1
|
Lagas JS, Sentmanat MF, Cui X. Efficient GBA1 editing via HDR with ssODNs by outcompeting pseudogene-mediated gene conversion upon CRISPR/Cas9 cleavage. Front Genome Ed 2025; 7:1581743. [PMID: 40371365 PMCID: PMC12075325 DOI: 10.3389/fgeed.2025.1581743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction CRISPR/Cas9-edited induced pluripotent stem cells (iPSCs) are valuable research models for mechanistic studies. However, gene conversion between a gene-pseudogene pair that share high sequence identity and form direct repeats in proximity on the same chromosome can interfere with the precision of gene editing. Mutations in the human beta-glucocerebrosidase gene (GBA1) are associated with Gaucher disease, Parkinson's disease, and Lewy body dementia. During the creation of a GBA1 KO iPSC line, we detected about 70% gene conversion from its pseudogene GBAP1. These events maintained the reading frame and resulted from GBA1-specific cleavage by CRISPR/Cas9, without disrupting the GBA1 gene. Method To increase the percentage of alleles with out-of-frame indels for triggering nonsense-mediated decay of the GBA1 mRNA, we supplied the cells with two single-stranded oligodeoxynucleotide (ssODN) donors as homology-directed repair (HDR) templates. Results We demonstrate that HDR using the ssODN templates effectively competes with gene conversion and enabled biallelic KO clone isolation, whereas the nonallelic homologous recombination (NAHR)-based deletion rate remained the same. Discussion Here, we report a generalizable method to direct cellular DNA repair of double strand breaks at a target gene towards the HDR pathway using exogenous ssODN templates, allowing specific editing of one gene in a gene-pseudogene pair without disturbing the other.
Collapse
Affiliation(s)
| | | | - Xiaoxia Cui
- Department of Genetics, Genome Engineering and Stem Cell Center at the McDonnel Genome Institute (GESC@MGI), School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
2
|
Badakul G, Nickoloff JA, Kato TA. Analyzing Homologous Recombination Using Antibiotic Marker Substrates in Mammalian Cells. Methods Mol Biol 2025; 2933:141-148. [PMID: 40418484 DOI: 10.1007/978-1-0716-4574-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Mammalian cell lines with single-copy, integrated plasmid homologous recombination (HR) substrates are valuable tools to assess spontaneous and DNA double-strand break (DSB)-induced HR in vivo. Two common systems employ repeats of fluorescent markers (e.g., GFP) or antibiotic-resistance markers (e.g., neo). Here, we describe the use of Chinese hamster ovary (CHO) strain 33 as an effective model system for studying DSB-induced HR, a critical DSB repair pathway that generally preserves genomic integrity. This assay utilizes the I-SceI endonuclease from Saccharomyces cerevisiae, which recognizes a unique 18 bp sequence to induce a targeted DSB, thereby triggering HR between neo direct repeats. In this system, one neo allele, referred to as neo12, contains silent mutations that reduce spontaneous recombination, while the other allele is inactivated by an I-SceI restriction site, allowing regulated initiation of recombination. CHO strain 33 demonstrates an exceptionally low background recombination rate in comparison to the direct repeat green fluorescent protein (DR-GFP) assay, which has high spontaneous activity. Furthermore, recombination frequency in CHO strain 33 can be quantified precisely using colony formation assays, eliminating the need for microscopy or flow cytometry, which is typically required to analyze HR with DR-GFP. This protocol outlines comprehensive methods for detecting I-SceI-induced neo gene conversion or single-strand annealing (SSA) in CHO strain 33. This general protocol can be extended to other cell lines with wild-type or mutant DNA repair and DNA damage checkpoint genetic backgrounds, providing a robust framework for understanding HR mechanisms and evaluating the impact of DNA repair and checkpoint defects on DSB-induced HR repair frequencies and HR product spectra.
Collapse
Affiliation(s)
- Gamze Badakul
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jac A Nickoloff
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
3
|
Li Z, Xie L, Zou L, Xiao S, Tao J. Overexpression of RAD54L attenuates osteoarthritis by suppressing the HIF-1α/VEGF signaling pathway: Bioinformatics analysis and experimental validation. PLoS One 2024; 19:e0298575. [PMID: 38593124 PMCID: PMC11003635 DOI: 10.1371/journal.pone.0298575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/28/2024] [Indexed: 04/11/2024] Open
Abstract
Osteoarthritis (OA) is a widespread chronic, progressive, degenerative joint disease that causes pain and disability. Current treatments for OA have limited effectiveness and new biomarkers need to be identified. Bioinformatics analysis was conducted to explore differentially expressed genes and DNA repair/recombination protein 54 L (RAD54L) was selected. We firstly overexpressed RAD54L in interleukin-1β (IL-1β)-induced human articular chondrocytes or in OA rats to investigate its effect on OA. Chondrocyte viability and apoptotic rate were measured by Cell Counting Kit-8 and flow cytometry, respectively. Then we evaluated OA severity in vivo by Hematoxylin-eosin staining and Osteoarthritis Research Society International standards. The expression of inflammatory mediators was tested by enzyme-linked immunosorbent assay. Finally, western blot was performed to determine the relative expression level of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Overexpression of RAD54L promoted cell viability and attenuated apoptosis in IL-1β-induced human chondrocytes. A lower Osteoarthritis Research Society International score and a remarkable alleviation of chondrocyte disordering and infiltration of inflammatory cells were found in cartilage tissues of OA rats after overexpressing RAD54L. The inflammatory response induced by OA was decreased by RAD54L overexpression in vitro and in vivo. In addition, RAD54L overexpression decreased the relative expression level of HIF-1α and VEGF. Overexpression of RAD54L could attenuate OA by suppressing the HIF-1α/VEGF signaling pathway, indicating that RAD54L may be a potential treatment target for OA.
