1
|
Madhwani KR, Sayied S, Ogata CH, Hogan CA, Lentini JM, Mallik M, Dumouchel JL, Storkebaum E, Fu D, O’Connor-Giles KM. tRNA modification enzyme-dependent redox homeostasis regulates synapse formation and memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566895. [PMID: 38014328 PMCID: PMC10680711 DOI: 10.1101/2023.11.14.566895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA modifying enzyme that methylates wobble uridines in specific tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis. Pathogenic variants in ALKBH8 have been linked to intellectual disability disorders in the human population, but the role of ALKBH8 in the nervous system is unknown. Through in vivo studies in Drosophila, we show that ALKBH8 controls oxidative stress in the brain to restrain synaptic growth and support learning and memory. ALKBH8 null animals lack wobble uridine methylation and exhibit a global reduction in protein synthesis, including a specific decrease in selenoprotein levels. Loss of ALKBH8 or independent disruption of selenoprotein synthesis results in ectopic synapse formation. Genetic expression of antioxidant enzymes fully suppresses synaptic overgrowth in ALKBH8 null animals, confirming oxidative stress as the underlying cause of dysregulation. ALKBH8 animals also exhibit associative learning and memory impairments that are reversed by pharmacological antioxidant treatment. Together, these findings demonstrate the critical role of tRNA modification in redox homeostasis in the nervous system and reveal antioxidants as a potential therapy for ALKBH8-associated intellectual disability.
Collapse
Affiliation(s)
| | - Shanzeh Sayied
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | | - Caley A. Hogan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | | | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Ben SB, Peng B, Wang GC, Li C, Gu HF, Jiang H, Meng XL, Lee BJ, Chen CL. Overexpression of Selenoprotein SelK in BGC-823 Cells Inhibits Cell Adhesion and Migration. BIOCHEMISTRY (MOSCOW) 2016; 80:1344-53. [PMID: 26567579 DOI: 10.1134/s0006297915100168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effects of human selenoprotein SelK on the adhesion and migration ability of human gastric cancer BGC-823 cells using Matrigel adhesion and transwell migration assays, respectively, were investigated in this study. The Matrigel adhesion ability of BGC-823 cells that overexpressed SelK declined extremely significantly (p < 0.01) compared with that of the cells not expressing the protein. The migration ability of BGC-823 cells that overexpressed SelK also declined extremely significantly (p < 0.01). On the other hand, the Matrigel adhesion ability and migration ability of the cells that overexpressed C-terminally truncated SelK did not decline significantly. The Matrigel adhesion ability and migration ability of human embryonic kidney HEK-293 cells that overexpressed SelK did not show significant change (p > 0.05) with the cells that overexpressed the C-terminally truncated protein. In addition to the effect on Matrigel adhesion and migration, the overexpression of SelK also caused a loss in cell viability (as measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) colorimetric assay) and induced apoptosis as shown by confocal microscopy and flow cytometry. The cytosolic free Ca2+ level of these cells was significantly increased as detected by flow cytometry. But the overexpression of SelK in HEK-293 cells caused neither significant loss in cell viability nor apoptosis induction. Only the elevation of cytosolic free Ca2+ level in these cells was significant. Taken together, the results suggest that the overexpression of SelK can inhibit human cancer cell Matrigel adhesion and migration and cause both the loss in cell viability and induction of apoptosis. The release of intracellular Ca2+ from the endoplasmic reticulum might be a mechanism whereby the protein exerted its impact. Furthermore, only the full-length protein, but not C-terminally truncated form, was capable of producing such impact. The embryonic cells were not influenced by the elevation of free Ca2+ level in cytosol, probably due to their much greater tolerance to the variation.
Collapse
Affiliation(s)
- S B Ben
- School of Life Science, Liaoning University, Shenyang, 110036, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Li G, Liu L, Li P, Chen L, Song H, Zhang Y. Gene expression profiling of selenophosphate synthetase 2 knockdown in Drosophila melanogaster. Metallomics 2016; 8:354-65. [PMID: 26824785 DOI: 10.1039/c5mt00134j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium (Se) is an important trace element for many organisms and is incorporated into selenoproteins as selenocysteine (Sec). In eukaryotes, selenophosphate synthetase SPS2 is essential for Sec biosynthesis. In recent years, genetic disruptions of both Sec biosynthesis genes and selenoprotein genes have been investigated in different animal models, which provide important clues for understanding the Se metabolism and function in these organisms. However, a systematic study on the knockdown of SPS2 has not been performed in vivo. Herein, we conducted microarray experiments to study the transcriptome of fruit flies with knockdown of SPS2 in larval and adult stages. Several hundred differentially expressed genes were identified in each stage. In spite that the expression levels of other Sec biosynthesis genes and selenoprotein genes were not significantly changed, it is possible that selenoprotein translation might be reduced without impacting the mRNA level. Functional enrichment and network-based analyses revealed that although different sets of differentially expressed genes were obtained in each stage, they were both significantly enriched in the carbohydrate metabolism and redox processes. Furthermore, protein-protein interaction (PPI)-based network clustering analysis implied that several hub genes detected in the top modules, such as Nimrod C1 and regucalcin, could be considered as key regulators that are responsible for the complex responses caused by SPS2 knockdown. Overall, our data provide new insights into the relationship between Se utilization and several fundamental cellular processes as well as diseases.
