1
|
2-aminopurine as a fluorescent probe of DNA conformation and the DNA–enzyme interface. Q Rev Biophys 2015; 48:244-79. [DOI: 10.1017/s0033583514000158] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractNearly 50 years since its potential as a fluorescent base analogue was first recognized, 2-aminopurine (2AP) continues to be the most widely used fluorescent probe of DNA structure and the perturbation of that structure by interaction with enzymes and other molecules. In this review, we begin by considering the origin of the dramatic and intriguing difference in photophysical properties between 2AP and its structural isomer, adenine; although 2AP differs from the natural base only in the position of the exocyclic amine group, its fluorescence intensity is one thousand times greater. We then discuss the mechanism of interbase quenching of 2AP fluorescence in DNA, which is the basis of its use as a conformational probe but remains imperfectly understood. There are hundreds of examples in the literature of the use of changes in the fluorescence intensity of 2AP as the basis of assays of conformational change; however, in this review we will consider in detail only a few intensity-based studies. Our primary aim is to highlight the use of time-resolved fluorescence measurements, and the interpretation of fluorescence decay parameters, to explore the structure and dynamics of DNA. We discuss the salient features of the fluorescence decay of 2AP when incorporated in DNA and review the use of decay measurements in studying duplexes, single strands and other structures. We survey the use of 2AP as a probe of DNA-enzyme interaction and enzyme-induced distortion, focusing particularly on its use to study base flipping and the enhanced mechanistic insights that can be gained by a detailed analysis of the decay parameters, rather than merely monitoring changes in fluorescence intensity. Finally we reflect on the merits and shortcomings of 2AP and the prospects for its wider adoption as a fluorescence-decay-based probe.
Collapse
|
2
|
Beuck C, Weinhold E. Reversibly locked thionucleobase pairs in DNA to study base flipping enzymes. Beilstein J Org Chem 2014; 10:2293-306. [PMID: 25298797 PMCID: PMC4187101 DOI: 10.3762/bjoc.10.239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022] Open
Abstract
Covalently interstrand cross-linked DNA is an interesting tool to study DNA binding proteins that locally open up the DNA duplex by flipping single bases out of the DNA helix or melting whole stretches of base pairs to perform their function. The ideal DNA cross-link to study protein–DNA interactions should be specific and easy to synthesize, be stable during protein binding experiments, have a short covalent linker to avoid steric hindrance of protein binding, and should be available as a mimic for both A/T and G/C base pairs to cover all possible binding specificities. Several covalent interstrand cross-links have been described in the literature, but most of them fall short of at least one of the above criteria. We developed an efficient method to site-specifically and reversibly cross-link thionucleoside base pairs in synthetic duplex oligodeoxynucleotides by bisalkylation with 1,2-diiodoethane resulting in an ethylene-bridged base pair. Both linked A/T and G/C base pair analogs can conveniently be prepared which allows studying any base pair-opening enzyme regardless of its sequence specificity. The cross-link is stable in the absence of reducing agents but the linker can be quickly and tracelessly removed by the addition of thiol reagents like dithiothreitol. This property makes the cross-linking reaction fully reversible and allows for a switching of the linked base pair from locked to unlocked during biochemical experiments. Using the DNA methyltransferase from Thermus aquaticus (M.TaqI) as example, we demonstrate that the presented cross-linked DNA with an ethylene-linked A/T base pair analog at the target position is a useful tool to determine the base-flipping equilibrium constant of a base-flipping enzyme which lies mostly on the extrahelical side for M.TaqI.
Collapse
Affiliation(s)
- Christine Beuck
- Department of Structural & Medicinal Biochemistry, University of Duisburg-Essen, Universitätsstr. 2-5, D-45141 Essen, Germany
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| |
Collapse
|
3
|
Time-resolved fluorescence of 2-aminopurine in DNA duplexes in the presence of the EcoP15I Type III restriction–modification enzyme. Biochem Biophys Res Commun 2014; 449:120-5. [DOI: 10.1016/j.bbrc.2014.04.162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 11/23/2022]
|
4
|
Ma L, Wu X. WITHDRAWN: Type III restriction-modification enzyme EcoP15I's base flipping mechanism and its mismatch cleavage on two head-to-head oriented recognition sites. Biochem Biophys Res Commun 2014:S0006-291X(14)00373-8. [PMID: 24589737 DOI: 10.1016/j.bbrc.2014.02.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Long Ma
- Biomolecular Sciences Research Complex, EaStCHEM School of Chemistry, University of St Andrews, Fife KY16 9ST, UK.