Collapse
Affiliation(s)
- Zhengnan Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang City, Jiangxi Province, China
- Department of Sports Medicine, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People’s Hospital), Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Lifeng Xie
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang City, Jiangxi Province, China
| | - Longqiang Zou
- Department of Sports Medicine, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People’s Hospital), Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Shiliang Xiao
- Department of Sports Medicine, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People’s Hospital), Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Jun Tao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang City, Jiangxi Province, China
| |
Collapse
|
4
|
Frequent nonallelic gene conversion on the human lineage and its effect on the divergence of gene duplicates. Proc Natl Acad Sci U S A 2017; 114:12779-12784. [PMID: 29138319 DOI: 10.1073/pnas.1708151114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gene conversion is the copying of a genetic sequence from a "donor" region to an "acceptor." In nonallelic gene conversion (NAGC), the donor and the acceptor are at distinct genetic loci. Despite the role NAGC plays in various genetic diseases and the concerted evolution of gene families, the parameters that govern NAGC are not well characterized. Here, we survey duplicate gene families and identify converted tracts in 46% of them. These conversions reflect a large GC bias of NAGC. We develop a sequence evolution model that leverages substantially more information in duplicate sequences than used by previous methods and use it to estimate the parameters that govern NAGC in humans: a mean converted tract length of 250 bp and a probability of [Formula: see text] per generation for a nucleotide to be converted (an order of magnitude higher than the point mutation rate). Despite this high baseline rate, we show that NAGC slows down as duplicate sequences diverge-until an eventual "escape" of the sequences from its influence. As a result, NAGC has a small average effect on the sequence divergence of duplicates. This work improves our understanding of the NAGC mechanism and the role that it plays in the evolution of gene duplicates.
Collapse
|
5
|
Kursel LE, Malik HS. Recurrent Gene Duplication Leads to Diverse Repertoires of Centromeric Histones in Drosophila Species. Mol Biol Evol 2017; 34:1445-1462. [PMID: 28333217 PMCID: PMC5435080 DOI: 10.1093/molbev/msx091] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite their essential role in the process of chromosome segregation in most eukaryotes, centromeric histones show remarkable evolutionary lability. Not only have they been lost in multiple insect lineages, but they have also undergone gene duplication in multiple plant lineages. Based on detailed study of a handful of model organisms including Drosophila melanogaster, centromeric histone duplication is considered to be rare in animals. Using a detailed phylogenomic study, we find that Cid, the centromeric histone gene, has undergone at least four independent gene duplications during Drosophila evolution. We find duplicate Cid genes in D. eugracilis (Cid2), in the montium species subgroup (Cid3, Cid4) and in the entire Drosophila subgenus (Cid5). We show that Cid3, Cid4, and Cid5 all localize to centromeres in their respective species. Some Cid duplicates are primarily expressed in the male germline. With rare exceptions, Cid duplicates have been strictly retained after birth, suggesting that they perform nonredundant centromeric functions, independent from the ancestral Cid. Indeed, each duplicate encodes a distinct N-terminal tail, which may provide the basis for distinct protein–protein interactions. Finally, we show some Cid duplicates evolve under positive selection whereas others do not. Taken together, our results support the hypothesis that Drosophila Cid duplicates have subfunctionalized. Thus, these gene duplications provide an unprecedented opportunity to dissect the multiple roles of centromeric histones.