Collapse
Affiliation(s)
- Gaopeng Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China. and Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. and Key Laboratory of Food Safety Risk Assessment Ministry of Health, Beijing, China
| | - Liying Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. and Key Laboratory of Food Safety Risk Assessment Ministry of Health, Beijing, China
| | - Ping Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. and Key Laboratory of Food Safety Risk Assessment Ministry of Health, Beijing, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Haiyun Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. and Key Laboratory of Food Safety Risk Assessment Ministry of Health, Beijing, China
| | - Yan Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. and Key Laboratory of Food Safety Risk Assessment Ministry of Health, Beijing, China
| |
Collapse
|
4
|
Ben SB, Wang QY, Xia L, Xia JZ, Cui J, Wang J, Yang F, Bai H, Shim MS, Lee BJ, Sun LG, Chen CL. Selenoprotein dSelK in Drosophila elevates release of Ca2+ from endoplasmic reticulum by upregulating expression of inositol 1,4,5-tris-phosphate receptor. BIOCHEMISTRY (MOSCOW) 2012; 76:1030-6. [PMID: 22082272 DOI: 10.1134/s0006297911090070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
dSelK (G-rich), a homolog of human and mouse SelK, is one of three selenoproteins in Drosophila melanogaster. It is the only trans-membrane selenoprotein in D. melanogaster integrated into both the endoplasmic reticulum (ER) membrane and the Golgi apparatus. The gene expression profile of Drosophila Schneider 2 (S2) cells after the dsRNA interference (dsRNAi) targeting of dSelK was examined with the GeneChip Drosophila Genome 2.0 Array (Affymetrix), a high-density oligonucleotide microarray encompassing nearly the full Drosophila genome. The results showed that the transcriptional expression of eight genes whose proteins are located on (or related to) the ER or the Golgi apparatus was highly induced or repressed by the dsRNAi treatment. The mRNA levels of the inositol 1,4,5-tris-phosphate receptor (IP3 receptor), whose gene product is integrated into the ER membrane and regulates the release of Ca2+ from the ER to the cytosol, were significantly downregulated. In contrast, the expression of inositol 1,4,5-tris-phosphate kinase 1, which is a cytosolic protein with opposing functions to the IP3 receptor, was significantly upregulated. Quantitative real-time PCR verified these results. The concentration of intracellular free Ca2+ of the Drosophila S2 cells was significantly decreased after the knockdown of dSelK, whereas overexpression of dSelK significantly increased the intracellular free Ca2+ concentration. These results indicate that dSelK in D. melanogaster is involved in regulating the release of Ca2+ from the ER to the cytosol and may play important roles in the signal transduction pathways involving Ca2+ mobilization.
Collapse
Affiliation(s)
- S B Ben
- School of Life Science, Liaoning University, Shenyang, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
l(2)01810 is a novel type of glutamate transporter that is responsible for megamitochondrial formation. Biochem J 2011; 439:277-86. [PMID: 21728998 DOI: 10.1042/bj20110582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
l(2)01810 causes glutamine-dependent megamitochondrial formation when it is overexpressed in Drosophila cells. In the present study, we elucidated the function of l(2)01810 during megamitochondrial formation. The overexpression of l(2)01810 and the inhibition of glutamine synthesis showed that l(2)01810 is involved in the accumulation of glutamate. l(2)01810 was predicted to contain transmembrane domains and was found to be localized to the plasma membrane. By using (14)C-labelled glutamate, l(2)01810 was confirmed to uptake glutamate into Drosophila cells with high affinity (K(m)=69.4 μM). Also, l(2)01810 uptakes glutamate in a Na(+)-independent manner. Interestingly, however, this uptake was not inhibited by cystine, which is a competitive inhibitor of Na(+)-independent glutamate transporters, but by aspartate. A signal peptide consisting of 34 amino acid residues targeting to endoplasmic reticulum was predicted at the N-terminus of l(2)01810 and this signal peptide is essential for the protein's localization to the plasma membrane. In addition, l(2)01810 has a conserved functional domain of a vesicular-type glutamate transporter, and Arg(146) in this domain was found to play a key role in glutamate transport and megamitochondrial formation. These results indicate that l(2)01810 is a novel type of glutamate transporter and that glutamate uptake is a rate-limiting step for megamitochondrial formation.