| | - Xiaohua Wu
- EaStChem School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JJ, UK
| |
Collapse
|
5
|
Liang J, Nguyen QL, Matsika S. Exciplexes and conical intersections lead to fluorescence quenching in π-stacked dimers of 2-aminopurine with natural purine nucleobases. Photochem Photobiol Sci 2013; 12:1387-400. [PMID: 23625036 PMCID: PMC5006741 DOI: 10.1039/c3pp25449f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/29/2013] [Indexed: 12/26/2022]
Abstract
Fluorescent analogues of the natural DNA bases are useful in the study of nucleic acids' structure and dynamics. 2-Aminopurine (2AP) is a widely used analogue with environmentally sensitive fluorescence behavior. The quantum yield of 2AP has been found to be significantly decreased when engaged in π-stacking interactions with the native bases. We present a theoretical study on fluorescence quenching mechanisms in dimers of 2AP π-stacked with adenine or guanine as in natural DNA. Relaxation pathways on the potential energy surfaces of the first excited states have been computed and reveal the importance of exciplexes and conical intersections in the fluorescence quenching process.
Collapse
Affiliation(s)
- JingXin Liang
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Quynh L. Nguyen
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
6
|
Bonnist EY, Liebert K, Dryden DT, Jeltsch A, Jones AC. Using the fluorescence decay of 2-aminopurine to investigate conformational change in the recognition sequence of the EcoRV DNA-(adenine-N6)-methyltransferase on enzyme binding. Biophys Chem 2012; 160:28-34. [DOI: 10.1016/j.bpc.2011.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/03/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
|
7
|
Liang J, Matsika S. Pathways for fluorescence quenching in 2-aminopurine π-stacked with pyrimidine nucleobases. J Am Chem Soc 2011; 133:6799-808. [PMID: 21486032 DOI: 10.1021/ja2007998] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fluorescent analogues of nucleobases are very useful as probes to study DNA dynamics, because natural DNA does not fluoresce significantly. In many of these analogues, such as 2-aminopurine (2AP), the fluorescence is quenched when incorporated into DNA through processes that are not well understood. This work uses theoretical studies to examine fluorescence quenching pathways in 2AP-containing dimers. The singlet excited states of π-stacked dimer systems containing 2AP and a pyrimidine base, thymine or cytosine, have been studied using ab initio computational methods. Computed relaxation pathways along the excited-state surfaces reveal novel mechanisms that can lead to fluorescence quenching in the π-stacked dimers. The placement of 2AP on the 5' or 3' terminus of the dimers has different effects on the excitation energies and the relaxation pathways on the S(1) excited state. Conical intersections between the ground and first excited states exist when 2AP is placed at the 3' side, whereas the placement of 2AP at the 5' side leads to the switching of a bright state to a dark state. Both of these processes can lead to fluorescence quenching and may contribute to the fluorescence quenching observed in 2AP when incorporated in DNA.
Collapse
Affiliation(s)
- Jingxin Liang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | |
Collapse
|
8
|
Madhusoodanan UK, Rao DN. Diversity of DNA methyltransferases that recognize asymmetric target sequences. Crit Rev Biochem Mol Biol 2010; 45:125-45. [PMID: 20184512 DOI: 10.3109/10409231003628007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.
