1
|
Schilbach S, Aibara S, Dienemann C, Grabbe F, Cramer P. Structure of RNA polymerase II pre-initiation complex at 2.9 Å defines initial DNA opening. Cell 2021; 184:4064-4072.e28. [PMID: 34133942 DOI: 10.1016/j.cell.2021.05.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023]
Abstract
Transcription initiation requires assembly of the RNA polymerase II (Pol II) pre-initiation complex (PIC) and opening of promoter DNA. Here, we present the long-sought high-resolution structure of the yeast PIC and define the mechanism of initial DNA opening. We trap the PIC in an intermediate state that contains half a turn of open DNA located 30-35 base pairs downstream of the TATA box. The initially opened DNA region is flanked and stabilized by the polymerase "clamp head loop" and the TFIIF "charged region" that both contribute to promoter-initiated transcription. TFIIE facilitates initiation by buttressing the clamp head loop and by regulating the TFIIH translocase. The initial DNA bubble is then extended in the upstream direction, leading to the open promoter complex and enabling start-site scanning and RNA synthesis. This unique mechanism of DNA opening may permit more intricate regulation than in the Pol I and Pol III systems.
Collapse
Affiliation(s)
- Sandra Schilbach
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Shintaro Aibara
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frauke Grabbe
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Chen X, Qi Y, Wu Z, Wang X, Li J, Zhao D, Hou H, Li Y, Yu Z, Liu W, Wang M, Ren Y, Li Z, Yang H, Xu Y. Structural insights into preinitiation complex assembly on core promoters. Science 2021; 372:science.aba8490. [PMID: 33795473 DOI: 10.1126/science.aba8490] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Transcription factor IID (TFIID) recognizes core promoters and supports preinitiation complex (PIC) assembly for RNA polymerase II (Pol II)-mediated eukaryotic transcription. We determined the structures of human TFIID-based PIC in three stepwise assembly states and revealed two-track PIC assembly: stepwise promoter deposition to Pol II and extensive modular reorganization on track I (on TATA-TFIID-binding element promoters) versus direct promoter deposition on track II (on TATA-only and TATA-less promoters). The two tracks converge at an ~50-subunit holo PIC in identical conformation, whereby TFIID stabilizes PIC organization and supports loading of cyclin-dependent kinase (CDK)-activating kinase (CAK) onto Pol II and CAK-mediated phosphorylation of the Pol II carboxyl-terminal domain. Unexpectedly, TBP of TFIID similarly bends TATA box and TATA-less promoters in PIC. Our study provides structural visualization of stepwise PIC assembly on highly diversified promoters.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zihan Wu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Haifeng Hou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Mo Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ze Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China. .,The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.,Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Abstract
RNA polymerase II (Pol II) transcribes all protein-coding genes and many noncoding RNAs in eukaryotic genomes. Although Pol II is a complex, 12-subunit enzyme, it lacks the ability to initiate transcription and cannot consistently transcribe through long DNA sequences. To execute these essential functions, an array of proteins and protein complexes interact with Pol II to regulate its activity. In this review, we detail the structure and mechanism of over a dozen factors that govern Pol II initiation (e.g., TFIID, TFIIH, and Mediator), pausing, and elongation (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis for Pol II transcription regulation has advanced rapidly in the past decade, largely due to technological innovations in cryoelectron microscopy. Here, we summarize a wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms; we also highlight mechanistic questions that remain unanswered or controversial.
