Motivation To understand protein structure, folding and function fully and to design proteins de novo reliably, we must learn from natural protein structures that have been characterized experimentally. The number of protein structures available is large and growing exponentially, which makes this task challenging. Indeed, computational resources are becoming increasingly important for classifying and analyzing this resource. Here, we use tools from graph theory to define an Atlas classification scheme for automatically categorizing certain protein substructures. Results Focusing on the α-helical coiled coils, which are ubiquitous protein-structure and protein-protein interaction motifs, we present a suite of computational resources designed for analyzing these assemblies. iSOCKET enables interactive analysis of side-chain packing within proteins to identify coiled coils automatically and with considerable user control. Applying a graph theory-based Atlas classification scheme to structures identified by iSOCKET gives the Atlas of Coiled Coils, a fully automated, updated overview of extant coiled coils. The utility of this approach is illustrated with the first formal classification of an emerging subclass of coiled coils called α-helical barrels. Furthermore, in the Atlas, the known coiled-coil universe is presented alongside a partial enumeration of the 'dark matter' of coiled-coil structures; i.e. those coiled-coil architectures that are theoretically possible but have not been observed to date, and thus present defined targets for protein design. Availability and implementation iSOCKET is available as part of the open-source GitHub repository associated with this work (https://github.com/woolfson-group/isocket). This repository also contains all the data generated when classifying the protein graphs. The Atlas of Coiled Coils is available at: http://coiledcoils.chm.bris.ac.uk/atlas/app.
Collapse
Affiliation(s)
- Jack W Heal
- School of Chemistry, University of Bristol, Bristol, UK
| | | | | | - Andrew R Thomson
- School of Chemistry, University of Bristol, Bristol, UK.,School of Chemistry, University of Glasgow, Glasgow, UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, University of Bristol, Life Sciences Building, Bristol, UK
| |
Collapse
|
5
|
Oldfield CJ, Chen K, Kurgan L. Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences. Methods Mol Biol 2019; 1958:73-100. [PMID: 30945214 DOI: 10.1007/978-1-4939-9161-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many new methods for the sequence-based prediction of the secondary and supersecondary structures have been developed over the last several years. These and older sequence-based predictors are widely applied for the characterization and prediction of protein structure and function. These efforts have produced countless accurate predictors, many of which rely on state-of-the-art machine learning models and evolutionary information generated from multiple sequence alignments. We describe and motivate both types of predictions. We introduce concepts related to the annotation and computational prediction of the three-state and eight-state secondary structure as well as several types of supersecondary structures, such as β hairpins, coiled coils, and α-turn-α motifs. We review 34 predictors focusing on recent tools and provide detailed information for a selected set of 14 secondary structure and 3 supersecondary structure predictors. We conclude with several practical notes for the end users of these predictive methods.
Collapse
Affiliation(s)
- Christopher J Oldfield
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Ke Chen
- School of Computer Science and Software Engineering, Tianjin Polytechnic University, Tianjin, People's Republic of China
| | - Lukasz Kurgan
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
6
|
Koch I, Schäfer T. Protein super-secondary structure and quaternary structure topology: theoretical description and application. Curr Opin Struct Biol 2018; 50:134-143. [DOI: 10.1016/j.sbi.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/26/2018] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
|
7
|
Khan T, Panday SK, Ghosh I. ProLego: tool for extracting and visualizing topological modules in protein structures. BMC Bioinformatics 2018; 19:167. [PMID: 29728050 PMCID: PMC5935970 DOI: 10.1186/s12859-018-2171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background In protein design, correct use of topology is among the initial and most critical feature. Meticulous selection of backbone topology aids in drastically reducing the structure search space. With ProLego, we present a server application to explore the component aspect of protein structures and provide an intuitive and efficient way to scan the protein topology space. Result We have implemented in-house developed “topological representation” in an automated-pipeline to extract protein topology from given protein structure. Using the topology string, ProLego, compares topology against a non-redundant extensive topology database (ProLegoDB) as well as extracts constituent topological modules. The platform offers interactive topology visualization graphs. Conclusion ProLego, provides an alternative but comprehensive way to scan and visualize protein topology along with an extensive database of protein topology. ProLego can be found at http://www.proteinlego.com Electronic supplementary material The online version of this article (10.1186/s12859-018-2171-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taushif Khan
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shailesh Kumar Panday
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Indira Ghosh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
8
|
Kocincová L, Jarešová M, Byška J, Parulek J, Hauser H, Kozlíková B. Comparative visualization of protein secondary structures. BMC Bioinformatics 2017; 18:23. [PMID: 28251875 PMCID: PMC5333176 DOI: 10.1186/s12859-016-1449-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Protein function is determined by many factors, namely by its constitution, spatial arrangement, and dynamic behavior. Studying these factors helps the biochemists and biologists to better understand the protein behavior and to design proteins with modified properties. One of the most common approaches to these studies is to compare the protein structure with other molecules and to reveal similarities and differences in their polypeptide chains. Results We support the comparison process by proposing a new visualization technique that bridges the gap between traditionally used 1D and 3D representations. By introducing the information about mutual positions of protein chains into the 1D sequential representation the users are able to observe the spatial differences between the proteins without any occlusion commonly present in 3D view. Our representation is designed to serve namely for comparison of multiple proteins or a set of time steps of molecular dynamics simulation. Conclusions The novel representation is demonstrated on two usage scenarios. The first scenario aims to compare a set of proteins from the family of cytochromes P450 where the position of the secondary structures has a significant impact on the substrate channeling. The second scenario focuses on the protein flexibility when by comparing a set of time steps our representation helps to reveal the most dynamically changing parts of the protein chain.
Collapse
Affiliation(s)
| | | | - Jan Byška
- Masaryk University, Brno, Czech Republic. .,University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
9
|
Schäfer T, Scheck A, Bruneß D, May P, Koch I. The new protein topology graph library web server. Bioinformatics 2015; 32:474-6. [DOI: 10.1093/bioinformatics/btv574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/27/2015] [Indexed: 11/14/2022] Open
|
10
|
Vivoli M, Ayres E, Beaumont E, Isupov MN, Harmer NJ. Structural insights into WcbI, a novel polysaccharide-biosynthesis enzyme. IUCRJ 2014; 1:28-38. [PMID: 25075317 PMCID: PMC4104973 DOI: 10.1107/s205225251302695x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/30/2013] [Indexed: 06/03/2023]
Abstract
Capsular polysaccharides (CPSs) are protective structures on the surfaces of many Gram-negative bacteria. The principal CPS of the human pathogen and Tier 1 select agent Burkholderia pseudomallei consists of a linear repeat of --3)--2-O-acetyl-6-deoxy-β-d-manno-heptopyranose-(1-. This CPS is critical to the virulence of this emerging pathogen and represents a key target for the development of novel therapeutics. wcbI is one of several genes in the CPS biosynthetic cluster whose deletion leads to significant attenuation of the pathogen; unlike most others, it has no homologues of known function and no detectable sequence similarity to any protein with an extant structure. Here, the crystal structure of WcbI bound to its proposed product, coenzyme A, is reported at 1.38 Å resolution, solved using the halide-soak method with multiple anomalous dispersion. This structure reveals that WcbI incorporates a previously described 100-amino-acid subdomain into a novel, principally helical fold (310 amino acids). This fold adopts a cradle-like structure, with a deep binding pocket for CoA in the loop-rich cradle. Structural analysis and biophysical assays suggest that WcbI functions as an acetyltransferase enzyme, whilst biochemical tests suggest that another functional module might be required to assist its activity in forming the mature B. pseudomallei capsule.