Collapse
|
9
|
Kumar R, Mukhopadhyay AK, Rao DN. Characterization of an N6 adenine methyltransferase from Helicobacter pylori strain 26695 which methylates adjacent adenines on the same strand. FEBS J 2010; 277:1666-83. [PMID: 20180846 DOI: 10.1111/j.1742-4658.2010.07593.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genomic sequences of Helicobacter pylori strains 26695, J99, HPAGI and G27 have revealed an abundance of restriction and modification genes. hp0050, which encodes an N(6) adenine DNA methyltransferase, was cloned, overexpressed and purified to near homogeneity. It recognizes the sequence 5'-GRRG-3' (where R is A or G) and, most intriguingly, methylates both adenines when R is A (5'-GAAG-3'). Kinetic analysis suggests a nonprocessive (repeated-hit) mechanism of methylation in which HP0050 methyltransferase methylates one adenine at a time in the sequence 5'-GAAG-3'. This is the first report of an N(6) adenine DNA methyltransferase that methylates two adjacent residues on the same strand. Interestingly, HP0050 homologs from two clinical strains of H. pylori (PG227 and 128) methylate only 5'-GAGG-3' compared with 5'-GRRG-3' in strain 26695. HP0050 methyltransferase is highly conserved as it is present in more than 90% of H. pylori strains. Inactivation of hp0050 in strain PG227 resulted in poor growth, suggesting its role in the biology of H. pylori. Collectively, these findings provide impetus for exploring the role(s) of this conserved DNA methyltransferase in the cellular processes of H. pylori.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
10
|
Means JA, Simson CM, Zhou S, Rachford AA, Rack JJ, Hines JV. Fluorescence probing of T box antiterminator RNA: insights into riboswitch discernment of the tRNA discriminator base. Biochem Biophys Res Commun 2009; 389:616-21. [PMID: 19755116 DOI: 10.1016/j.bbrc.2009.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/10/2009] [Indexed: 11/28/2022]
Abstract
The T box transcription antitermination riboswitch is one of the main regulatory mechanisms utilized by Gram-positive bacteria to regulate genes that are involved in amino acid metabolism. The details of the antitermination event, including the role that Mg(2+) plays, in this riboswitch have not been completely elucidated. In these studies, details of the antitermination event were investigated utilizing 2-aminopurine to monitor structural changes of a model antiterminator RNA when it was bound to model tRNA. Based on the results of these fluorescence studies, the model tRNA binds the model antiterminator RNA via an induced-fit. This binding is enhanced by the presence of Mg(2+), facilitating the complete base pairing of the model tRNA acceptor end with the complementary bases in the model antiterminator bulge.
Collapse
Affiliation(s)
- John A Means
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | |
Collapse
|
11
|
Neely RK, Tamulaitis G, Chen K, Kubala M, Siksnys V, Jones AC. Time-resolved fluorescence studies of nucleotide flipping by restriction enzymes. Nucleic Acids Res 2009; 37:6859-70. [PMID: 19740769 PMCID: PMC2777440 DOI: 10.1093/nar/gkp688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Restriction enzymes Ecl18kI, PspGI and EcoRII-C, specific for interrupted 5-bp target sequences, flip the central base pair of these sequences into their protein pockets to facilitate sequence recognition and adjust the DNA cleavage pattern. We have used time-resolved fluorescence spectroscopy of 2-aminopurine-labelled DNA in complex with each of these enzymes in solution to explore the nucleotide flipping mechanism and to obtain a detailed picture of the molecular environment of the extrahelical bases. We also report the first study of the 7-bp cutter, PfoI, whose recognition sequence (T/CCNGGA) overlaps with that of the Ecl18kI-type enzymes, and for which the crystal structure is unknown. The time-resolved fluorescence experiments reveal that PfoI also uses base flipping as part of its DNA recognition mechanism and that the extrahelical bases are captured by PfoI in binding pockets whose structures are quite different to those of the structurally characterized enzymes Ecl18kI, PspGI and EcoRII-C. The fluorescence decay parameters of all the enzyme-DNA complexes are interpreted to provide insight into the mechanisms used by these four restriction enzymes to flip and recognize bases and the relationship between nucleotide flipping and DNA cleavage.
Collapse
Affiliation(s)
- Robert K Neely
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | | | | | | | | | |
Collapse
|
12
|
Bonnist EYM, Jones AC. Long-wavelength fluorescence from 2-aminopurine-nucleobase dimers in DNA. Chemphyschem 2008; 9:1121-9. [PMID: 18446915 DOI: 10.1002/cphc.200700813] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
When 2-aminopurine (2AP) is substituted for adenine in DNA, it is widely accepted that its fluorescence spectrum is essentially unchanged from that of the free fluorophore. We show that 2AP in DNA exhibits long-wavelength emission and excitation bands, in addition to the familiar short-wavelength spectra, as a result of formation of a ground-state heterodimer with an adjacent, pi-stacked, natural base. The observation of dual emission from 2AP in a variety of oligodeoxynucleotide duplexes and single strands demonstrates the generality of this phenomenon. The photophysical and conformational properties of the long-wavelength-emitting 2AP-nucleobase dimer are examined. Analogous long-wavelength fluorescence is seen when 2AP pi-stacks with aromatic amino acid sidechains in the active sites of methyltransferase enzymes during DNA nucleotide flipping.
