1
|
Kumari S, Rehman A, Chandra P, Singh KK. Functional role of SAP18 protein: From transcriptional repression to splicing regulation. Cell Biochem Funct 2023; 41:738-751. [PMID: 37486712 DOI: 10.1002/cbf.3830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Sin3 associated protein 18 (SAP18) is an evolutionary conserved protein, originally discovered in a complex with the transcriptional regulatory protein, Sin3. Subsequent investigations revealed SAP18 as an integral splicing component of the exon junction complex (EJC)-associated apoptosis-and splicing-associated protein (ASAP)/PNN-RNPS1-SAP18 (PSAP) complex. In association with Sin3, SAP18 contributes toward transcriptional repression of genes implicated in embryonic development, stress response, human immunodeficiency virus type 1 replication, and tumorigenesis. As a part of EJC, SAP18 mediates alternative splicing events and suppresses the cryptic splice sites present within flanking regions of exon-exon junctions. In this review, we provide a thorough discussion on SAP18, focussing on its conserved dual role in transcriptional regulation and messenger RNA splicing. Recent research on the involvement of SAP18 in the emergence of cancer and human disorders has also been highlighted. The potential of SAP18 as a therapeutic target is also discussed in these recent studies, particularly related to malignancies of the myeloid lineage.
Collapse
Affiliation(s)
- Sweta Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ayushi Rehman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Pratap Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kusum K Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
Fresán U, Rodríguez-Sánchez MA, Reina O, Corces VG, Espinàs ML. Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing. PLoS Genet 2020; 16:e1008962. [PMID: 32750047 PMCID: PMC7428214 DOI: 10.1371/journal.pgen.1008962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/14/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Haspin, a highly conserved kinase in eukaryotes, has been shown to be responsible for phosphorylation of histone H3 at threonine 3 (H3T3ph) during mitosis, in mammals and yeast. Here we report that haspin is the kinase that phosphorylates H3T3 in Drosophila melanogaster and it is involved in sister chromatid cohesion during mitosis. Our data reveal that haspin also phosphorylates H3T3 in interphase. H3T3ph localizes in broad silenced domains at heterochromatin and lamin-enriched euchromatic regions. Loss of haspin compromises insulator activity in enhancer-blocking assays and triggers a decrease in nuclear size that is accompanied by changes in nuclear envelope morphology. We show that haspin is a suppressor of position-effect variegation involved in heterochromatin organization. Our results also demonstrate that haspin is necessary for pairing-sensitive silencing and it is required for robust Polycomb-dependent homeotic gene silencing. Haspin associates with the cohesin complex in interphase, mediates Pds5 binding to chromatin and cooperates with Pds5-cohesin to modify Polycomb-dependent homeotic transformations. Therefore, this study uncovers an unanticipated role for haspin kinase in genome organization of interphase cells and demonstrates that haspin is required for homeotic gene regulation.
Collapse
Affiliation(s)
- Ujué Fresán
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Spain
- Institute for Research in Biomedicine IRB, Barcelona, Spain
| | | | - Oscar Reina
- Bioinformatics and Biostatistics Unit, Institute for Research in Biomedicine IRB, Barcelona, Spain
| | - Victor G. Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - M. Lluisa Espinàs
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Spain
- Institute for Research in Biomedicine IRB, Barcelona, Spain
| |
Collapse
|
3
|
Toyota K, Cambronero Cuenca M, Dhandapani V, Suppa A, Rossi V, Colbourne JK, Orsini L. Transgenerational response to early spring warming in Daphnia. Sci Rep 2019; 9:4449. [PMID: 30872717 PMCID: PMC6418131 DOI: 10.1038/s41598-019-40946-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/27/2019] [Indexed: 01/30/2023] Open
Abstract
Temperature and photoperiod regulate key fitness traits in plants and animals. However, with temperature increase due to global warming, temperature cue thresholds are experienced at shorter photoperiods, disrupting the optimal seasonal timing of physiological, developmental and reproductive events in many species. Understanding the mechanisms of adaptation to the asynchrony between temperature and photoperiod is key to inform our understanding of how species will respond to global warming. Here, we studied the transgenerational mechanisms of responses of the cyclical parthenogen Daphnia magna to different photoperiod lengths co-occurring with warm temperature thereby assessing the impact of earlier spring warming on its fitness. Daphnia uses temperature and photoperiod cues to time dormancy, and to switch between sexual and asexual reproduction. Daphnia life cycle offers the opportunity to measure the relative contribution of plastic and genetic responses to environmental change across generations and over evolutionary time. We use transgenerational common garden experiments on three populations 'resurrected' from a biological archive experiencing temperature increase over five decades. Our results suggest that response to early spring warming evolved underpinned by a complex interaction between plastic and genetic mechanisms while a positive maternal contribution at matching environments between parental and offspring generation was also observed.