Collapse
Affiliation(s)
- Mirella Vivoli
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, England
| | - Emily Ayres
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, England
| | - Edward Beaumont
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, England
| | - Michail N. Isupov
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, England
| | - Nicholas J. Harmer
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, England
| |
Collapse
|
11
|
Metri R, Jerath G, Kailas G, Gacche N, Pal A, Ramakrishnan V. Structure-based barcoding of proteins. Protein Sci 2013; 23:117-20. [PMID: 24170674 DOI: 10.1002/pro.2392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 11/09/2022]
Abstract
A reduced representation in the format of a barcode has been developed to provide an overview of the topological nature of a given protein structure from 3D coordinate file. The molecular structure of a protein coordinate file from Protein Data Bank is first expressed in terms of an alpha-numero code and further converted to a barcode image. The barcode representation can be used to compare and contrast different proteins based on their structure. The utility of this method has been exemplified by comparing structural barcodes of proteins that belong to same fold family, and across different folds. In addition to this, we have attempted to provide an illustration to (i) the structural changes often seen in a given protein molecule upon interaction with ligands and (ii) Modifications in overall topology of a given protein during evolution. The program is fully downloadable from the website http://www.iitg.ac.in/probar/.
Collapse
Affiliation(s)
- Rahul Metri
- Institute of Bioinformatics & Applied Biotechnology, Bangalore, 560100, India
| | | | | | | | | | | |
Collapse
|
12
|
Ashby C, Johnson D, Walker K, Kanj IA, Xia G, Huang X. New enumeration algorithm for protein structure comparison and classification. BMC Genomics 2013; 14 Suppl 2:S1. [PMID: 23445440 PMCID: PMC3582452 DOI: 10.1186/1471-2164-14-s2-s1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein structure comparison and classification is an effective method for exploring protein structure-function relations. This problem is computationally challenging. Many different computational approaches for protein structure comparison apply the secondary structure elements (SSEs) representation of protein structures. RESULTS We study the complexity of the protein structure comparison problem based on a mixed-graph model with respect to different computational frameworks. We develop an effective approach for protein structure comparison based on a novel independent set enumeration algorithm. Our approach (named: ePC, efficient enumeration-based Protein structure Comparison) is tested for general purpose protein structure comparison as well as for specific protein examples. Compared with other graph-based approaches for protein structure comparison, the theoretical running-time O(1.47 rnn2) of our approach ePC is significantly better, where n is the smaller number of SSEs of the two proteins, r is a parameter of small value. CONCLUSION Through the enumeration algorithm, our approach can identify different substructures from a list of high-scoring solutions of biological interest. Our approach is flexible to conduct protein structure comparison with the SSEs in sequential and non-sequential order as well. Supplementary data of additional testing and the source of ePC will be available at http://bioinformatics.astate.edu/.
Collapse
Affiliation(s)
- Cody Ashby
- Molecular Bioscience Graduate Program, Arkansas State University, Arkansas, USA
| | | | | | | | | | | |
Collapse
|
13
|
Sola-Carvajal A, García-García MI, Sánchez-Carrón G, García-Carmona F, Sánchez-Ferrer Á. Functional assignment of gene AAC16202.1 from Rhodobacter capsulatus SB1003: New insights into the bacterial SDR sorbitol dehydrogenases family. Biochimie 2012; 94:2407-15. [DOI: 10.1016/j.biochi.2012.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 06/15/2012] [Indexed: 11/17/2022]
|
14
|
Navarro-González I, Sánchez-Ferrer Á, García-Carmona F. Molecular characterization of a novel arylesterase from the wine-associated acetic acid bacterium Gluconobacter oxidans 621H. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10789-10795. [PMID: 23003572 DOI: 10.1021/jf3024968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An arylesterase from the wine-making acetic acid bacterium, Gluconobacter oxidans, was cloned and expressed into Escherichia coli. The soluble 76.8 kDa dimeric enzyme obtained, Est0881, was purified in only two steps with a 3.1-fold purification, 43% recovery, and a specific activity of 214 U/mg for the hydrolysis of p-nitrophenyl acetate. The optimum pH and temperature were 7.0 and 40 °C, respectively. The substrate specificity of this arylesterase was higher toward short chain p-nitrophenyl esters (C(2) to C(4)) and also toward aromatic esters, such as phenyl acetate. The deduced amino acid sequence shares high identity with esterases of the HSL family. The inhibition results obtained showed that the enzyme was a serine esterase, belonging to the A-esterases (arylesterases) and contains a catalytic triad composed of Ser163, Asp263, and His293 in the active site. Est0881 retained significant activity under conditions simulating those of wine-making (75% activity at 20% ethanol), making it a promising biocatalyst for modulating the final aroma of wine.
Collapse
Affiliation(s)
- Inmaculada Navarro-González
- Faculty of Biology, Department of Biochemistry and Molecular Biology-A, University of Murcia, Campus Espinardo, E-30100 Murcia, Spain
| | | | | |
Collapse
|
15
|
Overexpression, Purification, and Biochemical Characterization of the Esterase Est0796 from Lactobacillus plantarum WCFS1. Mol Biotechnol 2012; 54:651-60. [DOI: 10.1007/s12033-012-9607-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Sehnal D, Vařeková RS, Huber HJ, Geidl S, Ionescu CM, Wimmerová M, Koča J. SiteBinder: an improved approach for comparing multiple protein structural motifs. J Chem Inf Model 2012; 52:343-59. [PMID: 22296449 DOI: 10.1021/ci200444d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is a paramount need to develop new techniques and tools that will extract as much information as possible from the ever growing repository of protein 3D structures. We report here on the development of a software tool for the multiple superimposition of large sets of protein structural motifs. Our superimposition methodology performs a systematic search for the atom pairing that provides the best fit. During this search, the RMSD values for all chemically relevant pairings are calculated by quaternion algebra. The number of evaluated pairings is markedly decreased by using PDB annotations for atoms. This approach guarantees that the best fit will be found and can be applied even when sequence similarity is low or does not exist at all. We have implemented this methodology in the Web application SiteBinder, which is able to process up to thousands of protein structural motifs in a very short time, and which provides an intuitive and user-friendly interface. Our benchmarking analysis has shown the robustness, efficiency, and versatility of our methodology and its implementation by the successful superimposition of 1000 experimentally determined structures for each of 32 eukaryotic linear motifs. We also demonstrate the applicability of SiteBinder using three case studies. We first compared the structures of 61 PA-IIL sugar binding sites containing nine different sugars, and we found that the sugar binding sites of PA-IIL and its mutants have a conserved structure despite their binding different sugars. We then superimposed over 300 zinc finger central motifs and revealed that the molecular structure in the vicinity of the Zn atom is highly conserved. Finally, we superimposed 12 BH3 domains from pro-apoptotic proteins. Our findings come to support the hypothesis that there is a structural basis for the functional segregation of BH3-only proteins into activators and enablers.