Collapse
Affiliation(s)
- Eleanor Y M Bonnist
- School of Chemistry and Collaborative Optical Spectroscopy, Micromanipulation and Imaging Centre, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | | |
Collapse
|
13
|
Carpenter MA, Bhagwat AS. DNA base flipping by both members of the PspGI restriction-modification system. Nucleic Acids Res 2008; 36:5417-25. [PMID: 18718929 PMCID: PMC2532716 DOI: 10.1093/nar/gkn528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The PspGI restriction–modification system recognizes the sequence CCWGG. R.PspGI cuts DNA before the first C in the cognate sequence and M.PspGI is thought to methylate N4 of one of the cytosines in the sequence. M.PspGI enhances fluorescence of 2-aminopurine in DNA if it replaces the second C in the sequence, while R.PspGI enhances fluorescence when the fluorophore replaces adenine in the central base pair. This strongly suggests that the methyltransferase flips the second C in the recognition sequence, while the endonuclease flips both bases in the central base pair out of the duplex. M.PspGI is the first N4-cytosine MTase for which biochemical evidence for base flipping has been presented. It is also the first type IIP methyltransferase whose catalytic activity is strongly stimulated by divalent metal ions. However, divalent metal ions are not required for its base-flipping activity. In contrast, these ions are required for both base flipping and catalysis by the endonuclease. The two enzymes have similar temperature profiles for base flipping and optimal flipping occurs at temperatures substantially below the growth temperature of the source organism for PspGI and for the catalytic activity of endonuclease. We discuss the implications of these results for DNA binding by these enzymes and their evolutionary origin.
Collapse
Affiliation(s)
- Michael A Carpenter
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | | |
Collapse
|
14
|
Bharill S, Sarkar P, Ballin JD, Gryczynski I, Wilson GM, Gryczynski Z. Fluorescence intensity decays of 2-aminopurine solutions: lifetime distribution approach. Anal Biochem 2008; 377:141-9. [PMID: 18406333 DOI: 10.1016/j.ab.2008.03.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/11/2008] [Accepted: 03/14/2008] [Indexed: 11/28/2022]
Abstract
The fluorescent adenine analog 2-aminopurine (2AP) has been used extensively to monitor conformational changes and macromolecular binding events involving nucleic acids because its fluorescence properties are highly sensitive to changes in chemical environment. Furthermore, site-specific incorporation of 2AP permits local DNA and RNA conformational events to be discriminated from the global structural changes monitored by UV-Vis spectroscopy and circular dichroism. However, although the steady-state fluorescence properties of 2AP have been well defined in diverse settings, interpretation of 2AP fluorescence lifetime parameters has been hampered by the heterogeneous nature of multiexponential 2AP intensity decays observed across populations of microenvironments. To resolve this problem, we tested the utility of multiexponential versus continuous Lorentzian lifetime distribution models to describe fluorescence intensity decays from 2AP in diverse chemical backgrounds and within the context of RNA. Heterogeneity was introduced into 2AP intensity decays by mixing solvents of differing polarities or by adding quenchers under high viscosity to evaluate the transient effect. Heterogeneity of 2AP fluorescence within the context of a synthetic RNA hairpin was introduced by structural remodeling using a magnesium salt. In each case except folded RNA (which required a bimodal distribution), 2AP lifetime properties were well described by single Lorentzian distribution functions, abrogating the need to introduce additional discrete lifetime subpopulations. Rather, heterogeneity in fluorescence decay processes was accommodated by the breadth of each distribution. This approach also permitted solvent relaxation effects on 2AP emission to be assessed by comparing lifetime distributions at multiple wavelengths. Together, these studies provide a new perspective for the interpretation of 2AP fluorescence lifetime properties that will further the utility of this fluorophore in analyses of the complex and heterogeneous structural microenvironments associated with nucleic acids.