Collapse
Affiliation(s)
- Kenji Toyota
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Biological Science, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa, 259-1293, Japan
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| | - Maria Cambronero Cuenca
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Aquatic Ecology Department, EAWAG, Kastanienbaum, Switzerland
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Antonio Suppa
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma, Department of Life Sciences, Viale Usberti, 11/A, Parma, Italy
| | - Valeria Rossi
- Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma, Department of Life Sciences, Viale Usberti, 11/A, Parma, Italy
| | - John K Colbourne
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
de Castro IJ, Amin HA, Vinciotti V, Vagnarelli P. Network of phosphatases and HDAC complexes at repressed chromatin. Cell Cycle 2017; 16:2011-2017. [PMID: 28910568 PMCID: PMC5731419 DOI: 10.1080/15384101.2017.1371883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tight regulation of gene expression is achieved by a variety of protein complexes that selectively bind chromatin, modify it and change its transcription competency. Histone acetylases (HATs) and deacetylases (HDACs) play an important role in this process. They can generate transcriptionally active or inactive chromatin through the addition (HATs) or removal (HDACs) of acetyl groups on histones, respectively. Repo-Man is a Protein Phosphatase 1 targeting subunit that accumulates on chromosomes during mitotic exit and mediates the removal of mitotic histone H3 phosphorylations. It was shown recently that Repo-Man also regulates heterochromatin formation in interphase and that its depletion favours the switch between transcriptionally inactive and active chromatin, demonstrating that its role goes well beyond mitosis. Here, we provide the first link between a phosphatase and HDAC complexes. We show that genome-wide Repo-Man binding sites overlap with chromatin regions bound by members of the three HDAC complexes (Sin3a, NuRD and CoREST). We establish that members of the NuRD and Sin3a HDAC complexes interact with Repo-Man by mass spectrometry and that Repo-Man is in close proximity to SAP18 (Sin3a) in interphase as observed by the Proximity Ligation Assay. Altogether, these data suggest a mechanism by which Repo-Man/PP1 complex, via interactions with HDACs, could stabilise gene repression.
Collapse
Affiliation(s)
- I J de Castro
- a Research Institute for Environment Health and Societies, Department of Life Sciences , Brunel University London , London , UK
| | - H A Amin
- a Research Institute for Environment Health and Societies, Department of Life Sciences , Brunel University London , London , UK
| | - V Vinciotti
- b Research Institute for Environment Health and Societies, Department of Mathematics , Brunel University London , London , UK
| | - P Vagnarelli
- a Research Institute for Environment Health and Societies, Department of Life Sciences , Brunel University London , London , UK
| |
Collapse
|
5
|
Liaw GJ. Pits, a protein interacting with Ttk69 and Sin3A, has links to histone deacetylation. Sci Rep 2016; 6:33388. [PMID: 27622813 PMCID: PMC5020733 DOI: 10.1038/srep33388] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/25/2016] [Indexed: 01/09/2023] Open
Abstract
Histone deacetylation plays an important role in transcriptional repression. Previous results showed that the genetic interaction between ttk and rpd3, which encodes a class I histone deacetylase, is required for tll repression. This study investigated the molecular mechanism by which Ttk69 recruits Rpd3. Using yeast two-hybrid screening and datamining, one novel protein was found that weakly interacts with Ttk69 and Sin3A, designated as Protein interacting with Ttk69 and Sin3A (Pits). Pits protein expressed in the early stages of embryos and bound to the region of the tor response element in vivo. Expanded tll expression patterns were observed in embryos lacking maternal pits activity and the expansion was not widened by reducing either maternal ttk or sin3A activity. However, in embryos with simultaneously reduced maternal pits and sin3A activities or maternal pits, sin3A and ttk activities, the proportions of the embryos with expanded tll expression were significantly increased. These results indicate that all three gene activities are involved in tll repression. Level of histone H3 acetylation in the tll proximal region was found to be elevated in embryo with reduced these three gene activities. In conclusion, Ttk69 causes the histone deacetylation-mediated repression of tll via the interaction of Pits and Sin3A.