Collapse
Affiliation(s)
- David Sehnal
- National Centre for Biomolecular Research, Faculty of Science and CEITEC-Central European Institute of Technology, Masaryk University Brno, Kamenice 5, 62500 Brno-Bohunice, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
17
|
Chen K, Kurgan L. Computational prediction of secondary and supersecondary structures. Methods Mol Biol 2012; 932:63-86. [PMID: 22987347 DOI: 10.1007/978-1-62703-065-6_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The sequence-based prediction of the secondary and supersecondary structures enjoys strong interest and finds applications in numerous areas related to the characterization and prediction of protein structure and function. Substantial efforts in these areas over the last three decades resulted in the development of accurate predictors, which take advantage of modern machine learning models and availability of evolutionary information extracted from multiple sequence alignment. In this chapter, we first introduce and motivate both prediction areas and introduce basic concepts related to the annotation and prediction of the secondary and supersecondary structures, focusing on the β hairpin, coiled coil, and α-turn-α motifs. Next, we overview state-of-the-art prediction methods, and we provide details for 12 modern secondary structure predictors and 4 representative supersecondary structure predictors. Finally, we provide several practical notes for the users of these prediction tools.
Collapse
Affiliation(s)
- Ke Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
18
|
Molecular characterization of a novel N-acetylneuraminate lyase from Lactobacillus plantarum WCFS1. Appl Environ Microbiol 2011; 77:2471-8. [PMID: 21317263 DOI: 10.1128/aem.02927-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Acetylneuraminate lyases (NALs) or sialic acid aldolases catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) to form pyruvate and N-acetyl-d-mannosamine (ManNAc). In nature, N-acetylneuraminate lyase occurs mainly in pathogens. However, this paper describes how an N-acetylneuraminate lyase was cloned from the human gut commensal Lactobacillus plantarum WCFS1 (LpNAL), overexpressed, purified, and characterized for the first time. This novel enzyme, which reaches a high expression level (215 mg liter(-1) culture), shows similar catalytic efficiency to the best NALs previously described. This homotetrameric enzyme (132 kDa) also shows high stability and activity at alkaline pH (pH > 9) and good temperature stability (60 to 70°C), this last feature being further improved by the presence of stabilizing additives. These characteristics make LpNAL a promising biocatalyst. When its sequence was compared with that of other, related (real and putative) NALs described in the databases, it was seen that NAL enzymes could be divided into four structural groups and three subgroups. The relation of these subgroups with human and other mammalian NALs is also discussed.
Collapse
|
19
|
Veeramalai M, Gilbert D, Valiente G. An optimized TOPS+ comparison method for enhanced TOPS models. BMC Bioinformatics 2010; 11:138. [PMID: 20236520 PMCID: PMC2858036 DOI: 10.1186/1471-2105-11-138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 03/17/2010] [Indexed: 11/28/2022] Open
Abstract
Background Although methods based on highly abstract descriptions of protein structures, such as VAST and TOPS, can perform very fast protein structure comparison, the results can lack a high degree of biological significance. Previously we have discussed the basic mechanisms of our novel method for structure comparison based on our TOPS+ model (Topological descriptions of Protein Structures Enhanced with Ligand Information). In this paper we show how these results can be significantly improved using parameter optimization, and we call the resulting optimised TOPS+ method as advanced TOPS+ comparison method i.e. advTOPS+. Results We have developed a TOPS+ string model as an improvement to the TOPS [1-3] graph model by considering loops as secondary structure elements (SSEs) in addition to helices and strands, representing ligands as first class objects, and describing interactions between SSEs, and SSEs and ligands, by incoming and outgoing arcs, annotating SSEs with the interaction direction and type. Benchmarking results of an all-against-all pairwise comparison using a large dataset of 2,620 non-redundant structures from the PDB40 dataset [4] demonstrate the biological significance, in terms of SCOP classification at the superfamily level, of our TOPS+ comparison method. Conclusions Our advanced TOPS+ comparison shows better performance on the PDB40 dataset [4] compared to our basic TOPS+ method, giving 90% accuracy for SCOP alpha+beta; a 6% increase in accuracy compared to the TOPS and basic TOPS+ methods. It also outperforms the TOPS, basic TOPS+ and SSAP comparison methods on the Chew-Kedem dataset [5], achieving 98% accuracy. Software Availability The TOPS+ comparison server is available at http://balabio.dcs.gla.ac.uk/mallika/WebTOPS/.
Collapse
Affiliation(s)
- Mallika Veeramalai
- Joint Center for Molecular Modeling, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
20
|
Ranganathan S, Izotov D, Kraka E, Cremer D. Description and recognition of regular and distorted secondary structures in proteins using the automated protein structure analysis method. Proteins 2010; 76:418-38. [PMID: 19205025 DOI: 10.1002/prot.22357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Automated Protein Structure Analysis (APSA) method, which describes the protein backbone as a smooth line in three-dimensional space and characterizes it by curvature kappa and torsion tau as a function of arc length s, was applied on 77 proteins to determine all secondary structural units via specific kappa(s) and tau(s) patterns. A total of 533 alpha-helices and 644 beta-strands were recognized by APSA, whereas DSSP gives 536 and 651 units, respectively. Kinks and distortions were quantified and the boundaries (entry and exit) of secondary structures were classified. Similarity between proteins can be easily quantified using APSA, as was demonstrated for the roll architecture of proteins ubiquitin and spinach ferridoxin. A twenty-by-twenty comparison of all alpha domains showed that the curvature-torsion patterns generated by APSA provide an accurate and meaningful similarity measurement for secondary, super secondary, and tertiary protein structure. APSA is shown to accurately reflect the conformation of the backbone effectively reducing three-dimensional structure information to two-dimensional representations that are easy to interpret and understand.
Collapse
Affiliation(s)
- Sushilee Ranganathan
- Department of Chemistry, University of the Pacific, Stockton, California 95211, USA
| | | | | | | |
Collapse
|
21
|
Abstract
BACKGROUND Protein structure comparison is a fundamental task in structural biology. While the number of known protein structures has grown rapidly over the last decade, searching a large database of protein structures is still relatively slow using existing methods. There is a need for new techniques which can rapidly compare protein structures, whilst maintaining high matching accuracy. RESULTS We have developed IR Tableau, a fast protein comparison algorithm, which leverages the tableau representation to compare protein tertiary structures. IR tableau compares tableaux using information retrieval style feature indexing techniques. Experimental analysis on the ASTRAL SCOP protein structural domain database demonstrates that IR Tableau achieves two orders of magnitude speedup over the search times of existing methods, while producing search results of comparable accuracy. CONCLUSION We show that it is possible to obtain very significant speedups for the protein structure comparison problem, by employing an information retrieval style approach for indexing proteins. The comparison accuracy achieved is also strong, thus opening the way for large scale processing of very large protein structure databases.
Collapse
|
22
|
Monferrer D, Tralau T, Kertesz MA, Dix I, Solà M, Usón I. Structural studies on the full-length LysR-type regulator TsaR from Comamonas testosteroni T-2 reveal a novel open conformation of the tetrameric LTTR fold. Mol Microbiol 2010; 75:1199-214. [PMID: 20059681 DOI: 10.1111/j.1365-2958.2010.07043.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LysR-type transcriptional regulators (LTTRs) constitute the largest family of regulators in prokaryotes. The full-length structures of the LTTR TsaR from Comamonas testosteroni T-2 and its complex with the natural inducer para-toluensulfonate have been characterized by X-ray diffraction. Both ligand-free and complexed forms reveal a dramatically different quaternary structure from that of CbnR from Ralstonia eutropha, or a putative LysR-type regulator from Pseudomonas aeruginosa, the only other determined full-length structures of tetrameric LTTRs. Although all three show a head-to-head tetrameric ring, TsaR displays an open conformation, whereas CbnR and PA01-PR present additional contacts in opposing C-terminal domains that close the ring. Such large differences may be due to a broader structural versatility than previously assumed or either, reflect the intrinsic flexibility of tetrameric LTTRs. On the grounds of the sliding dimer hypothesis of LTTR activation, we propose a structural model in which the closed structures could reflect the conformation of a ligand-free LTTR, whereas inducer binding would bring about local changes to disrupt the interface linking the two compact C-terminal domains. This could lead to a TsaR-like, open structure, where the pairs of recognition helices are closer to each other by more than 10 A.