Collapse
Affiliation(s)
- Allison C Schier
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
4
|
Theil AF, Mandemaker IK, van den Akker E, Swagemakers SMA, Raams A, Wüst T, Marteijn JA, Giltay JC, Colombijn RM, Moog U, Kotzaeridou U, Ghazvini M, von Lindern M, Hoeijmakers JHJ, Jaspers NGJ, van der Spek PJ, Vermeulen W. Trichothiodystrophy causative TFIIEβ mutation affects transcription in highly differentiated tissue. Hum Mol Genet 2018; 26:4689-4698. [PMID: 28973399 PMCID: PMC5886110 DOI: 10.1093/hmg/ddx351] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023] Open
Abstract
The rare recessive developmental disorder Trichothiodystrophy (TTD) is characterized by brittle hair and nails. Patients also present a variable set of poorly explained additional clinical features, including ichthyosis, impaired intelligence, developmental delay and anemia. About half of TTD patients are photosensitive due to inherited defects in the DNA repair and transcription factor II H (TFIIH). The pathophysiological contributions of unrepaired DNA lesions and impaired transcription have not been dissected yet. Here, we functionally characterize the consequence of a homozygous missense mutation in the general transcription factor II E, subunit 2 (GTF2E2/TFIIEβ) of two unrelated non-photosensitive TTD (NPS-TTD) families. We demonstrate that mutant TFIIEβ strongly reduces the total amount of the entire TFIIE complex, with a remarkable temperature-sensitive transcription defect, which strikingly correlates with the phenotypic aggravation of key clinical symptoms after episodes of high fever. We performed induced pluripotent stem (iPS) cell reprogramming of patient fibroblasts followed by in vitro erythroid differentiation to translate the intriguing molecular defect to phenotypic expression in relevant tissue, to disclose the molecular basis for some specific TTD features. We observed a clear hematopoietic defect during late-stage differentiation associated with hemoglobin subunit imbalance. These new findings of a DNA repair-independent transcription defect and tissue-specific malfunctioning provide novel mechanistic insight into the etiology of TTD.
Collapse
Affiliation(s)
- Arjan F Theil
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - Imke K Mandemaker
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - Emile van den Akker
- Sanquin Research, Department of Hematopoiesis/Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Anja Raams
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - Tatjana Wüst
- Sanquin Research, Department of Hematopoiesis/Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - Jacques C Giltay
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Mehrnaz Ghazvini
- Department of Developmental Biology, iPS Core Facility, Erasmus MC, Rotterdam, The Netherlands
| | - Marieke von Lindern
- Sanquin Research, Department of Hematopoiesis/Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - Nicolaas G J Jaspers
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | | | - Wim Vermeulen
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Miwa K, Kojima R, Obita T, Ohkuma Y, Tamura Y, Mizuguchi M. Crystal Structure of Human General Transcription Factor TFIIE at Atomic Resolution. J Mol Biol 2016; 428:4258-4266. [DOI: 10.1016/j.jmb.2016.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
|
6
|
Kuschal C, Botta E, Orioli D, Digiovanna JJ, Seneca S, Keymolen K, Tamura D, Heller E, Khan SG, Caligiuri G, Lanzafame M, Nardo T, Ricotti R, Peverali FA, Stephens R, Zhao Y, Lehmann AR, Baranello L, Levens D, Kraemer KH, Stefanini M. GTF2E2 Mutations Destabilize the General Transcription Factor Complex TFIIE in Individuals with DNA Repair-Proficient Trichothiodystrophy. Am J Hum Genet 2016; 98:627-42. [PMID: 26996949 DOI: 10.1016/j.ajhg.2016.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/10/2016] [Indexed: 12/24/2022] Open
Abstract
The general transcription factor IIE (TFIIE) is essential for transcription initiation by RNA polymerase II (RNA pol II) via direct interaction with the basal transcription/DNA repair factor IIH (TFIIH). TFIIH harbors mutations in two rare genetic disorders, the cancer-prone xeroderma pigmentosum (XP) and the cancer-free, multisystem developmental disorder trichothiodystrophy (TTD). The phenotypic complexity resulting from mutations affecting TFIIH has been attributed to the nucleotide excision repair (NER) defect as well as to impaired transcription. Here, we report two unrelated children showing clinical features typical of TTD who harbor different homozygous missense mutations in GTF2E2 (c.448G>C [p.Ala150Pro] and c.559G>T [p.Asp187Tyr]) encoding the beta subunit of transcription factor IIE (TFIIEβ). Repair of ultraviolet-induced DNA damage was normal in the GTF2E2 mutated cells, indicating that TFIIE was not involved in NER. We found decreased protein levels of the two TFIIE subunits (TFIIEα and TFIIEβ) as well as decreased phosphorylation of TFIIEα in cells from both children. Interestingly, decreased phosphorylation of TFIIEα was also seen in TTD cells with mutations in ERCC2, which encodes the XPD subunit of TFIIH, but not in XP cells with ERCC2 mutations. Our findings support the theory that TTD is caused by transcriptional impairments that are distinct from the NER disorder XP.
