1
|
Mehra K, Khurana S, Kukreti S, Kaushik M. Nanomaterials and DNA multistranded structures: a treasure hunt for targeting specific biomedical applications. J Biomol Struct Dyn 2023; 41:11324-11340. [PMID: 36546729 DOI: 10.1080/07391102.2022.2159878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The advent in nanoscience and nanotechnology has enabled the successful synthesis and characterization of different nanomaterials with unique electrical, optical, magnetic and catalytic activities. However, with respect to sensing applications, nanomaterials intrinsically lack target recognition ability to selectively bind with the analyte. DNA, an important genetic material carrying biopolymer is polymorphic in nature and shows structural polymorphism, forming secondary/multistranded structures like hairpin, cruciform, pseudoknot, duplex, triplex, G-quadruplex and i-motif. Studies reported so far have suggested that these polymorphic structures have been targeted specifically for the treatment or diagnosis of various diseases. DNA is widely used in conjugation with nanomaterials for the development of nanoarchitectures due to its rigidity, sequence programmability and specific molecular recognition, which makes this biomolecule a treasure for designing of DNA based frameworks. These two entities (DNA and nanomaterials) can be used in association with each other, as their alliance can result into creation of novel assay platforms for different purposes, ranging from imaging, sensing and diagnostics to targeted delivery. In this review, we have discussed about the recent reports on association of various mutistranded/ polymorphic forms of DNA with nanomaterials. Furthermore, different applications using this versatile DNA-nanomaterial assembly has also been elaborated at length. This review aims to target the interests of scientists from various interdisciplinary fields, including biologists, chemists and nanotechnologists, who wish to gain an understanding of nano-fabrications using a plethora of DNA polymorphic forms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Komal Mehra
- Nano-bioconjugate chemistry lab, Cluster Innovation Centre, University of Delhi, Delhi, India
- Nucleic acids research lab, Department of Chemistry, University of Delhi, Delhi, India
| | - Sonia Khurana
- Nano-bioconjugate chemistry lab, Cluster Innovation Centre, University of Delhi, Delhi, India
- Nucleic acids research lab, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic acids research lab, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate chemistry lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| |
Collapse
|
2
|
Conner AN, Fuller MT, Kellish PC, Arya DP. Thermodynamics of d(GGGGCCCC) Binding to Neomycin-Class Aminoglycosides. Biochemistry 2023. [PMID: 37172221 DOI: 10.1021/acs.biochem.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
DNA adopts a number of conformations that can affect its binding to other macromolecules. The conformations (A, B, Z) can be sequence- and/or solution-dependent. While AT-rich DNA sequences generally adopt a Canonical B-form structure, GC-rich sequences are more promiscuous. Recognition of GC-rich nucleic acids by small molecules has been much more challenging than the recognition of AT-rich duplexes. Spectrophotometric and calorimetric techniques were used to characterize the binding of neomycin-class aminoglycosides to a GC-rich DNA duplex, G4C4, in various ionic and pH conditions. Our results reveal that binding enhances the thermal stability of G4C4, with thermal enhancement decreasing with increasing pH and/or Na+ concentration. Although G4C4 bound to aminoglycosides demonstrated a mixed A- and B-form conformation, circular dichroism studies indicate that binding induces a conformational shift toward A-form DNA. Isothermal titration calorimetry studies reveal that aminoglycoside binding to G4C4 is linked to the uptake of protons at pH = 7.0 and that this uptake is pH-dependent. Increased pH and/or Na+ concentration results in a decrease in G4C4 affinity for the aminoglycosides. The binding affinities of the aminoglycosides follow the expected hierarchy: neomycin > paromomycin > ribostamycin. The salt dependence of DNA binding affinities of aminoglycosides is consistent with at least two drug NH3+ groups participating in electrostatic interactions with G4C4. These studies further embellish our understanding of the many factors facilitating recognition of GC-rich DNA structures as guided by their optimum charge and shape complementarity for small-molecule amino sugars.