Collapse
Affiliation(s)
- Dominique Monferrer
- IBMB-CSIC, Baldiri Reixach 15, Barcelona Science Park, 08028, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Tyagi M, Bornot A, Offmann B, de Brevern AG. Analysis of loop boundaries using different local structure assignment methods. Protein Sci 2009; 18:1869-81. [PMID: 19606500 DOI: 10.1002/pro.198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loops connect regular secondary structures. In many instances, they are known to play important biological roles. Analysis and prediction of loop conformations depend directly on the definition of repetitive structures. Nonetheless, the secondary structure assignment methods (SSAMs) often lead to divergent assignments. In this study, we analyzed, both structure and sequence point of views, how the divergence between different SSAMs affect boundary definitions of loops connecting regular secondary structures. The analysis of SSAMs underlines that no clear consensus between the different SSAMs can be easily found. Because these latter greatly influence the loop boundary definitions, important variations are indeed observed, that is, capping positions are shifted between different SSAMs. On the other hand, our results show that the sequence information in these capping regions are more stable than expected, and, classical and equivalent sequence patterns were found for most of the SSAMs. This is, to our knowledge, the most exhaustive survey in this field as (i) various databank have been used leading to similar results without implication of protein redundancy and (ii) the first time various SSAMs have been used. This work hence gives new insights into the difficult question of assignment of repetitive structures and addresses the issue of loop boundaries definition. Although SSAMs give very different local structure assignments capping sequence patterns remain efficiently stable.
Collapse
Affiliation(s)
- Manoj Tyagi
- Laboratoire de Biochimie et Génétique Moléculaire, Université de La Réunion, BP 7151, 15 avenue René Cassin, 97715 Saint Denis Messag Cedex 09, La Réunion, France
| | | | | | | |
Collapse
|
24
|
May P, Kreuchwig A, Steinke T, Koch I. PTGL: a database for secondary structure-based protein topologies. Nucleic Acids Res 2009; 38:D326-30. [PMID: 19906706 PMCID: PMC2808981 DOI: 10.1093/nar/gkp980] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
With growing amount of experimental data, the number of known protein structures also increases continuously. Classification of protein structures helps to understand relationships between protein structure and function. The main classification methods based on secondary structures are SCOP, CATH and TOPS, which all classify under different aspects, and therefore can lead to different results. We developed a mathematically unique representation of protein structure topologies at a higher abstraction level providing new aspects of classification and enabling for a fast search through the data. Protein Topology Graph Library (PTGL; http://ptgl.zib.de) aims at providing a database on protein secondary structure topologies, including search facilities, the visualization as intuitive topology diagrams as well as in the 3D structure, and additional information. Secondary structure-based protein topologies are represented uniquely as undirected labeled graphs in four different ways allowing for exploration under different aspects. The linear notations, and the 2D and 3D diagrams of each notation facilitate a deeper understanding of protein topologies. Several search functions for topologies and sub-topologies, BLAST search possibility, and links to SCOP, CATH and PDBsum support individual and large-scale investigation of protein structures. Currently, PTGL comprises topologies of 54 859 protein structures. Main structural patterns for common structural motifs like TIM-barrel or Jelly Roll are pre-implemented, and can easily be searched.
Collapse
Affiliation(s)
- Patrick May
- Max Planck Institute for Molecular Plant Physiology, Bioinformatics, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
25
|
Zinc-independent folate biosynthesis: genetic, biochemical, and structural investigations reveal new metal dependence for GTP cyclohydrolase IB. J Bacteriol 2009; 191:6936-49. [PMID: 19767425 PMCID: PMC2772490 DOI: 10.1128/jb.00287-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
GTP cyclohydrolase I (GCYH-I) is an essential Zn(2+)-dependent enzyme that catalyzes the first step of the de novo folate biosynthetic pathway in bacteria and plants, the 7-deazapurine biosynthetic pathway in Bacteria and Archaea, and the biopterin pathway in mammals. We recently reported the discovery of a new prokaryotic-specific GCYH-I (GCYH-IB) that displays no sequence identity to the canonical enzyme and is present in approximately 25% of bacteria, the majority of which lack the canonical GCYH-I (renamed GCYH-IA). Genomic and genetic analyses indicate that in those organisms possessing both enzymes, e.g., Bacillus subtilis, GCYH-IA and -IB are functionally redundant, but differentially expressed. Whereas GCYH-IA is constitutively expressed, GCYH-IB is expressed only under Zn(2+)-limiting conditions. These observations are consistent with the hypothesis that GCYH-IB functions to allow folate biosynthesis during Zn(2+) starvation. Here, we present biochemical and structural data showing that bacterial GCYH-IB, like GCYH-IA, belongs to the tunneling-fold (T-fold) superfamily. However, the GCYH-IA and -IB enzymes exhibit significant differences in global structure and active-site architecture. While GCYH-IA is a unimodular, homodecameric, Zn(2+)-dependent enzyme, GCYH-IB is a bimodular, homotetrameric enzyme activated by a variety of divalent cations. The structure of GCYH-IB and the broad metal dependence exhibited by this enzyme further underscore the mechanistic plasticity that is emerging for the T-fold superfamily. Notably, while humans possess the canonical GCYH-IA enzyme, many clinically important human pathogens possess only the GCYH-IB enzyme, suggesting that this enzyme is a potential new molecular target for antibacterial development.
Collapse
|
26
|
Suits MDL, Lang J, Pal GP, Couture M, Jia Z. Structure and heme binding properties of Escherichia coli O157:H7 ChuX. Protein Sci 2009; 18:825-38. [PMID: 19319934 PMCID: PMC2762594 DOI: 10.1002/pro.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For many pathogenic microorganisms, iron acquisition from host heme sources stimulates growth, multiplication, ultimately enabling successful survival and colonization. In gram-negative Escherichia coli O157:H7, Shigella dysenteriae and Yersinia enterocolitica the genes encoded within the heme utilization operon enable the effective uptake and utilization of heme as an iron source. While the complement of proteins responsible for heme internalization has been determined in these organisms, the fate of heme once it has reached the cytoplasm has only recently begun to be resolved. Here we report the first crystal structure of ChuX, a member of the conserved heme utilization operon from pathogenic E. coli O157:H7 determined at 2.05 A resolution. ChuX forms a dimer which remarkably given low sequence homology, displays a very similar fold to the monomer structure of ChuS and HemS, two other heme utilization proteins. Absorption spectral analysis of heme reconstituted ChuX demonstrates that ChuX binds heme in a 1:1 manner implying that each ChuX homodimer has the potential to coordinate two heme molecules in contrast to ChuS and HemS where only one heme molecule is bound. Resonance Raman spectroscopy indicates that the heme of ferric ChuX is composed of a mixture of coordination states: 5-coordinate and high-spin, 6-coordinate and low-spin, and 6-coordinate and high-spin. In contrast, the reduced ferrous form displays mainly a 5-coordinate and high-spin state with a minor contribution from a 6-coordinate and low-spin state. The nu(Fe-CO) and nu(C-O) frequencies of ChuX-bound CO fall on the correlation line expected for histidine-coordinated hemoproteins indicating that the fifth axial ligand of the ferrous heme is the imidazole ring of a histidine residue. Based on sequence and structural comparisons, we designed a number of site-directed mutations in ChuX to probe the heme binding sites and dimer interface. Spectral analysis of ChuX and mutants suggests involvement of H65 and H98 in heme coordination as mutations of both residues were required to abolish the formation of the hexacoordination state of heme-bound ChuX.