Collapse
|
6
|
Shim MS, Kim JY, Jung HK, Lee KH, Xu XM, Carlson BA, Kim KW, Kim IY, Hatfield DL, Lee BJ. Elevation of glutamine level by selenophosphate synthetase 1 knockdown induces megamitochondrial formation in Drosophila cells. J Biol Chem 2009; 284:32881-94. [PMID: 19755423 PMCID: PMC2781704 DOI: 10.1074/jbc.m109.026492] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/11/2009] [Indexed: 11/06/2022] Open
Abstract
Although selenophosphate synthetase 1 (SPS1/SelD) is an essential gene in Drosophila, its function has not been determined. To elucidate its intracellular role, we targeted the removal of SPS1/SelD mRNA in Drosophila SL2 cells using RNA interference technology that led to the formation of vacuole-like globular structures. Surprisingly, these structures were identified as megamitochondria, and only depolarized mitochondria developed into megamitochondria. The mRNA levels of l(2)01810 and glutamine synthetase 1 (GS1) were increased by SPS1/SelD knockdown. Blocking the expression of GS1 and l(2)01810 completely inhibited the formation of megamitochondria induced by loss of SPS1/SelD activity and decreased the intracellular levels of glutamine to those of control cells suggesting that the elevated level of glutamine is responsible for megamitochondrial formation. Overexpression of GS1 and l(2)01810 had a synergistic effect on the induction of megamitochondrial formation and on the synthesis of glutamine suggesting that l(2)01810 is involved in glutamine synthesis presumably by activating GS1. Our results indicate that, in Drosophila, SPS1/SelD regulates the intracellular glutamine by inhibiting GS1 and l(2)01810 expression and that elevated levels of glutamine lead to a nutritional stress that provides a signal for megamitochondrial formation.
Collapse
Affiliation(s)
- Myoung Sup Shim
- From the
Laboratory of Molecular Genetics and Genomics, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea
| | - Jin Young Kim
- From the
Laboratory of Molecular Genetics and Genomics, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea
| | - Hee Kyoung Jung
- From the
Laboratory of Molecular Genetics and Genomics, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea
| | - Kwang Hee Lee
- From the
Laboratory of Molecular Genetics and Genomics, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea
| | - Xue-Ming Xu
- Laboratory of Cancer Prevention, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Bradley A. Carlson
- Laboratory of Cancer Prevention, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Ki Woo Kim
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Science, Seoul National University, Seoul 151-742, Korea, and
| | - Ick Young Kim
- Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Dolph L. Hatfield
- Laboratory of Cancer Prevention, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Byeong Jae Lee
- From the
Laboratory of Molecular Genetics and Genomics, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
7
|
Kopytova DV, Nikolenko YV, Lebedeva LA, Nabirochkina EN, Shidlovskii YV, Georgieva SG, Krasnov AN. Study of the Drosophila melanogaster trf2 gene and its protein product. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408020026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
The DRE/DREF transcriptional regulatory system: a master key for cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2007; 1779:81-9. [PMID: 18155677 DOI: 10.1016/j.bbagrm.2007.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 11/23/2022]
Abstract
The coordinate expression of many cell proliferation-related genes is required for the cellular shift from the resting state into the proliferating state. One regulatory factor involved in this process, the transcription regulatory factor named DREF (DNA replication-related element-binding factor) was discovered in Drosophila and later found to have orthologues in other species including human. Drosophila DREF is a homo-dimer of a polypeptide of 709 amino acid residues, and shares about 22% identity in its amino acid sequence with the human homolog of 694 amino acid residues. The Drosophila DREF homo-dimer binds specifically to the DRE sequence (5'-TATCGATA) in the promoters of many DNA replication/ cell proliferation-related genes to activate their transcription, and the N-terminal region of DREF carries a domain for specific DRE-binding and homo-dimer formation. Ectopic expression of DREF in eye imaginal discs induces abnormal DNA synthesis, apoptosis and failure to differentiate. Conversely, expression of the dominant negative N-terminal region in larval salivary glands reduces endo-replication. Furthermore, RNA interference-mediated knockdown of DREF in vivo demonstrated its requirement for normal progression through the cell cycle and consequently for growth of imaginal discs and the endoreplicating organs. Both Drosophila and human DREF's interact genetically and physically with regulatory factors related to chromatin structures, suggesting that DREF activates the expression of proliferation-related genes through modification of the 3-D conformation of DNA. A search of the Drosophila genome database identified about 150 genes carrying DRE sequences in their promoter regions, many of which are related to reactions required for cell proliferation such as DNA replication, transcriptional regulation, cell cycle regulation, growth signal transduction and protein metabolism. Thus, DREF appears to be a master key-like factor for cell proliferation. Several differentiation-related transcription factors containing homeodomains down-regulate the function or expression of DREF by distinct mechanisms, suggesting a differentiation-coupled repression of cell proliferation via the DRE/DREF system.