Collapse
Affiliation(s)
- Lisa E Kursel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
6
|
Morrow CA, Nguyen MO, Fower A, Wong IN, Osman F, Bryer C, Whitby MC. Inter-Fork Strand Annealing causes genomic deletions during the termination of DNA replication. eLife 2017; 6. [PMID: 28586299 PMCID: PMC5461108 DOI: 10.7554/elife.25490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/22/2017] [Indexed: 11/29/2022] Open
Abstract
Problems that arise during DNA replication can drive genomic alterations that are instrumental in the development of cancers and many human genetic disorders. Replication fork barriers are a commonly encountered problem, which can cause fork collapse and act as hotspots for replication termination. Collapsed forks can be rescued by homologous recombination, which restarts replication. However, replication restart is relatively slow and, therefore, replication termination may frequently occur by an active fork converging on a collapsed fork. We find that this type of non-canonical fork convergence in fission yeast is prone to trigger deletions between repetitive DNA sequences via a mechanism we call Inter-Fork Strand Annealing (IFSA) that depends on the recombination proteins Rad52, Exo1 and Mus81, and is countered by the FANCM-related DNA helicase Fml1. Based on our findings, we propose that IFSA is a potential threat to genomic stability in eukaryotes. DOI:http://dx.doi.org/10.7554/eLife.25490.001
Collapse
Affiliation(s)
- Carl A Morrow
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Michael O Nguyen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Andrew Fower
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Io Nam Wong
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Fekret Osman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Claire Bryer
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Allen CP, Hirakawa H, Nakajima NI, Moore S, Nie J, Sharma N, Sugiura M, Hoki Y, Araki R, Abe M, Okayasu R, Fujimori A, Nickoloff JA. Low- and High-LET Ionizing Radiation Induces Delayed Homologous Recombination that Persists for Two Weeks before Resolving. Radiat Res 2017; 188:82-93. [PMID: 28535128 DOI: 10.1667/rr14748.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genome instability is a hallmark of cancer cells and dysregulation or defects in DNA repair pathways cause genome instability and are linked to inherited cancer predisposition syndromes. Ionizing radiation can cause immediate effects such as mutation or cell death, observed within hours or a few days after irradiation. Ionizing radiation also induces delayed effects many cell generations after irradiation. Delayed effects include hypermutation, hyper-homologous recombination, chromosome instability and reduced clonogenic survival (delayed death). Delayed hyperrecombination (DHR) is mechanistically distinct from delayed chromosomal instability and delayed death. Using a green fluorescent protein (GFP) direct repeat homologous recombination system, time-lapse microscopy and colony-based assays, we demonstrate that DHR increases several-fold in response to low-LET X rays and high-LET carbon-ion radiation. Time-lapse analyses of DHR revealed two classes of recombinants not detected in colony-based assays, including cells that recombined and then senesced or died. With both low- and high-LET radiation, DHR was evident during the first two weeks postirradiation, but resolved to background levels during the third week. The results indicate that the risk of radiation-induced genome destabilization via DHR is time limited, and suggest that there is little or no additional risk of radiation-induced genome instability mediated by DHR with high-LET radiation compared to low-LET radiation.
Collapse
Affiliation(s)
- Christopher P Allen
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Hirokazu Hirakawa
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Nakako Izumi Nakajima
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Sophia Moore
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Jingyi Nie
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Neelam Sharma
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Mayumi Sugiura
- c Division of Natural Sciences, Research Group of Biological Sciences, Nara Women's University, Nara, Japan
| | - Yuko Hoki
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Ryoko Araki
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Masumi Abe
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Ryuichi Okayasu
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Akira Fujimori
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Jac A Nickoloff
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| |
Collapse
|
8
|
Trombetta B, Fantini G, D'Atanasio E, Sellitto D, Cruciani F. Evidence of extensive non-allelic gene conversion among LTR elements in the human genome. Sci Rep 2016; 6:28710. [PMID: 27346230 PMCID: PMC4921805 DOI: 10.1038/srep28710] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Long Terminal Repeats (LTRs) are nearly identical DNA sequences found at either end of Human Endogenous Retroviruses (HERVs). The high sequence similarity that exists among different LTRs suggests they could be substrate of ectopic gene conversion events. To understand the extent to which gene conversion occurs and to gain new insights into the evolutionary history of these elements in humans, we performed an intra-species phylogenetic study of 52 LTRs on different unrelated Y chromosomes. From this analysis, we obtained direct evidence that demonstrates the occurrence of ectopic gene conversion in several LTRs, with donor sequences located on both sex chromosomes and autosomes. We also found that some of these elements are characterized by an extremely high density of polymorphisms, showing one of the highest nucleotide diversities in the human genome, as well as a complex patchwork of sequences derived from different LTRs. Finally, we highlighted the limits of current short-read NGS studies in the analysis of genetic diversity of the LTRs in the human genome. In conclusion, our comparative re-sequencing analysis revealed that ectopic gene conversion is a common event in the evolution of LTR elements, suggesting complex genetic links among LTRs from different chromosomes.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Gloria Fantini
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | | | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
9
|
Dumont BL. Interlocus gene conversion explains at least 2.7% of single nucleotide variants in human segmental duplications. BMC Genomics 2015; 16:456. [PMID: 26077037 PMCID: PMC4467073 DOI: 10.1186/s12864-015-1681-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/01/2015] [Indexed: 01/24/2023] Open
Abstract
Background Interlocus gene conversion (IGC) is a recombination-based mechanism that results in the unidirectional transfer of short stretches of sequence between paralogous loci. Although IGC is a well-established mechanism of human disease, the extent to which this mutagenic process has shaped overall patterns of segregating variation in multi-copy regions of the human genome remains unknown. One expected manifestation of IGC in population genomic data is the presence of one-to-one paralogous SNPs that segregate identical alleles. Results Here, I use SNP genotype calls from the low-coverage phase 3 release of the 1000 Genomes Project to identify 15,790 parallel, shared SNPs in duplicated regions of the human genome. My approach for identifying these sites accounts for the potential redundancy of short read mapping in multi-copy genomic regions, thereby effectively eliminating false positive SNP calls arising from paralogous sequence variation. I demonstrate that independent mutation events to identical nucleotides at paralogous sites are not a significant source of shared polymorphisms in the human genome, consistent with the interpretation that these sites are the outcome of historical IGC events. These putative signals of IGC are enriched in genomic contexts previously associated with non-allelic homologous recombination, including clear signals in gene families that form tandem intra-chromosomal clusters. Conclusions Taken together, my analyses implicate IGC, not point mutation, as the mechanism generating at least 2.7 % of single nucleotide variants in duplicated regions of the human genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1681-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beth L Dumont
- Initiative in Biological Complexity, North Carolina State University, 112 Derieux Place, 3510 Thomas Hall, Campus Box 7614, Raleigh, NC, 27695-7614, USA.