Collapse
Affiliation(s)
- Michael D L Suits
- Department of Biochemistry, Queen's UniversityKingston, Ontario, Canada K7L 3N6
| | - Jérôme Lang
- Département de Biochimie et de Microbiologie, Université LavalQuebec City, Quebec, Canada G1K 7P4
| | - Gour P Pal
- Department of Biochemistry, Queen's UniversityKingston, Ontario, Canada K7L 3N6
| | - Manon Couture
- Département de Biochimie et de Microbiologie, Université LavalQuebec City, Quebec, Canada G1K 7P4
| | - Zongchao Jia
- Department of Biochemistry, Queen's UniversityKingston, Ontario, Canada K7L 3N6,*Correspondence to: Zongchao Jia, Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6. E-mail:
| |
Collapse
|
27
|
Characterization of a novel thermostable carboxylesterase from Geobacillus kaustophilus HTA426 shows the existence of a new carboxylesterase family. J Bacteriol 2009; 191:3076-85. [PMID: 19304850 DOI: 10.1128/jb.01060-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene GK3045 (741 bp) from Geobacillus kaustophilus HTA426 was cloned, sequenced, and overexpressed into Escherichia coli Rosetta (DE3). The deduced protein was a 30-kDa monomeric esterase with high homology to carboxylesterases from Geobacillus thermoleovorans NY (99% identity) and Geobacillus stearothermophilus (97% identity). This protein suffered a proteolytic cut in E. coli, and the problem was overcome by introducing a mutation in the gene (K212R) without affecting the activity. The resulting Est30 showed remarkable thermostability at 65 degrees C, above the optimum growth temperature of G. kaustophilus HTA426. The optimum pH of the enzyme was 8.0. In addition, the purified enzyme exhibited stability against denaturing agents, like organic solvents, detergents, and urea. The protein catalyzed the hydrolysis of p-nitrophenyl esters of different acyl chain lengths, confirming the esterase activity. The sequence analysis showed that the protein contains a catalytic triad formed by Ser93, Asp192, and His222, and the Ser of the active site is located in the conserved motif Gly91-X-Ser93-X-Gly95 included in most esterases and lipases. However, this carboxylesterase showed no more than 17% sequence identity with the closest members in the eight families of microbial carboxylesterases. The three-dimensional structure was modeled by sequence alignment and compared with others carboxylesterases. The topological differences suggested the classification of this enzyme and other Geobacillus-related carboxylesterases in a new alpha/beta hydrolase family different from IV and VI.
Collapse
|
28
|
Zhou P, Shang Z. 2D molecular graphics: a flattened world of chemistry and biology. Brief Bioinform 2008; 10:247-58. [DOI: 10.1093/bib/bbp013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Veeramalai M, Gilbert D. A novel method for comparing topological models of protein structures enhanced with ligand information. Bioinformatics 2008; 24:2698-705. [DOI: 10.1093/bioinformatics/btn518] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Legler PM, Kumaran D, Swaminathan S, Studier FW, Millard CB. Structural characterization and reversal of the natural organophosphate resistance of a D-type esterase, Saccharomyces cerevisiae S-formylglutathione hydrolase. Biochemistry 2008; 47:9592-601. [PMID: 18707125 DOI: 10.1021/bi8010016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Saccharomyces cerevisiae expresses a 67.8 kDa homodimeric serine thioesterase, S-formylglutathione hydrolase (SFGH), that is 39.9% identical with human esterase D. Both enzymes possess significant carboxylesterase and S-formylglutathione thioesterase activity but are unusually resistant to organophosphate (OP) inhibitors. We determined the X-ray crystal structure of yeast (y) SFGH to 2.3 A resolution by multiwavelength anomalous dispersion and used the structure to guide site-specific mutagenesis experiments addressing substrate and inhibitor reactivity. Our results demonstrate a steric mechanism of OP resistance mediated by a single indole ring (W197) located in an enzyme "acyl pocket". The W197I substitution enhances ySFGH reactivity with paraoxon by >1000-fold ( k i (W197I) = 16 +/- 2 mM (-1) h (-1)), thereby overcoming natural OP resistance. W197I increases the rate of OP inhibition under pseudo-first-order conditions but does not accelerate OP hydrolysis. The structure of the paraoxon-inhibited W197I variant was determined by molecular replacement (2.2 A); it revealed a stabilized sulfenic acid at Cys60. Wild-type (WT) ySFGH is inhibited by thiol reactive compounds and is sensitive to oxidation; thus, the cysteine sulfenic acid may play a role in the regulation of a "D-type" esterase. The structure of the W197I variant is the first reported cysteine sulfenic acid in a serine esterase. We constructed five Cys60/W197I variants and show that introducing a positive charge near the oxyanion hole, W197I/C60R or W197I/C60K, results in a further enhancement of the rates of phosphorylation with paraoxon ( k i = 42 or 80 mM (-1) h (-1), respectively) but does not affect the dephosphorylation of the enzyme. We also characterized three histidine substitutions near the oxyanion hole, G57H, L58H, and M162H, which significantly decrease esterase activity.
Collapse
Affiliation(s)
- Patricia M Legler
- Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | | | |
Collapse
|
31
|
Crystal structure of the Agrobacterium virulence complex VirE1-VirE2 reveals a flexible protein that can accommodate different partners. Proc Natl Acad Sci U S A 2008; 105:11170-5. [PMID: 18678909 DOI: 10.1073/pnas.0801525105] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium tumefaciens infects its plant hosts by a mechanism of horizontal gene transfer. This capability has led to its widespread use in artificial genetic transformation. In addition to DNA, the bacterium delivers an abundant ssDNA binding protein, VirE2, whose roles in the host include protection from cytoplasmic nucleases and adaptation for nuclear import. In Agrobacterium, VirE2 is bound to its acidic chaperone VirE1. When expressed in vitro in the absence of VirE1, VirE2 is prone to oligomerization and forms disordered filamentous aggregates. These filaments adopt an ordered solenoidal form in the presence of ssDNA, which was characterized previously by electron microscopy and three-dimensional image processing. VirE2 coexpressed in vitro with VirE1 forms a soluble heterodimer. VirE1 thus prevents VirE2 oligomerization and competes with its binding to ssDNA. We present here a crystal structure of VirE2 in complex with VirE1, showing that VirE2 is composed of two independent domains presenting a novel fold, joined by a flexible linker. Electrostatic interactions with VirE1 cement the two domains of VirE2 into a locked form. Comparison with the electron microscopy structure indicates that the VirE2 domains adopt different relative orientations. We suggest that the flexible linker between the domains enables VirE2 to accommodate its different binding partners.