Collapse
Affiliation(s)
- Shashank Bharill
- Center for Commercialization of Fluorescence Technologies, Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | |
Collapse
|
15
|
2-Aminopurine/cytosine base pair containing oligonucleotides: fluorescence spectroscopy studies on DNA-polyamide binding. Biochem Biophys Res Commun 2008; 369:630-4. [PMID: 18294452 DOI: 10.1016/j.bbrc.2008.02.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 11/22/2022]
Abstract
Studies on the binding of a triamide f-IPI (1) to its cognate sequence labeled with a 2-aminopurine (2AP or G( *)) group are described. ITC studies showed that f-IPI (1) bound to the cognate site (ACG( *)CGT) with only 3.5-fold lower affinity than binding to the unlabeled DNA (ACGCGT) (K(eq)=2 x 10(7) and 7 x 10(7)M(-1), respectively). Titration of f-IPI (1) to both sequences gave strong induced bands at 330 nm via circular dichroism studies. The compound also gave comparable DeltaT(m) values of 5.0 and 7.8 degrees C, respectively. These techniques also proved that the sequence selectivity of f-IPI (1) was uncompromised, as only limited binding to the non-cognate sequence ACCG( *)GT was observed. Fluorescence studies demonstrated a 2:1 ligand:DNA binding motif as anticipated, and indicated that the limit of detection for this technique was 20muM DNA concentration. The results demonstrate that 2-aminopurine is a sufficient substitute for guanine in a G.C base pair useful in DNA binding studies.
Collapse
|
16
|
Neely RK, Magennis SW, Parsons S, Jones AC. Photophysics and X-ray Structure of Crystalline 2-Aminopurine. Chemphyschem 2007; 8:1095-102. [PMID: 17385756 DOI: 10.1002/cphc.200600593] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To explore the effect of intermolecular interactions on the photophysics of 2-aminopurine (2AP) in a well-defined environment, we have investigated the fluorescence properties of single 2AP crystals, having determined their X-ray structure. In the crystal, 2AP is subject to base-stacking and hydrogen-bonding interactions similar to those found in DNA. The crystal shows dual fluorescence: pi-stacked molecules in the bulk of the lattice have redshifted excitation and emission spectra, while molecules at defect sites have spectra similar to those of 2AP in solution or in DNA. Heterogeneous intermolecular interactions in the crystal give rise to multiexponential fluorescence decay characteristics similar to those observed for 2AP-labelled DNA. The presence of about 13 % of the 7H tautomer in the crystal confirms that 9H-7H tautomerisation of 2AP occurs in the ground state. Long-wavelength excitation of a 2AP-labelled oligonucleotide duplex produced redshifted emission similar to that observed in the crystal, indicating that pi-stacking interaction of 2AP with nucleobases gives rise to a low energy excited state.
Collapse
Affiliation(s)
- Robert K Neely
- School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | | | |
Collapse
|
17
|
Somsen OJG, Keukens LB, de Keijzer MN, van Hoek A, van Amerongen H. Structural heterogeneity in DNA: temperature dependence of 2-aminopurine fluorescence in dinucleotides. Chemphyschem 2007; 6:1622-7. [PMID: 16082664 DOI: 10.1002/cphc.200400648] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The fluorescent base analogue 2-aminopurine is a sensitive probe for local dynamics of DNA. Its fluorescence is quenched by interaction with the neighboring bases, but the underlying mechanisms are still under investigation. We studied 2-aminopurine fluorescence in dinucleotides with each of the natural bases. Consistently, two of the four fluorescence-decay components depend strongly on temperature. Our results indicate that these components are due to the excited-state dynamics of a single conformational state. We propose a variation of the gating model in which transient unstacking occurs in the excited state.
