1
|
Cyanobacterial sigma factors: Current and future applications for biotechnological advances. Biotechnol Adv 2020; 40:107517. [DOI: 10.1016/j.biotechadv.2020.107517] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/15/2022]
|
2
|
Mueller TJ, Welsh EA, Pakrasi HB, Maranas CD. Identifying Regulatory Changes to Facilitate Nitrogen Fixation in the Nondiazotroph Synechocystis sp. PCC 6803. ACS Synth Biol 2016; 5:250-8. [PMID: 26692191 DOI: 10.1021/acssynbio.5b00202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incorporation of biological nitrogen fixation into a nondiazotrophic photosynthetic organism provides a promising solution to the increasing fixed nitrogen demand, but is accompanied by a number of challenges for accommodating two incompatible processes within the same organism. Here we present regulatory influence networks for two cyanobacteria, Synechocystis PCC 6803 and Cyanothece ATCC 51142, and evaluate them to co-opt native transcription factors that may be used to control the nif gene cluster once it is transferred to Synechocystis. These networks were further examined to identify candidate transcription factors for other metabolic processes necessary for temporal separation of photosynthesis and nitrogen fixation, glycogen catabolism and cyanophycin synthesis. Two transcription factors native to Synechocystis, LexA and Rcp1, were identified as promising candidates for the control of the nif gene cluster and other pertinent metabolic processes, respectively. Lessons learned in the incorporation of nitrogen fixation into a nondiazotrophic prokaryote may be leveraged to further progress the incorporation of nitrogen fixation in plants.
Collapse
Affiliation(s)
- Thomas J. Mueller
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Eric A. Welsh
- Cancer
Informatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Himadri B. Pakrasi
- Department
of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Costas D. Maranas
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| |
Collapse
|
3
|
Zhang X, Chen G, Qin C, Wang Y, Wei D. Slr0643, an S2P homologue, is essential for acid acclimation in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology (Reading) 2012; 158:2765-2780. [DOI: 10.1099/mic.0.060632-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Xu Zhang
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641, Guangzhou, PR China
| | - Gu Chen
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641, Guangzhou, PR China
| | - Chunyan Qin
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641, Guangzhou, PR China
| | - Yuling Wang
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641, Guangzhou, PR China
| | - Dong Wei
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641, Guangzhou, PR China
| |
Collapse
|
4
|
Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLoS One 2012; 7:e34983. [PMID: 22496882 PMCID: PMC3319621 DOI: 10.1371/journal.pone.0034983] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/12/2012] [Indexed: 02/02/2023] Open
Abstract
Cyanobacteria are a group of photosynthetic prokaryotes that have a diverse morphology, minimal nutritional requirements and metabolic plasticity that has made them attractive organisms to use in biotechnological applications. The use of these organisms as cell factories requires the knowledge of their physiology and metabolism at a systems level. For the quantification of gene transcripts real-time quantitative polymerase chain reaction (RT-qPCR) is the standard technique. However, to obtain reliable RT-qPCR results the use and validation of reference genes is mandatory. Towards this goal we have selected and analyzed twelve candidate reference genes from three morphologically distinct cyanobacteria grown under routinely used laboratory conditions. The six genes exhibiting less variation in each organism were evaluated in terms of their expression stability using geNorm, NormFinder and BestKeeper. In addition, the minimum number of reference genes required for normalization was determined. Based on the three algorithms, we provide a list of genes for cyanobacterial RT-qPCR data normalization. To our knowledge, this is the first work on the validation of reference genes for cyanobacteria constituting a valuable starting point for future works.