Collapse
Affiliation(s)
- Gwo-Jen Liaw
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112-22, Taiwan, Republic of China
| |
Collapse
|
6
|
Hernández-Pinzón I, Cifuentes M, Hénaff E, Santiago N, Espinás ML, Casacuberta JM. The Tnt1 retrotransposon escapes silencing in tobacco, its natural host. PLoS One 2012; 7:e33816. [PMID: 22479451 PMCID: PMC3316501 DOI: 10.1371/journal.pone.0033816] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/17/2012] [Indexed: 12/31/2022] Open
Abstract
Retrotransposons' high capacity for mutagenesis is a threat that genomes need to control tightly. Transcriptional gene silencing is a general and highly effective control of retrotransposon expression. Yet, some retrotransposons manage to transpose and proliferate in plant genomes, suggesting that, as shown for plant viruses, retrotransposons can escape silencing. However no evidence of retrotransposon silencing escape has been reported. Here we analyze the silencing control of the tobacco Tnt1 retrotransposon and report that even though constructs driven by the Tnt1 promoter become silenced when stably integrated in tobacco, the endogenous Tnt1 elements remain active. Silencing of Tnt1-containing transgenes correlates with high DNA methylation and the inability to incorporate H2A.Z into their promoters, whereas the endogenous Tnt1 elements remain partially methylated at asymmetrical positions and incorporate H2A.Z upon induction. Our results show that the promoter of Tnt1 is a target of silencing in tobacco, but also that endogenous Tnt1 elements can escape this control and be expressed in their natural host.
Collapse
Affiliation(s)
- Inmaculada Hernández-Pinzón
- Department of Molecular Genetics, Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| | - Marta Cifuentes
- Department of Molecular Genetics, Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| | - Elizabeth Hénaff
- Department of Molecular Genetics, Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| | - Néstor Santiago
- Department of Molecular Genetics, Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| | - M. Lluïsa Espinás
- Department of Molecular Genomics, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Josep M. Casacuberta
- Department of Molecular Genetics, Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| |
Collapse
|
7
|
Costa E, Beltran S, Espinàs ML. Drosophila melanogaster SAP18 protein is required for environmental stress responses. FEBS Lett 2010; 585:275-80. [PMID: 21146528 DOI: 10.1016/j.febslet.2010.11.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/24/2010] [Accepted: 11/28/2010] [Indexed: 12/20/2022]
Abstract
SAP18, a highly evolutionarily conserved protein, has been proposed to be involved in multiple cellular processes, from gene regulation to mRNA processing. To gain further insight into the role of SAP18, we performed genome-wide expression profiling of dsap18 mutant Drosophila melanogaster embryos and we found that dSAP18 is required for the expression of immune and stress related genes. We show that dSAP18 colocalizes with histone H3 phosphorylation, which has been implicated in the regulation of genes in response to signaling stimuli. dsap18 mutant larvae develop melanotic tumors after heat shock and the viability of dsap18 mutant flies is reduced after fungal infection or in high-salt medium. Altogether, our results indicate that dSAP18 is a key player in transcriptional responses to stress.