| |
Collapse
|
10
|
Baranasic D, Oppermann T, Cheaib M, Cullum J, Schmidt H, Simon M. Genomic characterization of variable surface antigens reveals a telomere position effect as a prerequisite for RNA interference-mediated silencing in Paramecium tetraurelia. mBio 2014; 5:e01328. [PMID: 25389173 PMCID: PMC4235209 DOI: 10.1128/mbio.01328-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 06/24/2014] [Indexed: 12/02/2022] Open
Abstract
UNLABELLED Antigenic or phenotypic variation is a widespread phenomenon of expression of variable surface protein coats on eukaryotic microbes. To clarify the mechanism behind mutually exclusive gene expression, we characterized the genetic properties of the surface antigen multigene family in the ciliate Paramecium tetraurelia and the epigenetic factors controlling expression and silencing. Genome analysis indicated that the multigene family consists of intrachromosomal and subtelomeric genes; both classes apparently derive from different gene duplication events: whole-genome and intrachromosomal duplication. Expression analysis provides evidence for telomere position effects, because only subtelomeric genes follow mutually exclusive transcription. Microarray analysis of cultures deficient in Rdr3, an RNA-dependent RNA polymerase, in comparison to serotype-pure wild-type cultures, shows cotranscription of a subset of subtelomeric genes, indicating that the telomere position effect is due to a selective occurrence of Rdr3-mediated silencing in subtelomeric regions. We present a model of surface antigen evolution by intrachromosomal gene duplication involving the maintenance of positive selection of structurally relevant regions. Further analysis of chromosome heterogeneity shows that alternative telomere addition regions clearly affect transcription of closely related genes. Consequently, chromosome fragmentation appears to be of crucial importance for surface antigen expression and evolution. Our data suggest that RNAi-mediated control of this genetic network by trans-acting RNAs allows rapid epigenetic adaptation by phenotypic variation in combination with long-term genetic adaptation by Darwinian evolution of antigen genes. IMPORTANCE Alternating surface protein structures have been described for almost all eukaryotic microbes, and a broad variety of functions have been described, such as virulence factors, adhesion molecules, and molecular camouflage. Mechanisms controlling gene expression of variable surface proteins therefore represent a powerful tool for rapid phenotypic variation across kingdoms in pathogenic as well as free-living eukaryotic microbes. However, the epigenetic mechanisms controlling synchronous expression and silencing of individual genes are hardly understood. Using the ciliate Paramecium tetraurelia as a (epi)genetic model, we showed that a subtelomeric gene position effect is associated with the selective occurrence of RNAi-mediated silencing of silent surface protein genes, suggesting small interfering RNA (siRNA)-mediated epigenetic cross talks between silent and active surface antigen genes. Our integrated genomic and molecular approach discloses the correlation between gene position effects and siRNA-mediated trans-silencing, thus providing two new parameters for regulation of mutually exclusive gene expression and the genomic organization of variant gene families.
Collapse
Affiliation(s)
| | - Timo Oppermann
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - John Cullum
- Department for Genetics, Faculty of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Helmut Schmidt
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Martin Simon
- Saarland University, Centre for Human and Molecular Biology, Molecular Cellular Dynamics, Saarbrücken, Germany
| |
Collapse
|
11
|
Brown JC. The role of DNA repair in herpesvirus pathogenesis. Genomics 2014; 104:287-94. [DOI: 10.1016/j.ygeno.2014.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/12/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
|
12
|
Pryszcz LP, Németh T, Gácser A, Gabaldón T. Unexpected genomic variability in clinical and environmental strains of the pathogenic yeast Candida parapsilosis. Genome Biol Evol 2014; 5:2382-92. [PMID: 24259314 PMCID: PMC3879973 DOI: 10.1093/gbe/evt185] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Invasive candidiasis is the most commonly reported invasive fungal infection worldwide. Although Candida albicans remains the main cause, the incidence of emerging Candida species, such as C. parapsilosis is increasing. It has been postulated that C. parapsilosis clinical isolates result from a recent global expansion of a virulent clone. However, the availability of a single genome for this species has so far prevented testing this hypothesis at genomic scales. We present here the sequence of three additional strains from clinical and environmental samples. Our analyses reveal unexpected patterns of genomic variation, shared among distant strains, that argue against the clonal expansion hypothesis. All strains carry independent expansions involving an arsenite transporter homolog, pointing to the existence of directional selection in the environment, and independent origins of the two clinical isolates. Furthermore, we report the first evidence for the existence of recombination in this species. Altogether, our results shed new light onto the dynamics of genome evolution in C. parapsilosis.
Collapse
Affiliation(s)
- Leszek P Pryszcz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | | | | | | |
Collapse
|
13
|
Rapid and accurate large-scale genotyping of duplicated genes and discovery of interlocus gene conversions. Nat Methods 2013; 10:903-9. [PMID: 23892896 PMCID: PMC3985568 DOI: 10.1038/nmeth.2572] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/06/2013] [Indexed: 01/17/2023]
Abstract
Over 900 genes have been annotated within duplicated regions of the human genome, yet their functions and potential roles in disease remain largely unknown. One major obstacle has been the inability to accurately and comprehensively assay genetic variation for these genes in a high-throughput manner. We developed a sequencing-based method for rapid and high-throughput genotyping of duplicated genes using molecular inversion probes designed to target unique paralogous sequence variants. We applied this method to genotype all members of two gene families, SRGAP2 and RH, among a diversity panel of 1,056 humans. The approach could accurately distinguish copy number in paralogs having up to ∼99.6% sequence identity, identify small gene-disruptive deletions, detect single-nucleotide variants, define breakpoints of unequal crossover and discover regions of interlocus gene conversion. The ability to rapidly and accurately genotype multiple gene families in thousands of individuals at low cost enables the development of genome-wide gene conversion maps and 'unlocks' many previously inaccessible duplicated genes for association with human traits.