Collapse
|
5
|
Los DA, Zorina A, Sinetova M, Kryazhov S, Mironov K, Zinchenko VV. Stress sensors and signal transducers in cyanobacteria. SENSORS (BASEL, SWITZERLAND) 2010; 10:2386-415. [PMID: 22294932 PMCID: PMC3264485 DOI: 10.3390/s100302386] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/15/2010] [Accepted: 03/03/2010] [Indexed: 11/17/2022]
Abstract
In living cells, the perception of environmental stress and the subsequent transduction of stress signals are primary events in the acclimation to changes in the environment. Some molecular sensors and transducers of environmental stress cannot be identified by traditional and conventional methods. Based on genomic information, a systematic approach has been applied to the solution of this problem in cyanobacteria, involving mutagenesis of potential sensors and signal transducers in combination with DNA microarray analyses for the genome-wide expression of genes. Forty-five genes for the histidine kinases (Hiks), 12 genes for serine-threonine protein kinases (Spks), 42 genes for response regulators (Rres), seven genes for RNA polymerase sigma factors, and nearly 70 genes for transcription factors have been successfully inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Screening of mutant libraries by genome-wide DNA microarray analysis under various stress and non-stress conditions has allowed identification of proteins that perceive and transduce signals of environmental stress. Here we summarize recent progress in the identification of sensory and regulatory systems, including Hiks, Rres, Spks, sigma factors, transcription factors, and the role of genomic DNA supercoiling in the regulation of the responses of cyanobacterial cells to various types of stress.
Collapse
Affiliation(s)
- Dmitry A. Los
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Anna Zorina
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Maria Sinetova
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Sergey Kryazhov
- Department of Genetics, Faculty of Biology, Moscow State University, Moscow, Russia; E-Mails: (S.K.); (V.V.Z.)
| | - Kirill Mironov
- Laboratory of Intracellular Regulation, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia; E-Mails: (A.Z.); (M.S.); (K.M.)
| | - Vladislav V. Zinchenko
- Department of Genetics, Faculty of Biology, Moscow State University, Moscow, Russia; E-Mails: (S.K.); (V.V.Z.)
| |
Collapse
|
6
|
Imamura S, Asayama M. Sigma factors for cyanobacterial transcription. GENE REGULATION AND SYSTEMS BIOLOGY 2009; 3:65-87. [PMID: 19838335 PMCID: PMC2758279 DOI: 10.4137/grsb.s2090] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cyanobacteria are photosynthesizing microorganisms that can be used as a model for analyzing gene expression. The expression of genes involves transcription and translation. Transcription is performed by the RNA polymerase (RNAP) holoenzyme, comprising a core enzyme and a sigma (sigma) factor which confers promoter selectivity. The unique structure, expression, and function of cyanobacterial sigma factors (and RNAP core subunits) are summarized here based on studies, reported previously. The types of promoter recognized by the sigma factors are also discussed with regard to transcriptional regulation.
Collapse
Affiliation(s)
- Sousuke Imamura
- Laboratory of Molecular Genetics, School of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, Ibaraki 300-0393, Japan
| | | |
Collapse
|
7
|
Porreca R, Drulhe S, de Jong H, Ferrari-Trecate G. Structural identification of piecewise-linear models of genetic regulatory networks. J Comput Biol 2009; 15:1365-80. [PMID: 19040369 DOI: 10.1089/cmb.2008.0109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We present a method for the structural identification of genetic regulatory networks (GRNs), based on the use of a class of Piecewise-Linear (PL) models. These models consist of a set of decoupled linear models describing the different modes of operation of the GRN and discrete switches between the modes accounting for the nonlinear character of gene regulation. They thus form a compromise between the mathematical simplicity of linear models and the biological expressiveness of nonlinear models. The input of the PL identification method consists of time-series measurements of concentrations of gene products. As output it produces estimates of the modes of operation of the GRN, as well as all possible minimal combinations of threshold concentrations of the gene products accounting for switches between the modes of operation. The applicability of the PL identification method has been evaluated using simulated data obtained from a model of the carbon starvation response in the bacterium Escherichia coli. This has allowed us to systematically test the performance of the method under different data characteristics, notably variations in the noise level and the sampling density.