Collapse
|
9
|
Kopytova DV, Krasnov AN, Kopantceva MR, Nabirochkina EN, Nikolenko JV, Maksimenko O, Kurshakova MM, Lebedeva LA, Yerokhin MM, Simonova OB, Korochkin LI, Tora L, Georgiev PG, Georgieva SG. Two isoforms of Drosophila TRF2 are involved in embryonic development, premeiotic chromatin condensation, and proper differentiation of germ cells of both sexes. Mol Cell Biol 2006; 26:7492-505. [PMID: 17015475 PMCID: PMC1636870 DOI: 10.1128/mcb.00349-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila TATA box-binding protein (TBP)-related factor 2 (TRF2 or TLF) was shown to control a subset of genes different from that controlled by TBP. Here, we have investigated the structure and functions of the trf2 gene. We demonstrate that it encodes two protein isoforms: the previously described 75-kDa TRF2 and a newly identified 175-kDa version in which the same sequence is preceded by a long N-terminal domain with coiled-coil motifs. Chromatography of Drosophila embryo extracts revealed that the long TRF2 is part of a multiprotein complex also containing ISWI. Both TRF2 forms are detected at the same sites on polytene chromosomes and have the same expression patterns, suggesting that they fulfill similar functions. A study of the manifestations of the trf2 mutation suggests an essential role of TRF2 during embryonic Drosophila development. The trf2 gene is strongly expressed in germ line cells of adult flies. High levels of TRF2 are found in nuclei of primary spermatocytes and trophocytes with intense transcription. In ovaries, TRF2 is present both in actively transcribing nurse cells and in the transcriptionally inactive oocyte nuclei. Moreover, TRF2 is essential for premeiotic chromatin condensation and proper differentiation of germ cells of both sexes.
Collapse
Affiliation(s)
- Daria V Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov St. 34/5, Moscow 119334, Russian Federation
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pápai G, Komonyi O, Tóth Z, Pankotai T, Muratoglu S, Udvardy A, Boros I. Intimate relationship between the genes of two transcriptional coactivators, ADA2a and PIMT, of Drosophila. Gene 2005; 348:13-23. [PMID: 15777699 DOI: 10.1016/j.gene.2005.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 12/13/2004] [Accepted: 01/06/2005] [Indexed: 11/19/2022]
Abstract
PIMT, a transcriptional coactivator which interacts with and enhances nuclear receptor coactivator PRIP function, was identified recently in mammalian cells and suggested to function as a link between two major multiprotein complexes anchored by CBP/p300 and PBP. Here we describe that the gene of the Drosophila homologue of PIMT, designated as Dtl, is closely associated and has an overlapping promoter with a gene encoding another transcriptional coactivator, ADA2a, which in turn participates in GCN5 HAT-containing complexes. Ada2a also produces an RNA polII subunit, RPB4, via alternative splicing; consequently, an overlapping regulatory region serves for the production of three proteins, each involved in transcription. By studying expression of reporter gene fusions in tissue culture cells and transgenic animals we have demonstrated that the regulatory regions of Ada2a/Rpb4 and Dtl overlap and the Dtl promoter is partly within the Ada2a/Rpb4 coding region. The shared regulatory region contains a DRE element, binding site of DREF, the protein factor involved in the regulation of a number of genes which play a role in DNA replication and cell proliferation. Despite the perfectly symmetrical DRE, DREF seems to have a more decisive role in Ada2a/Rpb4 transcription than in the transcription of Dtl.
Collapse
Affiliation(s)
- Gábor Pápai
- Institute of Biochemistry, Biological Research Center Temesvari krt.62, Szeged, 6726, Hungary
| | | | | | | | | | | | | |
Collapse
|