Collapse
|
14
|
Chow EWL, Morrow CA, Djordjevic JT, Wood IA, Fraser JA. Microevolution of Cryptococcus neoformans driven by massive tandem gene amplification. Mol Biol Evol 2012; 29:1987-2000. [PMID: 22334577 DOI: 10.1093/molbev/mss066] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The subtelomeric regions of organisms ranging from protists to fungi undergo a much higher rate of rearrangement than is observed in the rest of the genome. While characterizing these ~40-kb regions of the human fungal pathogen Cryptococcus neoformans, we have identified a recent gene amplification event near the right telomere of chromosome 3 that involves a gene encoding an arsenite efflux transporter (ARR3). The 3,177-bp amplicon exists in a tandem array of 2-15 copies and is present exclusively in strains with the C. neoformans var. grubii subclade VNI A5 MLST profile. Strains bearing the amplification display dramatically enhanced resistance to arsenite that correlates with the copy number of the repeat; the origin of increased resistance was verified as transport-related by functional complementation of an arsenite transporter mutant of Saccharomyces cerevisiae. Subsequent experimental evolution in the presence of increasing concentrations of arsenite yielded highly resistant strains with the ARR3 amplicon further amplified to over 50 copies, accounting for up to ~1% of the whole genome and making the copy number of this repeat as high as that seen for the ribosomal DNA. The example described here therefore represents a rare evolutionary intermediate-an array that is currently in a state of dynamic flux, in dramatic contrast to relatively common, static relics of past tandem duplications that are unable to further amplify due to nucleotide divergence. Beyond identifying and engineering fungal isolates that are highly resistant to arsenite and describing the first reported instance of microevolution via massive gene amplification in C. neoformans, these results suggest that adaptation through gene amplification may be an important mechanism that C. neoformans employs in response to environmental stresses, perhaps including those encountered during infection. More importantly, the ARR3 array will serve as an ideal model for further molecular genetic analyses of how tandem gene duplications arise and expand.
Collapse
Affiliation(s)
- Eve W L Chow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
15
|
Carboxy alkyl esters of Uncaria tomentosa augment recovery of sensorineural functions following noise injury. Brain Res 2011; 1407:97-106. [DOI: 10.1016/j.brainres.2011.06.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/25/2011] [Accepted: 06/17/2011] [Indexed: 11/21/2022]
|
16
|
The Rate and Tract Length of Gene Conversion between Duplicated Genes. Genes (Basel) 2011; 2:313-31. [PMID: 24710193 PMCID: PMC3924818 DOI: 10.3390/genes2020313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/11/2011] [Accepted: 03/17/2011] [Indexed: 11/26/2022] Open
Abstract
Interlocus gene conversion occurs such that a certain length of DNA fragment is non-reciprocally transferred (copied and pasted) between paralogous regions. To understand the rate and tract length of gene conversion, there are two major approaches. One is based on mutation-accumulation experiments, and the other uses natural DNA sequence variation. In this review, we overview the two major approaches and discuss their advantages and disadvantages. In addition, to demonstrate the importance of statistical analysis of empirical and evolutionary data for estimating tract length, we apply a maximum likelihood method to several data sets.
Collapse
|
17
|
Fawcett JA, Innan H. Neutral and non-neutral evolution of duplicated genes with gene conversion. Genes (Basel) 2011; 2:191-209. [PMID: 24710144 PMCID: PMC3924837 DOI: 10.3390/genes2010191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/20/2011] [Accepted: 02/12/2011] [Indexed: 01/11/2023] Open
Abstract
Gene conversion is one of the major mutational mechanisms involved in the DNA sequence evolution of duplicated genes. It contributes to create unique patters of DNA polymorphism within species and divergence between species. A typical pattern is so-called concerted evolution, in which the divergence between duplicates is maintained low for a long time because of frequent exchanges of DNA fragments. In addition, gene conversion affects the DNA evolution of duplicates in various ways especially when selection operates. Here, we review theoretical models to understand the evolution of duplicates in both neutral and non-neutral cases. We also explain how these theories contribute to interpreting real polymorphism and divergence data by using some intriguing examples.
Collapse
Affiliation(s)
- Jeffrey A Fawcett
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan.
| | - Hideki Innan
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan.
| |
Collapse
|
18
|
Manthey GM, Bailis AM. Rad51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces cerevisiae. PLoS One 2010; 5:e11889. [PMID: 20686691 PMCID: PMC2912366 DOI: 10.1371/journal.pone.0011889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022] Open
Abstract
Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer.