Collapse
Affiliation(s)
- Riccardo Porreca
- Dipartimento di Informatica e Sistemistica, Università degli Studi di Pavia, Pavia, Italy
| | | | | | | |
Collapse
|
8
|
Asayama M, Imamura S. Stringent promoter recognition and autoregulation by the group 3 sigma-factor SigF in the cyanobacterium Synechocystis sp. strain PCC 6803. Nucleic Acids Res 2008; 36:5297-305. [PMID: 18689440 PMCID: PMC2532724 DOI: 10.1093/nar/gkn453] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The cyanobacteirum Synechocystis sp. strain PCC 6803 possesses nine species of the sigma (σ)-factor gene for RNA polymerase (RNAP). Here, we identify and characterize the novel-type promoter recognized by a group 3 σ-factor, SigF. SigF autoregulates its own transcription and recognizes the promoter of pilA1 that acts in pilus formation and motility in PCC 6803. The pilA1 promoter (PpilA1-54) was recognized only by SigF and not by other σ-factors in PCC 6803. No PpilA1-54 activity was observed in Escherichia coli cells that possess RpoF (σ28) for fragellin and motility. Studies of in vitro transcription for PpilA1-54 identified the region from −39 to −7 including an AG-rich stretch and a core promoter with TAGGC (−32 region) and GGTAA (−12 region) as important for transcription. We also confirmed the unique PpilA1-54 architecture and further identified two novel promoters, recognized by SigF, for genes encoding periplasmic and phytochrome-like phototaxis proteins. These results and a phylogenetic analysis suggest that the PCC 6803 SigF is distinct from the E. coli RpoF or RpoD (σ70) type and constitutes a novel eubacterial group 3 σ-factor. We discuss a model case of stringent promoter recognition by SigF. Promoter types of PCC 6803 genes are also summarized.
Collapse
Affiliation(s)
- Munehiko Asayama
- Laboratory of Molecular Genetics, School of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, Ibaraki 300-0393, Japan.
| | | |
Collapse
|
9
|
Abstract
Group 1 and group 2 sigma factors are sigma factors of bacterial RNA polymerase responsible for transcription from consensus-type promoters. Thus, these sigma factors form the framework for basic transcriptional regulation in bacteria. Cyanobacteria are known to have various group 2 sigma factors, typically more than 4, but only recently the particular function of each sigma factor is being elucidated. In response to environmental signals such as nutrients, light and temperature, cyanobacteria change their transcriptional profile first by activating specific transcription factors and subsequently by modifying the basic transcriptional machinery, which is often involved in the regulation of group 2 sigma factors. In this article, we give an overview of the composition and evolution of group 2 sigma factors in cyanobacteria and summarize what was presently revealed regarding their function.
Collapse
Affiliation(s)
- Takashi Osanai
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 113-0032 Tokyo, Japan
| | | | | |
Collapse
|
10
|
Cross-talk Between Iron and Nitrogen Regulatory Networks in Anabaena (Nostoc) sp. PCC 7120: Identification of Overlapping Genes in FurA and NtcA Regulons. J Mol Biol 2007; 374:267-81. [DOI: 10.1016/j.jmb.2007.09.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/30/2007] [Accepted: 09/04/2007] [Indexed: 01/26/2023]
|
11
|
Yoshimura T, Imamura S, Tanaka K, Shirai M, Asayama M. Cooperation of group 2 σ factors, SigD and SigE for light-induced transcription in the cyanobacteriumSynechocystissp. PCC 6803. FEBS Lett 2007; 581:1495-500. [PMID: 17379215 DOI: 10.1016/j.febslet.2007.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/05/2007] [Accepted: 03/05/2007] [Indexed: 11/28/2022]
Abstract
A light-inducible sigma factor of RNA polymerase, SigD, can contributes to the light-induced transcription of psbA in the cyanobacterium Synechocystis sp. PCC 6803. Here, another light-induced sigma factor, SigE, was characterized together with SigD. Results indicated that SigE also contributes to light-induced transcription on the cpcBACD, psbA, petBD and psaAB promoters whose potential sequences are of the Escherichia coli sigma(70)-type. SigD and SigE interfere with each other's expression. A rhythmic expression, in which the periodic peak of SigE exhibits a 24-h interval according to the upcoming night, was observed at the protein level. The cooperation of group 2 sigma factors, SigD and SigE, for light-induced transcription was discussed.