Collapse
Affiliation(s)
- Oscar J G Somsen
- Wageningen University, Laboratory of Biophysics, P.O. Box 8128, 6700 ET Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Bheemanaik S, Reddy Y, Rao D. Structure, function and mechanism of exocyclic DNA methyltransferases. Biochem J 2006; 399:177-90. [PMID: 16987108 PMCID: PMC1609917 DOI: 10.1042/bj20060854] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA MTases (methyltransferases) catalyse the transfer of methyl groups to DNA from AdoMet (S-adenosyl-L-methionine) producing AdoHcy (S-adenosyl-L-homocysteine) and methylated DNA. The C5 and N4 positions of cytosine and N6 position of adenine are the target sites for methylation. All three methylation patterns are found in prokaryotes, whereas cytosine at the C5 position is the only methylation reaction that is known to occur in eukaryotes. In general, MTases are two-domain proteins comprising one large and one small domain with the DNA-binding cleft located at the domain interface. The striking feature of all the structurally characterized DNA MTases is that they share a common core structure referred to as an 'AdoMet-dependent MTase fold'. DNA methylation has been reported to be essential for bacterial virulence, and it has been suggested that DNA adenine MTases (Dams) could be potential targets for both vaccines and antimicrobials. Drugs that block Dam could slow down bacterial growth and therefore drug-design initiatives could result in a whole new generation of antibiotics. The transfer of larger chemical entities in a MTase-catalysed reaction has been reported and this represents an interesting challenge for bio-organic chemists. In general, amino MTases could therefore be used as delivery systems for fluorescent or other reporter groups on to DNA. This is one of the potential applications of DNA MTases towards developing non-radioactive DNA probes and these could have interesting applications in molecular biology. Being nucleotide-sequence-specific, DNA MTases provide excellent model systems for studies on protein-DNA interactions. The focus of this review is on the chemistry, enzymology and structural aspects of exocyclic amino MTases.
Collapse
Affiliation(s)
| | - Yeturu V. R. Reddy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
- To whom correspondence should be addressed (email )
| |
Collapse
|
19
|
Bheemanaik S, Bujnicki JM, Nagaraja V, Rao DN. Functional analysis of amino acid residues at the dimerisation interface of KpnI DNA methyltransferase. Biol Chem 2006; 387:515-23. [PMID: 16740122 DOI: 10.1515/bc.2006.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
KpnI DNA-(N6-adenine) methyltransferase (M.KpnI) recognises the sequence 5'-GGTACC-3' and transfers the methyl group from S-adenosyl-L-methionine (AdoMet) to the N6 position of the adenine residue in each strand. Earlier studies have shown that M.KpnI exists as a dimer in solution, unlike most other MTases. To address the importance of dimerisation for enzyme function, a three-dimensional model of M.KpnI was obtained based on protein fold-recognition analysis, using the crystal structures of M.RsrI and M.MboIIA as templates. Residues I146, I161 and Y167, the side chains of which are present in the putative dimerisation interface in the model, were targeted for site-directed mutagenesis. Methylation and in vitro restriction assays showed that the mutant MTases are catalytically inactive. Mutation at the I146 position resulted in complete disruption of the dimer. The replacement of I146 led to drastically reduced DNA and cofactor binding. Substitution of I161 resulted in weakening of the interaction between monomers, leading to both monomeric and dimeric species. Steady-state fluorescence measurements showed that the wild-type KpnI MTase induces structural distortion in bound DNA, while the mutant MTases do not. The results establish that monomeric MTase is catalytically inactive and that dimerisation is an essential event for M.KpnI to catalyse the methyl transfer reaction.