Collapse
|
32
|
Müller JJ, Barbirz S, Heinle K, Freiberg A, Seckler R, Heinemann U. An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6. Structure 2008; 16:766-75. [PMID: 18462681 DOI: 10.1016/j.str.2008.01.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/05/2008] [Accepted: 01/31/2008] [Indexed: 12/22/2022]
Abstract
Sf6 belongs to the Podoviridae family of temperate bacteriophages that infect gram-negative bacteria by insertion of their double-stranded DNA. They attach to their hosts specifically via their tailspike proteins. The 1.25 A crystal structure of Shigella phage Sf6 tailspike protein (Sf6 TSP) reveals a conserved architecture with a central, right-handed beta helix. In the trimer of Sf6 TSP, the parallel beta helices form a left-handed, coiled-beta coil with a pitch of 340 A. The C-terminal domain consists of a beta sandwich reminiscent of viral capsid proteins. Further crystallographic and biochemical analyses show a Shigella cell wall O-antigen fragment to bind to an endorhamnosidase active site located between two beta-helix subunits each anchoring one catalytic carboxylate. The functionally and structurally related bacteriophage, P22 TSP, lacks sequence identity with Sf6 TSP and has its active sites on single subunits. Sf6 TSP may serve as an example for the evolution of different host specificities on a similar general architecture.
Collapse
Affiliation(s)
- Jürgen J Müller
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Grundner C, Ng HL, Alber T. Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site. Structure 2008; 13:1625-34. [PMID: 16271885 DOI: 10.1016/j.str.2005.07.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/18/2005] [Accepted: 07/23/2005] [Indexed: 01/06/2023]
Abstract
Intracellular pathogenic bacteria manipulate host signal transduction pathways to facilitate infection. Mycobacterium tuberculosis protein tyrosine phosphatases (PTPs) PtpA and PtpB are thought to be secreted into host cells and interfere with unidentified signals. To illuminate the mechanisms of regulation and substrate recognition, we determined the 1.7 A resolution crystal structure of PtpB in complex with the product phosphate. The protein adopts a simplified PTP fold, which combines features of the conventional PTPs and dual-specificity phosphatases. PtpB shows two unusual elaborations--a disordered, acidic loop and a flexible, two-helix lid that covers the active site--that are specific to mycobacterial orthologs. Biochemical studies suggest that substrate mimicry in the lid may protect the phosphatase from oxidative inactivation. The insertion and deletion of large structural elements in PtpB suggest that, outside the active site module, the PTP family is under unusual selective pressure that promotes changes in overall structure.
Collapse
Affiliation(s)
- Christoph Grundner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
34
|
Gherardini PF, Helmer-Citterich M. Structure-based function prediction: approaches and applications. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:291-302. [PMID: 18599513 DOI: 10.1093/bfgp/eln030] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ever increasing number of protein structures determined by structural genomic projects has spurred much interest in the development of methods for structure-based function prediction. Existing methods can be roughly classified in two groups: some use a comparative approach looking for the presence of structural motifs possibly associated with a known biochemical function. Other methods try to identify functional patches on the surface of a protein using only its physicochemical characteristics. This review will cover both kinds of approaches to structure-based function prediction as well as their use in real-world cases. The main issues and limitations in using protein structure to predict function will also be discussed. These are mainly: the assessment of the statistical significance of structural similarities and the extent to which these methods depend on the accuracy and availability of structural data.
Collapse
Affiliation(s)
- Pier Federico Gherardini
- Department of Biology, Centre for Molecular Bioinformatics, University of Tor Vergata, Rome, Italy.
| | | |
Collapse
|
35
|
Wu F, Zhang J, Sun J, Huang H, Ji P, Chu W, Yu M, Yang F, Wu Z, Wu J, Shi Y. Solution structure of human DESR1, a CSL zinc-binding protein. Proteins 2008; 71:514-8. [PMID: 18214955 DOI: 10.1002/prot.21915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fangming Wu
- National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li H, Yang F, Kang X, Xia B, Jin C. Solution Structures and Backbone Dynamics of Escherichia coli Rhodanese PspE in Its Sulfur-Free and Persulfide-Intermediate Forms: Implications for the Catalytic Mechanism of Rhodanese,. Biochemistry 2008; 47:4377-85. [DOI: 10.1021/bi800039n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, and College of Chemistry and Molecular Engineering, and College of Life Sciences, Peking University, Beijing 100871, China
| | - Fan Yang
- Beijing Nuclear Magnetic Resonance Center, and College of Chemistry and Molecular Engineering, and College of Life Sciences, Peking University, Beijing 100871, China
| | - Xue Kang
- Beijing Nuclear Magnetic Resonance Center, and College of Chemistry and Molecular Engineering, and College of Life Sciences, Peking University, Beijing 100871, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, and College of Chemistry and Molecular Engineering, and College of Life Sciences, Peking University, Beijing 100871, China
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, and College of Chemistry and Molecular Engineering, and College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Burgie ES, Holden HM. Three-Dimensional Structure of DesVI from Streptomyces venezuelae: A Sugar N,N-Dimethyltransferase Required for dTDP-Desosamine Biosynthesis. Biochemistry 2008; 47:3982-8. [DOI: 10.1021/bi800063j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. Sethe Burgie
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Hazel M. Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
38
|
Liu L, Wang T. Comparison of TOPS strings based on LZ complexity. J Theor Biol 2008; 251:159-66. [PMID: 18166201 DOI: 10.1016/j.jtbi.2007.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/13/2007] [Accepted: 11/13/2007] [Indexed: 10/22/2022]
|
39
|
Saito J, Yamada M, Watanabe T, Iida M, Kitagawa H, Takahata S, Ozawa T, Takeuchi Y, Ohsawa F. Crystal structure of enoyl-acyl carrier protein reductase (FabK) from Streptococcus pneumoniae reveals the binding mode of an inhibitor. Protein Sci 2008; 17:691-9. [PMID: 18305197 DOI: 10.1110/ps.073288808] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Enoyl-acyl carrier protein (ACP) reductases are critical for bacterial type II fatty acid biosynthesis and thus are attractive targets for developing novel antibiotics. We determined the crystal structure of enoyl-ACP reductase (FabK) from Streptococcus pneumoniae at 1.7 A resolution. There was one dimer per asymmetric unit. Each subunit formed a triose phosphate isomerase (TIM) barrel structure, and flavin mononucleotide (FMN) was bound as a cofactor in the active site. The overall structure was similar to the enoyl-ACP reductase (ER) of fungal fatty acid synthase and to 2-nitropropane dioxygenase (2-ND) from Pseudomonas aeruginosa, although there were some differences among these structures. We determined the crystal structure of FabK in complex with a phenylimidazole derivative inhibitor to envision the binding site interactions. The crystal structure reveals that the inhibitor binds to a hydrophobic pocket in the active site of FabK, and this is accompanied by induced-fit movements of two loop regions. The thiazole ring and part of the ureido moiety of the inhibitor are involved in a face-to-face pi-pi stacking interaction with the isoalloxazine ring of FMN. The side-chain conformation of the proposed catalytic residue, His144, changes upon complex formation. Lineweaver-Burk plots indicate that the inhibitor binds competitively with respect to NADH, and uncompetitively with respect to crotonoyl coenzyme A. We propose that the primary basis of the inhibitory activity is competition with NADH for binding to FabK, which is the first step of the two-step ping-pong catalytic mechanism.