Collapse
Affiliation(s)
- Tsutomu Yoshimura
- Laboratory of Molecular Genetics, School of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, Ibaraki 300-0393, Japan
| | | | | | | | | |
Collapse
|
12
|
Imamura S, Tanaka K, Shirai M, Asayama M. Growth Phase-dependent Activation of Nitrogen-related Genes by a Control Network of Group 1 and Group 2 σ Factors in a Cyanobacterium. J Biol Chem 2006; 281:2668-75. [PMID: 16303755 DOI: 10.1074/jbc.m509639200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been reported that an RNA polymerase sigma factor, SigC, mainly contributes to specific transcription from the promoter PglnB-54,-53 under nitrogen-deprived conditions during the stationary phase of cell growth in the cyanobacterium Synechocystis sp. strain PCC 6803 (Asayama, M., Imamura, S., Yoshihara, S., Miyazaki, A., Yoshida, N., Sazuka, T., Kaneko, T., Ohara, O., Tabata, S., Osanai, T., Tanaka, K., Takahashi, H., and Shirai, M. (2004) Biosci. Biotechnol. Biochem. 68, 477-487). In this study, we further examined the functions of group 2 sigma factors of RNA polymerase in NtcA-dependent nitrogen-related gene expression in PCC 6803. Results indicated that SigB and SigC contribute to the transcription from PglnB-54,-53 with a sigma factor replaced in a growth phase-dependent manner. We also confirmed the contribution of SigB and SigC to the transcription of other NtcA-dependent genes, glnA, sigE, and amt1, as in the case of glnB. On the other hand, the transcription of glnN was dependent on SigB and SigE. In the SigB and SigC-based regulation, the level of SigB increased, but that of SigC was constant under conditions of nitrogen deprivation. Furthermore, it was found that SigC negatively and positively regulates the level of SigB in the log and stationary phase, respectively. SigC also had a positive effect on the level of sigB transcript during the stationary phase. In contrast, SigB acts positively on SigC levels in both growth phases. These results and previous findings indicated that multiple group 2 sigma factors take part in the control of NtcA-dependent nitrogen-related gene expression in cooperation with a group 1 sigma factor, SigA.
Collapse
Affiliation(s)
- Sousuke Imamura
- Laboratory of Molecular Genetics, College of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, Ibaraki 300-0393, Japan
| | | | | | | |
Collapse
|
13
|
|
14
|
Tuominen I, Pollari M, Tyystjärvi E, Tyystjärvi T. The SigBσfactor mediates high-temperature responses in the cyanobacteriumSynechocystissp. PCC6803. FEBS Lett 2005; 580:319-23. [PMID: 16376888 DOI: 10.1016/j.febslet.2005.11.082] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 11/25/2005] [Accepted: 11/29/2005] [Indexed: 11/28/2022]
Abstract
The sigma factors of RNA polymerase play central roles when bacteria adapt to different environmental conditions. We studied heat-shock responses in the cyanobacterium Synechocystis sp. PCC6803 using the sigma factor inactivation strains deltasigB, deltasigD and deltasigBD. The SigB factor was found to be important for short-term heat-shock responses and acquired thermotolerance. The normal high-temperature induction of the hspA gene depended on the SigB factor. The SigD sigma factor had a role in high-temperature responses as well, and the double inactivation strain deltasigBD grew more slowly at 43 degrees C than the deltasigB and deltasigD strains.
Collapse
Affiliation(s)
- Ilona Tuominen
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | | | | | | |
Collapse
|