Collapse
Affiliation(s)
- Glenn M. Manthey
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Adam M. Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Aleshin A, Zhi D. Recombination-associated sequence homogenization of neighboring Alu elements: signature of nonallelic gene conversion. Mol Biol Evol 2010; 27:2300-11. [PMID: 20453015 DOI: 10.1093/molbev/msq116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, researchers have begun to recognize that, in order to establish neutral models for disease association and evolutionary genomics studies, it is crucial to have a clear understanding of the genomic impact of nonallelic gene conversion. Drawing on previous successes in characterizing this phenomenon over protein-coding gene families, we undertook a computational analysis of neighboring Alu sequences in the genome scale. For this purpose, we developed adjusted comutation rate (aCMR), a novel statistical method measuring the excess number of identical point mutations shared by adjacent Alu sequences, vis-à-vis random pairs. Using aCMR, we uncovered a remarkable genome-wide sequence homogenization of neighboring Alus, with the strongest signal observed in the pseudoautosomal regions of the X and Y chromosomes. The magnitude of sequence homogenization between Alu pairs is greater with shorter interlocus distance, higher sequence identity, and parallel orientation. Moreover, shared substitutions show a strong directionality toward GC nucleotides, with multiple substitutions tending to cluster within the Alu sequence. Taken together, these observed recombination-associated sequence homogenization patterns are best explained by frequent ubiquitous gene conversion events between neighboring Alus. We believe that these observations help to illuminate the nature and impact of the enigmatic phenomenon of gene conversion.
Collapse
Affiliation(s)
- Alexey Aleshin
- Department of Medicine, Division of Hematology, Oncology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | | |
Collapse
|
20
|
Agmon N, Pur S, Liefshitz B, Kupiec M. Analysis of repair mechanism choice during homologous recombination. Nucleic Acids Res 2009; 37:5081-92. [PMID: 19553188 PMCID: PMC2731894 DOI: 10.1093/nar/gkp495] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Double-strand breaks (DSBs) occur frequently during cell growth. Due to the presence of repeated sequences in the genome, repair of a single DSB can result in gene conversion, translocation, deletion or tandem duplication depending on the mechanism and the sequence chosen as partner for the recombinational repair. Here, we study how yeast cells repair a single, inducible DSB when there are several potential donors to choose from, in the same chromosome and elsewhere in the genome. We systematically investigate the parameters that affect the choice of mechanism, as well as its genetic regulation. Our results indicate that intrachromosomal homologous sequences are always preferred as donors for repair. We demonstrate the occurrence of a novel tri-partite repair product that combines ectopic gene conversion and deletion. In addition, we show that increasing the distance between two repeated sequences enhances the dependence on Rad51 for colony formation after DSB repair. This is due to a role of Rad51 in the recovery from the checkpoint signal induced by the DSB. We suggest a model for the competition between the different homologous recombination pathways. Our model explains how different repair mechanisms are able to compensate for each other during DSB repair.
Collapse
Affiliation(s)
- Neta Agmon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | |
Collapse
|
21
|
Kappeler M, Kranz E, Woolcock K, Georgiev O, Schaffner W. Drosophila bloom helicase maintains genome integrity by inhibiting recombination between divergent DNA sequences. Nucleic Acids Res 2008; 36:6907-17. [PMID: 18978019 PMCID: PMC2588521 DOI: 10.1093/nar/gkn793] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA double strand breaks (DSB) can be repaired either via a sequence independent joining of DNA ends or via homologous recombination. We established a detection system in Drosophila melanogaster to investigate the impact of sequence constraints on the usage of the homology based DSB repair via single strand annealing (SSA), which leads to recombination between direct repeats with concomitant loss of one repeat copy. First of all, we find the SSA frequency to be inversely proportional to the spacer length between the repeats, for spacers up to 2.4 kb in length. We further show that SSA between divergent repeats (homeologous SSA) is suppressed in cell cultures and in vivo in a sensitive manner, recognizing sequence divergences smaller than 0.5%. Finally, we demonstrate that the suppression of homeologous SSA depends on the Bloom helicase (Blm), encoded by the Drosophila gene mus309. Suppression of homeologous recombination is a novel function of Blm in ensuring genomic integrity, not described to date in mammalian systems. Unexpectedly, distinct from its function in Saccharomyces cerevisiae, the mismatch repair factor Msh2 encoded by spel1 does not suppress homeologous SSA in Drosophila.
Collapse
Affiliation(s)
- Michael Kappeler
- Insitut für Molekularbiologie der Universität Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Recombination frequency in plasmid DNA containing direct repeats—predictive correlation with repeat and intervening sequence length. Plasmid 2008; 60:159-65. [DOI: 10.1016/j.plasmid.2008.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/09/2008] [Accepted: 06/24/2008] [Indexed: 11/19/2022]
|
23
|
Liu Y, Nairn RS, Vasquez KM. Processing of triplex-directed psoralen DNA interstrand crosslinks by recombination mechanisms. Nucleic Acids Res 2008; 36:4680-8. [PMID: 18628293 PMCID: PMC2504320 DOI: 10.1093/nar/gkn438] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gene targeting via homologous recombination (HR) is an important application in biotechnology and medicine. However, in mammalian cells HR is much less efficient than random integration. Triplex-forming oligonucleotides (TFOs) linked to DNA damaging agents (e.g. psoralen) can stimulate HR, providing the potential to improve gene therapy applications. To elucidate factors affecting TFO-directed psoralen interstrand crosslink (ICL)-induced recombination, we constructed a series of plasmids with duplicated supF reporter genes, each containing an inactivating deletion, to measure HR frequencies in mammalian cells. Our results indicated that TFO-directed ICL-induced recombination frequencies were higher in the plasmids with larger distances between duplicated supF genes than with a smaller separation distance. However, the position of the ICL relative to the reporter genes did not affect HR frequencies. Recombination spectra were altered by the distance between supF copies. Although single-strand annealing (SSA) recombinants were predominant in all plasmid substrates, the plasmid with the shortest interval (60 bp) revealed a significant proportion of gene conversions (GCs). GCs occurred exclusively in the gene containing the shortest deletion, regardless of the distance between supF genes, ICL position or deletion orientation. Our analyses indicated that SSA is the predominant mechanism of ICL processing of these substrates in mammalian cells.