Collapse
Affiliation(s)
- Jun Saito
- Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., Kohoku-ku, Yokohama 222-8567, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sevvana M, Vijayan V, Zweckstetter M, Reinelt S, Madden DR, Herbst-Irmer R, Sheldrick GM, Bott M, Griesinger C, Becker S. A ligand-induced switch in the periplasmic domain of sensor histidine kinase CitA. J Mol Biol 2008; 377:512-23. [PMID: 18258261 DOI: 10.1016/j.jmb.2008.01.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Revised: 01/08/2008] [Accepted: 01/10/2008] [Indexed: 11/26/2022]
Abstract
Sensor histidine kinases of two-component signal-transduction systems are essential for bacteria to adapt to variable environmental conditions. However, despite their prevalence, it is not well understood how extracellular signals such as ligand binding regulate the activity of these sensor kinases. CitA is the sensor histidine kinase in Klebsiella pneumoniae that regulates the transport and anaerobic metabolism of citrate in response to its extracellular concentration. We report here the X-ray structures of the periplasmic sensor domain of CitA in the citrate-free and citrate-bound states. A comparison of the two structures shows that ligand binding causes a considerable contraction of the sensor domain. This contraction may represent the molecular switch that activates transmembrane signaling in the receptor.
Collapse
Affiliation(s)
- Madhumati Sevvana
- Department of Structural Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Konagurthu AS, Stuckey PJ, Lesk AM. Structural search and retrieval using a tableau representation of protein folding patterns. ACTA ACUST UNITED AC 2008; 24:645-51. [PMID: 18175768 DOI: 10.1093/bioinformatics/btm641] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED Comparison and classification of folding patterns from a database of protein structures is crucial to understand the principles of protein architecture, evolution and function. Current search methods for proteins with similar folding patterns are slow and computationally intensive. The sharp growth in the number of known protein structures poses severe challenges for methods of structural comparison. There is a need for methods that can search the database of structures accurately and rapidly. We provide several methods to search for similar folding patterns using a concise tableau representation of proteins that encodes the relative geometry of secondary structural elements. Our first approach allows the extraction of identical and very closely-related protein folding patterns in constant-time (per hit). Next, we address the hard computational problem of extraction of maximally-similar subtableaux, when comparing two tableaux. We solve the problem using Quadratic and Linear integer programming formulations and demonstrate their power to identify subtle structural similarities, especially when protein structures significantly diverge. Finally, we describe a rapid and accurate method for comparing a query structure against a database of protein domains, TableauSearch. TableauSearch is rapid enough to search the entire structural database in seconds on a standard desktop computer. Our analysis of TableauSearch on many queries shows that the method is very accurate in identifying similarities of folding patterns, even between distantly related proteins. AVAILABILITY A web server implementing the TableauSearch is available from http://hollywood.bx.psu.edu/TabSearch.
Collapse
Affiliation(s)
- Arun S Konagurthu
- Department of Biochemistry and Molecular Biology and The Huck Institute for Genomics, Proteomics and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
42
|
Martínez-Martínez I, Navarro-Fernández J, Daniel Lozada-Ramírez J, García-Carmona F, Sánchez-Ferrer Á. YesT: A new rhamnogalacturonan acetyl esterase fromBacillus subtilis. Proteins 2008; 71:379-88. [DOI: 10.1002/prot.21705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Schneider S, Zhang W, Soultanas P, Paoli M. Structure of the N-terminal oligomerization domain of DnaD reveals a unique tetramerization motif and provides insights into scaffold formation. J Mol Biol 2007; 376:1237-50. [PMID: 18206906 DOI: 10.1016/j.jmb.2007.12.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 02/05/2023]
Abstract
DnaD is a primosomal protein that remodels supercoiled plasmids. It binds to supercoiled forms and converts them to open forms without nicking. During this remodeling process, all the writhe is converted to twist and the plasmids are held around the periphery of large scaffolds made up of DnaD molecules. This DNA-remodeling function is the sum of a scaffold-forming activity on the N-terminal domain and a DNA-dependent oligomerization activity on the C-terminal domain. We have determined the crystal structure of the scaffold-forming N-terminal domain, which reveals a winged-helix architecture, with additional structural elements extending from both N- and C-termini. Four monomers form dimers that join into a tetramer. The N-terminal extension mediates dimerization and tetramerization, with extensive interactions and distinct interfaces. The wings and helices of the winged-helix domains remain exposed on the surface of the tetramer. Structure-guided mutagenesis and atomic force microscopy imaging indicate that these elements, together with the C-terminal extension, are involved in scaffold formation. Based upon our data, we propose a model for the DnaD-mediated scaffold formation.
Collapse
Affiliation(s)
- S Schneider
- Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | |
Collapse
|
44
|
Characterization of a new rhamnogalacturonan acetyl esterase from Bacillus halodurans C-125 with a new putative carbohydrate binding domain. J Bacteriol 2007; 190:1375-82. [PMID: 18083818 DOI: 10.1128/jb.01104-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BH1115 is a gene from Bacillus halodurans strain C-125 that hypothetically encodes a rhamnogalacturonan acetyl esterase (RGAE) of the CE-12 family. As confirmation, this gene was cloned, and the product was expressed in Escherichia coli strain Rosetta (DE3) cells and purified. The enzyme obtained was monomeric, with a molecular mass of 45 kDa, and exhibited alkaliphilic properties. A study of the inhibition of the activity by some modulators confirmed that the catalytic triad for the esterase activity was Ser-His-Asp. This enzyme also presents broad substrate specificity and is active toward 7-aminocephalosporanic acid, cephalosporin C, p-nitrophenyl acetate, beta-naphthyl acetate, glucose pentaacetate, and acetylated xylan. Moreover, RGAE from B. halodurans achieves a synergistic effect with xylanase A toward acetylated xylan. As a member of the SGNH family, it does not adopt the common alpha/beta hydrolase fold. The homology between the folds of RGAE from Aspergillus aculeatus and the hypothetical YxiM precursor from Bacillus subtilis, which both belong to the SGNH family, illustrates the divergence of such proteins from a common ancestor. Furthermore, the enzyme possesses a putative substrate binding region at the N terminus of the protein which has never been described to date for any RGAE.
Collapse
|
45
|
Abstract
Alternative splicing is thought to be one of the major sources for functional diversity in higher eukaryotes. Interestingly, when mapping splicing events onto protein structures, about half of the events affect structured and even highly conserved regions i.e. are non-trivial on the structure level. This has led to the controversial hypothesis that such splice variants result in nonsense-mediated mRNA decay or non-functional, unstructured proteins, which do not contribute to the functional diversity of an organism. Here we show in a comprehensive study on alternative splicing that proteins appear to be much more tolerant to structural deletions, insertions and replacements than previously thought. We find literature evidence that such non-trivial splicing isoforms exhibit different functional properties compared to their native counterparts and allow for interesting regulatory patterns on the protein network level. We provide examples that splicing events may represent transitions between different folds in the protein sequence–structure space and explain these links by a common genetic mechanism. Taken together, those findings hint to a more prominent role of splicing in protein structure evolution and to a different view of phenotypic plasticity of protein structures.