Collapse
Affiliation(s)
- Christiane Kuschal
- Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Elena Botta
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Donata Orioli
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - John J Digiovanna
- Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sara Seneca
- Center for Medical Genetics, Research Group Reproduction and Genetics, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Kathelijn Keymolen
- Center for Medical Genetics, Research Group Reproduction and Genetics, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Deborah Tamura
- Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Elizabeth Heller
- Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sikandar G Khan
- Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Giuseppina Caligiuri
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Manuela Lanzafame
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Tiziana Nardo
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Roberta Ricotti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Fiorenzo A Peverali
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Robert Stephens
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA; Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Yongmei Zhao
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Alan R Lehmann
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Laura Baranello
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kenneth H Kraemer
- Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Miria Stefanini
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
7
|
Grünberg S, Warfield L, Hahn S. Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening. Nat Struct Mol Biol 2012; 19:788-96. [PMID: 22751016 PMCID: PMC3414687 DOI: 10.1038/nsmb.2334] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/28/2012] [Indexed: 01/23/2023]
Abstract
Yeast RNA polymerase (Pol) II general factor TFIIE and the TFIIH subunit Ssl2/XPB function in transition of the preinitiation complex (PIC) to the open complex. We find that the three TFIIE winged helix (WH) domains form a heterodimer, with the Tfa1/TFIIEα WH binding the Pol II clamp and the Tfa2/TFIIEβ tandem WH domain encircling promoter DNA that becomes single stranded in the open complex. Ssl2 lies adjacent to TFIIE, enclosing downstream promoter DNA. In contrast to previous proposals, comparison of the PIC and open complex models strongly suggests that Ssl2 promotes DNA opening by functioning as a double stranded DNA translocase, feeding 15 bp of double stranded DNA into the Pol II cleft. Right-handed threading of DNA through the Ssl2 binding groove, combined with the fixed position of upstream promoter DNA, will lead to DNA unwinding and the open state.
Collapse
|
8
|
Abstract
Structures of complete 10-subunit yeast TFIIH and of a nested set of subcomplexes, containing 5, 6, and 7 subunits, have been determined by electron microscopy (EM) and 3D reconstruction. Consistency among all the structures establishes the location of the "minimal core" subunits (Ssl1, Tfb1, Tfb2, Tfb4, and Tfb5), and additional densities can be specifically attributed to Rad3, Ssl2, and the TFIIK trimer. These results can be further interpreted by placement of previous X-ray structures into the additional densities to give a preliminary picture of the RNA polymerase II preinitiation complex. In this picture, the key catalytic components of TFIIH, the Ssl2 ATPase/helicase and the Kin28 protein kinase are in proximity to their targets, downstream promoter DNA and the RNA polymerase C-terminal domain.
Collapse
|
9
|
Shell SM, Zou Y. Other proteins interacting with XP proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 637:103-12. [PMID: 19181115 DOI: 10.1007/978-0-387-09599-8_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven M Shell
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | |
Collapse
|
10
|
Richards JD, Cubeddu L, Roberts J, Liu H, White MF. The archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner. J Mol Biol 2007; 376:634-44. [PMID: 18177890 DOI: 10.1016/j.jmb.2007.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/07/2007] [Accepted: 12/10/2007] [Indexed: 12/28/2022]
Abstract
XPB is a superfamily 2 helicase with a 3'-5' polarity. In eukaryotes, XPB is an integral subunit of the transcription factor TFIIH, which plays a dual role in DNA opening at RNA polymerase II promoters and in establishing the repair bubble around a DNA lesion in nucleotide excision repair. Eukaryotic XPB has only very limited helicase activity in vitro and may function as a DNA-dependent molecular switch to catalyse local distortion of DNA in transcription and repair. Most archaea have one or two homologues of the XPB protein with a presumed role in DNA repair, but only one other subunit of the TFIIH complex, the 5'-3' helicase XPD, has been identified in archaea. Here we report the biochemical characterisation of the two homologous XPB proteins from the crenarchaeon Sulfolobus solfataricus. Although both proteins are single-stranded-DNA-stimulated ATPases, neither displays any helicase activity in vitro, consistent with recent studies of eukaryotic XPB. In almost all archaeal genomes, the xpb gene lies adjacent to a conserved partner gene, and we demonstrate that these two gene products form a physical interaction in vitro. We propose the name Bax1 (Binds archaeal XPB) for this protein, which has a predicted endonuclease domain. XPB and Bax1 may collaborate in processing nucleic acid in an archaeal-specific DNA repair pathway.
Collapse
Affiliation(s)
- Jodi D Richards
- St. Andrews University, Centre for Biomolecular Sciences, North Haugh, St. Andrews, Fife KY16 9ST, UK
| | | | | | | | | |
Collapse
|