Collapse
|
20
|
Kierdaszuk B, Włodarczyk J. Interpretation of intramolecular stacking effect on the fluorescence intensity decay of 3-methylbenzimidazolyl(5'-5')guanosine dinucleotides using a model of lifetime distribution. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2006; 35:424-30. [PMID: 16518651 DOI: 10.1007/s00249-006-0049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 01/20/2006] [Accepted: 02/07/2006] [Indexed: 05/07/2023]
Abstract
Time-resolved fluorescence of 3-methylbenzimidazole (m(3)B) was used to study stacking interaction between base moieties in di-, tri- and tetra-phosphate analogues of 3-methylbenzimidazolyl(5'-5')guanosine (m(3)Bp( n )G, n = 2, 3, 4), using 5'-triphosphate of 3-methylbenzimidazole riboside (m(3)BTP) as reference. Fluorescence intensity decays of all compounds cannot be satisfactory fitted with single-exponential function. Although an increase of a number of exponents led to better fits, interpretation of the individual exponential terms, i.e. pre-exponential amplitudes and fluorescence lifetimes, cannot be adequately characterized. We show that these fluorescence decays are best fitted by power-like function derived from physically justified distribution of the fluorescence lifetimes, and characterized by the mean value of the excited-state lifetime and relative variance of lifetime fluctuations around the mean value. The latter led to the parameter of heterogeneity and number of decay paths, which depend on the factors responsible for non-radiative decay of the excited state, including base-base stacking interaction. This was studied by means of changes of temperature and the number of phosphate groups in dinucleotides. It was shown that the strongest effect of stacking interactions, characterized by lowest values of both fluorescence mean decay time and relative variance, occurs in the case of m(3)Bp(3)G containing the same number of phosphates as natural mRNA cap. The possible importance of these results for interpretation of the mechanism of function of the mRNA cap structure is discussed.
Collapse
Affiliation(s)
- Borys Kierdaszuk
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Poland.
| | | |
Collapse
|
21
|
Obarska A, Blundell A, Feder M, Vejsadová Š, Šišáková E, Weiserová M, Bujnicki JM, Firman K. Structural model for the multisubunit Type IC restriction-modification DNA methyltransferase M.EcoR124I in complex with DNA. Nucleic Acids Res 2006; 34:1992-2005. [PMID: 16614449 PMCID: PMC1435980 DOI: 10.1093/nar/gkl132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent publication of crystal structures for the putative DNA-binding subunits (HsdS) of the functionally uncharacterized Type I restriction–modification (R-M) enzymes MjaXIP and MgeORF438 have provided a convenient structural template for analysis of the more extensively characterized members of this interesting family of multisubunit molecular motors. Here, we present a structural model of the Type IC M.EcoR124I DNA methyltransferase (MTase), comprising the HsdS subunit, two HsdM subunits, the cofactor AdoMet and the substrate DNA molecule. The structure was obtained by docking models of individual subunits generated by fold-recognition and comparative modelling, followed by optimization of inter-subunit contacts by energy minimization. The model of M.EcoR124I has allowed identification of a number of functionally important residues that appear to be involved in DNA-binding. In addition, we have mapped onto the model the location of several new mutations of the hsdS gene of M.EcoR124I that were produced by misincorporation mutagenesis within the central conserved region of hsdS, we have mapped all previously identified DNA-binding mutants of TRD2 and produced a detailed analysis of the location of surface-modifiable lysines. The model structure, together with location of the mutant residues, provides a better background on which to study protein–protein and protein–DNA interactions in Type I R-M systems.
Collapse
Affiliation(s)
| | - Alex Blundell
- IBBS Biophysics Laboratories, School of Biological Sciences, University of PortsmouthKing Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK
| | | | - Štěpánka Vejsadová
- IBBS Biophysics Laboratories, School of Biological Sciences, University of PortsmouthKing Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK
- Institute of Microbiology, Czech Academy of SciencesVidenska 1083, 142 20 Prague 4, Czech Republic
| | - Eva Šišáková
- Institute of Microbiology, Czech Academy of SciencesVidenska 1083, 142 20 Prague 4, Czech Republic
| | - Marie Weiserová
- Institute of Microbiology, Czech Academy of SciencesVidenska 1083, 142 20 Prague 4, Czech Republic
| | | | - Keith Firman
- IBBS Biophysics Laboratories, School of Biological Sciences, University of PortsmouthKing Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK
- To whom all correspondence should be addressed. Tel: +44 2392 842059; Fax: +44 2392 842070;
| |
Collapse
|
22
|
Jean JM, Krueger BP. Structural Fluctuations and Excitation Transfer between Adenine and 2-Aminopurine in Single-Stranded Deoxytrinucleotides. J Phys Chem B 2006; 110:2899-909. [PMID: 16471900 DOI: 10.1021/jp054755+] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Steady-state fluorescence measurements on the deoxytrinucleotides (5')dTp2APpA(3') and (5')dAp2APpA(3') show a temperature-dependence and a viscosity-dependence for energy transfer that qualitatively differ from those seen in our previous study of charge transfer (CT) in these systems. Time-resolved anisotropy studies and molecular dynamics simulations are presented that provide a detailed characterization of the structural dynamics of these systems and how these fluctuations modulate the electronic interaction between 2AP and its neighbors. To gain quantitative insight into the interplay of conformational fluctuations and stacking-induced energy transfer, we present results from a new hybrid quantum-classical simulation method for computing the A --> 2AP energy transfer rate that makes use of the full three-dimensional nature of the donor and acceptor transition densities. Analysis of the results shows that the standard transition dipole-transition dipole approximation for the Coulombic coupling substantially overestimates the transfer rate and that the nearest neighbor energy transfer from adenine to 2AP occurs on a much faster time scale than that for CT. This suggests that, unlike the CT dynamics where conformational "gating" plays a critical role, the large amplitude fluctuations that modulate the process are largely "frozen" out on the energy transfer time scale.