Collapse
Affiliation(s)
- Yaobin Liu
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX, USA
| | | | | |
Collapse
|
24
|
Mansour WY, Schumacher S, Rosskopf R, Rhein T, Schmidt-Petersen F, Gatzemeier F, Haag F, Borgmann K, Willers H, Dahm-Daphi J. Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Res 2008; 36:4088-98. [PMID: 18539610 PMCID: PMC2475611 DOI: 10.1093/nar/gkn347] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In mammalian cells, DNA double-strand breaks (DSBs) are repaired by three pathways, nonhomologous end-joining (NHEJ), gene conversion (GC) and single-strand annealing (SSA). These pathways are distinct with regard to repair efficiency and mutagenic potential and must be tightly controlled to preserve viability and genomic stability. Here, we employed chromosomal reporter constructs to characterize the hierarchy of NHEJ, GC and SSA at a single I-SceI-induced DSB in Chinese hamster ovary cells. We discovered that the use of GC and SSA was increased by 6- to 8-fold upon loss of Ku80 function, suggesting that NHEJ is dominant over the other two pathways. However, NHEJ efficiency was not altered if GC was impaired by Rad51 knockdown. Interestingly, when SSA was made available as an alternative mode for DSB repair, loss of Rad51 function led to an increase in SSA activity at the expense of NHEJ, implying that Rad51 may indirectly promote NHEJ by limiting SSA. We conclude that a repair hierarchy exists to limit the access of the most mutagenic mechanism, SSA, to the break site. Furthermore, the cellular choice of repair pathways is reversible and can be influenced at the level of effector proteins such as Ku80 or Rad51.
Collapse
Affiliation(s)
- Wael Y Mansour
- Laboratory of Radiobiology & Experimental Radiation Oncology, Department of Radiotherapy and Radiation Oncology, University Medical School Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Barzel A, Kupiec M. Finding a match: how do homologous sequences get together for recombination? Nat Rev Genet 2008; 9:27-37. [PMID: 18040271 DOI: 10.1038/nrg2224] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decades of research into homologous recombination have unravelled many of the details concerning the transfer of information between two homologous sequences. By contrast, the processes by which the interacting molecules initially colocalize are largely unknown. How can two homologous needles find each other in the genomic haystack? Is homologous pairing the result of a damage-induced homology search, or is it an enduring and general feature of the genomic architecture that facilitates homologous recombination whenever and wherever damage occurs? This Review presents the homologous-pairing enigma, delineates our current understanding of the process and offers guidelines for future research.
Collapse
Affiliation(s)
- Adi Barzel
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
26
|
Wu S, Shi Y, Mulligan P, Gay F, Landry J, Liu H, Lu J, Qi HH, Wang W, Nickoloff JA, Wu C, Shi Y. A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nat Struct Mol Biol 2007; 14:1165-72. [PMID: 18026119 PMCID: PMC2754171 DOI: 10.1038/nsmb1332] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 10/08/2007] [Indexed: 01/14/2023]
Abstract
DNA damage repair is crucial for the maintenance of genome integrity and cancer suppression. We found that loss of the mouse transcription factor YY1 resulted in polyploidy and chromatid aberrations, which are signatures of defects in homologous recombination. Further biochemical analyses identified a YY1 complex comprising components of the evolutionarily conserved INO80 chromatin-remodeling complex. Notably, RNA interference-mediated knockdown of YY1 and INO80 increased cellular sensitivity toward DNA-damaging agents. Functional assays revealed that both YY1 and INO80 are essential in homologous recombination-based DNA repair (HRR), which was further supported by the finding that YY1 preferentially bound a recombination-intermediate structure in vitro. Collectively, these observations reveal a link between YY1 and INO80 and roles for both in HRR, providing new insight into mechanisms that control the cellular response to genotoxic stress.
Collapse
Affiliation(s)
- Su Wu
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Yujiang Shi
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Peter Mulligan
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Frédérique Gay
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Joseph Landry
- Laboratory of Biochemistry, National Cancer Institute, US National Institutes of Health, Building 37, Rood 4C-09, Bethesda, Maryland 20892-4255, USA
| | - Huifei Liu
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Ju Lu
- Program in Neuroscience, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Hank H Qi
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Weijia Wang
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Jac A Nickoloff
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, New Mexico 87131, USA
| | - Carl Wu
- Laboratory of Biochemistry, National Cancer Institute, US National Institutes of Health, Building 37, Rood 4C-09, Bethesda, Maryland 20892-4255, USA
| | - Yang Shi
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
Chen JM, Cooper DN, Chuzhanova N, Férec C, Patrinos GP. Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 2007; 8:762-75. [PMID: 17846636 DOI: 10.1038/nrg2193] [Citation(s) in RCA: 472] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene conversion, one of the two mechanisms of homologous recombination, involves the unidirectional transfer of genetic material from a 'donor' sequence to a highly homologous 'acceptor'. Considerable progress has been made in understanding the molecular mechanisms that underlie gene conversion, its formative role in human genome evolution and its implications for human inherited disease. Here we assess current thinking about how gene conversion occurs, explore the key part it has played in fashioning extant human genes, and carry out a meta-analysis of gene-conversion events that are known to have caused human genetic disease.