Collapse
Affiliation(s)
- Fabian Birzele
- Practical Informatics and Bioinformatics Group, Department of Informatics, Ludwig-Maximilians-University, Amalienstrasse 17, D-80333 Munich, Germany.
| | | | | |
Collapse
|
46
|
Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E, Ramos JE, Forouhar F, Neely H, Seetharaman J, Camilli A, Hunt JF. The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 2007; 26:5153-66. [PMID: 18034161 DOI: 10.1038/sj.emboj.7601918] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 10/18/2007] [Indexed: 01/18/2023] Open
Abstract
The second messenger cyclic diguanylate (c-di-GMP) controls the transition between motile and sessile growth in eubacteria, but little is known about the proteins that sense its concentration. Bioinformatics analyses suggested that PilZ domains bind c-di-GMP and allosterically modulate effector pathways. We have determined a 1.9 A crystal structure of c-di-GMP bound to VCA0042/PlzD, a PilZ domain-containing protein from Vibrio cholerae. Either this protein or another specific PilZ domain-containing protein is required for V. cholerae to efficiently infect mice. VCA0042/PlzD comprises a C-terminal PilZ domain plus an N-terminal domain with a similar beta-barrel fold. C-di-GMP contacts seven of the nine strongly conserved residues in the PilZ domain, including three in a seven-residue long N-terminal loop that undergoes a conformational switch as it wraps around c-di-GMP. This switch brings the PilZ domain into close apposition with the N-terminal domain, forming a new allosteric interaction surface that spans these domains and the c-di-GMP at their interface. The very small size of the N-terminal conformational switch is likely to explain the facile evolutionary diversification of the PilZ domain.
Collapse
Affiliation(s)
- Jordi Benach
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Martínez-Martínez I, Navarro-Fernández J, García-Carmona F, Takami H, Sánchez-Ferrer A. Characterization and structural modeling of a novel thermostable glycine oxidase from Geobacillus kaustophilus HTA426. Proteins 2007; 70:1429-41. [PMID: 17894345 DOI: 10.1002/prot.21690] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glycine oxidase from Geobacillus kaustophilus HTA426 (GOXK) is a 43 kDa monomer flavoenzyme containing noncovalently bound FAD. The induction of the enzyme resulted in the expression of a fully soluble protein with higher specific activity than those previously reported for GOX from B. subtilis (GOXB). A study of the kinetic properties of this novel GOXK revealed the lowest KM values for most of the substrates analyzed, with the exception of D-proline which kept a similar value and had the highest Vmax value reported. The Vmax/KM ratio maintained a substrate preference of GOXK for amines of small size, like glycine, sarcosine, N-ethyl-glycine, and glycine-ethyl-ester. GOXK presented good stability at 60-70 degrees C and in alkaline media (pH 6-9.5). The putative tridimensional structure was modeled by sequence alignment and by comparing the changes between GOXK and GOXB, and the residues that could be responsible for the substrate specificity as well as those essential for the catalytic activity were found. The comparison between the possible topology of GOXK with that of GOXB showed changes at the putative interactions between monomers for the building of the tetrameric oligomerization.
Collapse
Affiliation(s)
- Irene Martínez-Martínez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia, Campus Espinardo, E-30071 Murcia, Spain
| | | | | | | | | |
Collapse
|
48
|
Salomone-Stagni M, Zambelli B, Musiani F, Ciurli S. A model-based proposal for the role of UreF as a GTPase-activating protein in the urease active site biosynthesis. Proteins 2007; 68:749-61. [PMID: 17510959 DOI: 10.1002/prot.21472] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UreF is a protein that plays a role in the in vivo urease activation as a chaperone involved in the insertion of two Ni(2+) ions in the apo-urease active site. The molecular details of this process are unknown. In the absence of any molecular information on the UreF protein class, and as a step toward the comprehension of the relationships between UreF function and structure, we applied a structural modeling approach to infer useful biochemical knowledge on Bacillus pasteurii UreF (BpUreF). Similarity searches and multiple alignment of UreF protein sequences indicated that this class of proteins has a low homology with proteins of known structure. Fold recognition methods were therefore used to identify useful protein structural templates to model the structure of BpUreF. In particular, the templates belong to the class of GTPase-activating proteins. Modeling of BpUreF based on these templates was performed using the program MODELLER. The structure validation yielded good statistics, indicating that the model is plausible. This result suggests a role for UreF in urease active site biosynthesis as a regulator of the activity of UreG, a small G protein involved in the in vivo apo-urease activation process and established to catalyze GTP hydrolysis.
Collapse
Affiliation(s)
- Marco Salomone-Stagni
- Laboratory of Bioinorganic Chemistry, Department of Agro-Environmental Science and Technology, University of Bologna, I-40127 Bologna, Italy
| | | | | | | |
Collapse
|
49
|
Wang CIA, Guncar G, Forwood JK, Teh T, Catanzariti AM, Lawrence GJ, Loughlin FE, Mackay JP, Schirra HJ, Anderson PA, Ellis JG, Dodds PN, Kobe B. Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity. THE PLANT CELL 2007; 19:2898-912. [PMID: 17873095 PMCID: PMC2048696 DOI: 10.1105/tpc.107.053611] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The gene-for-gene mechanism of plant disease resistance involves direct or indirect recognition of pathogen avirulence (Avr) proteins by plant resistance (R) proteins. Flax rust (Melampsora lini) AvrL567 avirulence proteins and the corresponding flax (Linum usitatissimum) L5, L6, and L7 resistance proteins interact directly. We determined the three-dimensional structures of two members of the AvrL567 family, AvrL567-A and AvrL567-D, at 1.4- and 2.3-A resolution, respectively. The structures of both proteins are very similar and reveal a beta-sandwich fold with no close known structural homologs. The polymorphic residues in the AvrL567 family map to the surface of the protein, and polymorphisms in residues associated with recognition differences for the R proteins lead to significant changes in surface chemical properties. Analysis of single amino acid substitutions in AvrL567 proteins confirm the role of individual residues in conferring differences in recognition and suggest that the specificity results from the cumulative effects of multiple amino acid contacts. The structures also provide insights into possible pathogen-associated functions of AvrL567 proteins, with nucleic acid binding activity demonstrated in vitro. Our studies provide some of the first structural information on avirulence proteins that bind directly to the corresponding resistance proteins, allowing an examination of the molecular basis of the interaction with the resistance proteins as a step toward designing new resistance specificities.
Collapse
Affiliation(s)
- Ching-I A Wang
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rashamuse KJ, Burton SG, Stafford WHL, Cowan DA. Molecular Characterization of a Novel Family VIII Esterase from Burkholderia multivorans UWC10. J Mol Microbiol Biotechnol 2007; 13:181-8. [PMID: 17693726 DOI: 10.1159/000103610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An esterase producing Burkholderia multivorans UWC10 strain was isolated by culture enrichment. A shotgun library of B. multivorans UWC10 genomic DNA was screened for esterase activity and a recombinant clone conferring an esterolytic phenotype was identified. Full-length sequencing of the DNA insert showed that it consisted of a single open reading frame (ORF1) encoding a predicted protein of 398 amino acids. ORF1 (termed EstBL) had a high protein sequence identity to family VIII esterases. The EstBL primary structure showed two putative serine motifs, G-V-S(149)-D-G and S(74)-V-T-K. The estBL gene was successfully over-expressed in E. coli and the encoded protein purified by a combination of ammonium sulphate fractionation, hydrophobic interaction, ion exchange and size exclusion chromatographies. Biochemical assays confirmed EstBL esterase activity and revealed a preference for short-chain p-nitrophenyl and beta-naphthyl esters (C2-C4) with no activity against beta-lactam substrates. Secondary structure predictions indicated that EstBL adopts the alpha/beta fold, which is common to all esterases.
Collapse
|