Collapse
Affiliation(s)
- John M Jean
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63108, USA.
| | | |
Collapse
|
23
|
Su TJ, Tock MR, Egelhaaf SU, Poon WCK, Dryden DTF. DNA bending by M.EcoKI methyltransferase is coupled to nucleotide flipping. Nucleic Acids Res 2005; 33:3235-44. [PMID: 15942026 PMCID: PMC1143692 DOI: 10.1093/nar/gki618] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The maintenance methyltransferase M.EcoKI recognizes the bipartite DNA sequence 5′-AACNNNNNNGTGC-3′, where N is any nucleotide. M.EcoKI preferentially methylates a sequence already containing a methylated adenine at or complementary to the underlined bases in the sequence. We find that the introduction of a single-stranded gap in the middle of the non-specific spacer, of up to 4 nt in length, does not reduce the binding affinity of M.EcoKI despite the removal of non-sequence-specific contacts between the protein and the DNA phosphate backbone. Surprisingly, binding affinity is enhanced in a manner predicted by simple polymer models of DNA flexibility. However, the activity of the enzyme declines to zero once the single-stranded region reaches 4 nt in length. This indicates that the recognition of methylation of the DNA is communicated between the two methylation targets not only through the protein structure but also through the DNA structure. Furthermore, methylation recognition requires base flipping in which the bases targeted for methylation are swung out of the DNA helix into the enzyme. By using 2-aminopurine fluorescence as the base flipping probe we find that, although flipping occurs for the intact duplex, no flipping is observed upon introduction of a gap. Our data and polymer model indicate that M.EcoKI bends the non-specific spacer and that the energy stored in a double-stranded bend is utilized to force or flip out the bases. This energy is not stored in gapped duplexes. In this way, M.EcoKI can determine the methylation status of two adenine bases separated by a considerable distance in double-stranded DNA and select the required enzymatic response.
Collapse
Affiliation(s)
- Tsueu-Ju Su
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
| | - Mark R. Tock
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
| | - Stefan U. Egelhaaf
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
- School of PhysicsThe King's BuildingsThe University of EdinburghMayfield Road, Edinburgh EH9 3JZ, UK
| | - Wilson C. K. Poon
- School of PhysicsThe King's BuildingsThe University of EdinburghMayfield Road, Edinburgh EH9 3JZ, UK
| | - David T. F. Dryden
- School of ChemistryThe King's BuildingsThe University of EdinburghEdinburgh EH9 3JJ, UK
- To whom correspondence should be addressed. Tel: +44 131 650 4735; Fax: +44 131 650 6453;
| |
Collapse
|
24
|
Shipova E, Gates KS. A fluorimetric assay for the spontaneous release of an N7-alkylguanine residue from duplex DNA. Bioorg Med Chem Lett 2005; 15:2111-3. [PMID: 15808479 DOI: 10.1016/j.bmcl.2005.02.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/09/2005] [Accepted: 02/10/2005] [Indexed: 11/28/2022]
Abstract
A fluorimetric assay for monitoring depurination of the N7-alkylguanine adduct derived from the anticancer natural product leinamycin is described. This general approach could potentially provide the foundation for a high throughput assay that detects DNA-alkylating agents or a convenient continuous fluorimetric assay for base excision repair enzymes.
Collapse
Affiliation(s)
- Ekaterina Shipova
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | |
Collapse
|