Collapse
|
28
|
Schildkraut E, Miller CA, Nickoloff JA. Transcription of a donor enhances its use during double-strand break-induced gene conversion in human cells. Mol Cell Biol 2006; 26:3098-105. [PMID: 16581784 PMCID: PMC1446947 DOI: 10.1128/mcb.26.8.3098-3105.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) mediates accurate repair of double-strand breaks (DSBs) but carries the risk of large-scale genetic change, including loss of heterozygosity, deletions, inversions, and translocations. Nearly one-third of the human genome consists of repetitive sequences, and DSB repair by HR often requires choices among several homologous repair templates, including homologous chromosomes, sister chromatids, and linked or unlinked repeats. Donor preference during DSB-induced gene conversion was analyzed by using several HR substrates with three copies of neo targeted to a human chromosome. Repair of I-SceI nuclease-induced DSBs in one neo (the recipient) required a choice between two donor neo genes. When both donors were downstream, there was no significant bias for proximal or distal donors. When donors flanked the recipient, we observed a marked (85%) preference for the downstream donor. Reversing the HR substrate in the chromosome eliminated this preference, indicating that donor choice is influenced by factors extrinsic to the HR substrate. Prior indirect evidence suggested that transcription might increase donor use. We tested this question directly and found that increased transcription of a donor enhances its use during gene conversion. A preference for transcribed donors would minimize the use of nontranscribed (i.e., pseudogene) templates during repair and thus help maintain genome stability.
Collapse
Affiliation(s)
- Ezra Schildkraut
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
29
|
Wijeratne SSK, Cuppett SL, Schlegel V. Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in Caco-2 human colon cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:8768-74. [PMID: 16248583 DOI: 10.1021/jf0512003] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Studies were conducted to evaluate the cell damage caused by exposing human colon carcinoma cells, Caco-2, to hydrogen peroxide at concentrations varying from 0 to 250 microM for 30 min. Evaluation of cell viability, as measured by trypan blue dye exclusion test, showed that the loss of viability was < 5% at concentrations up to 250 microM hydrogen peroxide. Cell membrane damage and DNA damage as measured by the leakage of lactate dehydrogenase and the comet assay, respectively, were significantly high at concentrations >100 microM hydrogen peroxide compared to those of the control. Antioxidant mechanisms in Caco-2 cells were evaluated by measuring catalase, superoxide dismutase, and glutathione peroxidase activities. Catalase activities remained constant in cells treated with 50-250 microM hydrogen peroxide. Superoxide dismutase activity decreased, whereas glutathione peroxidase activity increased in cells treated with H(2)O(2) concentrations of >50 microM. This study showed that with increasing hydrogen peroxide concentration, cell membrane leakage and DNA damage increased, whereas the three antioxidant enzymes responded differently, as shown by mathematical models.
Collapse
Affiliation(s)
- Subhashinee S K Wijeratne
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68583-0919, USA
| | | | | |
Collapse
|
30
|
Jackson MS, Oliver K, Loveland J, Humphray S, Dunham I, Rocchi M, Viggiano L, Park JP, Hurles ME, Santibanez-Koref M. Evidence for widespread reticulate evolution within human duplicons. Am J Hum Genet 2005; 77:824-40. [PMID: 16252241 PMCID: PMC1271390 DOI: 10.1086/497704] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 08/25/2004] [Indexed: 11/04/2022] Open
Abstract
Approximately 5% of the human genome consists of segmental duplications that can cause genomic mutations and may play a role in gene innovation. Reticulate evolutionary processes, such as unequal crossing-over and gene conversion, are known to occur within specific duplicon families, but the broader contribution of these processes to the evolution of human duplications remains poorly characterized. Here, we use phylogenetic profiling to analyze multiple alignments of 24 human duplicon families that span >8 Mb of DNA. Our results indicate that none of them are evolving independently, with all alignments showing sharp discontinuities in phylogenetic signal consistent with reticulation. To analyze these results in more detail, we have developed a quartet method that estimates the relative contribution of nucleotide substitution and reticulate processes to sequence evolution. Our data indicate that most of the duplications show a highly significant excess of sites consistent with reticulate evolution, compared with the number expected by nucleotide substitution alone, with 15 of 30 alignments showing a >20-fold excess over that expected. Using permutation tests, we also show that at least 5% of the total sequence shares 100% sequence identity because of reticulation, a figure that includes 74 independent tracts of perfect identity >2 kb in length. Furthermore, analysis of a subset of alignments indicates that the density of reticulation events is as high as 1 every 4 kb. These results indicate that phylogenetic relationships within recently duplicated human DNA can be rapidly disrupted by reticulate evolution. This finding has important implications for efforts to finish the human genome sequence, complicates comparative sequence analysis of duplicon families, and could profoundly influence the tempo of gene-family evolution.
Collapse
Affiliation(s)
- Michael S Jackson
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|