Collapse
Affiliation(s)
- Elisabet Costa
- Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, Spain
| | | | | |
Collapse
|
8
|
Pérez-Lluch S, Cuartero S, Azorín F, Espinàs ML. Characterization of new regulatory elements within the Drosophila bithorax complex. Nucleic Acids Res 2008; 36:6926-33. [PMID: 18978017 PMCID: PMC2588531 DOI: 10.1093/nar/gkn818] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The homeotic Abdominal-B (Abd-B) gene expression depends on a modular cis-regulatory region divided into discrete functional domains (iab) that control the expression of the gene in a particular segment of the fly. These domains contain regulatory elements implicated in both initiation and maintenance of homeotic gene expression and elements that separate the different domains. In this paper we have performed an extensive analysis of the iab-6 regulatory region, which regulates Abd-B expression at abdominal segment A6 (PS11), and we have characterized two new polycomb response elements (PREs) within this domain. We report that PREs at Abd-B cis-regulatory domains present a particular chromatin structure which is nuclease accessible all along Drosophila development and both in active and repressed states. We also show that one of these regions contains a dCTCF and CP190 dependent activity in transgenic enhancer-blocking assays, suggesting that it corresponds to the Fab-6 boundary element of the Drosophila bithorax complex.
Collapse
Affiliation(s)
- Sílvia Pérez-Lluch
- Institut de Biologia Molecular de Barcelona, CSIC, Institut de Recerca Biomedica de Barcelona, IRBB, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
9
|
Cunliffe VT. Eloquent silence: developmental functions of Class I histone deacetylases. Curr Opin Genet Dev 2008; 18:404-10. [PMID: 18929655 PMCID: PMC2671034 DOI: 10.1016/j.gde.2008.10.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/16/2008] [Accepted: 10/02/2008] [Indexed: 11/10/2022]
Abstract
Histone deacetylases (HDACs) are essential catalytic components of the transcription silencing machinery and they play important roles in the programming of multicellular development. HDACs are present within multisubunit protein complexes, other components of which govern HDAC target gene specificity by controlling interactions with sequence-specific DNA-binding proteins. Here, I review the different developmental roles of the Sin3, NuRD, CoREST and NCoR/SMRT Class I HDAC complexes. With their distinct subunit composition, these versatile molecular devices function in many different settings, to promote axis specification and tissue patterning, to maintain stem cell pluripotency, facilitate self-renewal, guide lineage commitment and drive cell differentiation.
Collapse
Affiliation(s)
- Vincent T Cunliffe
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
10
|
Costa E, Canudas S, Garcia-Bassets I, Pérez S, Fernández I, Giralt E, Azorín F, Espinás ML. Drosophila dSAP18 is a nuclear protein that associates with chromosomes and the nuclear matrix, and interacts with pinin, a protein factor involved in RNA splicing. Chromosome Res 2006; 14:515-26. [PMID: 16823614 DOI: 10.1007/s10577-006-1046-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/17/2006] [Accepted: 02/17/2006] [Indexed: 11/30/2022]
Abstract
SAP18 is a highly conserved protein that was proposed to be involved in multiple cellular processes from autophagy to gene regulation and mRNA processing. In this paper we show that, in Drosophila, dSAP18 is a predominantly nuclear protein that associates to both chromosomes and the nuclear matrix. dSAP18 becomes nuclear early during development, at the onset of cellularization, and remains so all through embryo development. dSAP18 is also nuclear in salivary glands, ovaries and cultured S2 cells. Here we also show that dSAP18 forms a complex with the Drosophila homolog of pinin (dPnn), a protein factor involved in mRNA splicing. dSAP18-dPnn interaction was confirmed in vivo, through co-immunoprecipitation experiments, as well as in vitro, through GST pull-down assays. These results are discussed in the context of the possible functions played by SAP18.
Collapse
Affiliation(s)
- Elisabet Costa
- Departament de Biologia Molecular i Cellular, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Josep Samitier 1-5, 08028, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|