Collapse
Affiliation(s)
- Andrea N Conner
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Makala T Fuller
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Patrick C Kellish
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dev P Arya
- Laboratory for Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
3
|
Shi X, Teng H, Sun Z. An updated overview of experimental and computational approaches to identify non-canonical DNA/RNA structures with emphasis on G-quadruplexes and R-loops. Brief Bioinform 2022; 23:bbac441. [PMID: 36208174 PMCID: PMC9677470 DOI: 10.1093/bib/bbac441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple types of non-canonical nucleic acid structures play essential roles in DNA recombination and replication, transcription, and genomic instability and have been associated with several human diseases. Thus, an increasing number of experimental and bioinformatics methods have been developed to identify these structures. To date, most reviews have focused on the features of non-canonical DNA/RNA structure formation, experimental approaches to mapping these structures, and the association of these structures with diseases. In addition, two reviews of computational algorithms for the prediction of non-canonical nucleic acid structures have been published. One of these reviews focused only on computational approaches for G4 detection until 2020. The other mainly summarized the computational tools for predicting cruciform, H-DNA and Z-DNA, in which the algorithms discussed were published before 2012. Since then, several experimental and computational methods have been developed. However, a systematic review including the conformation, sequencing mapping methods and computational prediction strategies for these structures has not yet been published. The purpose of this review is to provide an updated overview of conformation, current sequencing technologies and computational identification methods for non-canonical nucleic acid structures, as well as their strengths and weaknesses. We expect that this review will aid in understanding how these structures are characterised and how they contribute to related biological processes and diseases.
Collapse
Affiliation(s)
- Xiaohui Shi
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) at Peking University Cancer Hospital and Institute, Ouhai District, Wenzhou 325000, China
| | - Zhongsheng Sun
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; CAS Center for Excellence in Biotic Interactions and State Key Laboratory of Integrated Management of Pest Insects and Rodents, University of Chinese Academy of Sciences; Institute of Genomic Medicine, Wenzhou Medical University; IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| |
Collapse
|
4
|
Li F, Luo Y, Xi G, Fu J, Tu J. Single-Molecule Analysis of DNA structures using nanopore sensors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Structural switching/polymorphism by sequential base substitution at quasi-palindromic SNP site (G → A) in LCR of human β-globin gene cluster. Int J Biol Macromol 2021; 201:216-225. [PMID: 34973267 DOI: 10.1016/j.ijbiomac.2021.12.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022]
Abstract
The human β-globin gene Locus Control Region (LCR), a dominant regulator of globin gene expression contains five tissue-specific DNase I-hypersensitive sites (HSs). A single nucleotide polymorphism (SNP) (A → G) present in HS4 region of locus control region (LCR), have shown a notable association between the G allele and the occurrence of β-thalassemia. This SNP site exhibiting a hairpin - duplex equilibrium manifested in A → B like DNA transition has previously been reported from this laboratory. Since, DNA is a dynamic and adaptable molecule, so any change of a single base within a primary DNA sequence can produce major biological consequences commonly manifested in genetic disorders such as sickle cell anemia and β-thalassemia. Herein, the differential behavior of sequential single base substitutions G → A on the quasi-palindromic sequence (d-TGGGGGCCCCA; HPG11) has been explored. A combination of native gel electrophoresis, circular dichroism (CD), and UV-thermal denaturation (Tm) techniques have been used to investigate the structural polymorphism associated with various variants of HPG11 i.e. HPG11A2 to HPG11A5. The CD spectra confirmed that all the HPG11 variants exhibit a hairpin - duplex equilibrium. Oligomer concentration dependence on CD spectra has been correlated with A → B DNA conformational transition. However, as revealed in gel electrophoresis, HPG11A2 → A5 exhibit the formation of a tetramolecular structure (four-way junction) at higher oligomer concentration. UV-melting studies also supported the melting of hairpin, duplex and four-way junction structure. This polymorphism pattern may possibly be significant for DNA-protein recognition, in the process of regulation of LCR in the β-globin gene.
Collapse
|
6
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
7
|
Kumar M, Kaushik M, Kukreti S. Interaction of a photosensitizer methylene blue with various structural forms (cruciform, bulge duplex and hairpin) of designed DNA sequences. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118716. [PMID: 32731146 DOI: 10.1016/j.saa.2020.118716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Functionally important, local structural transitions in DNA generate various alternative conformations. Cruciform is one of such alternative DNA structures, usually targeted in genomes by various proteins. Symmetry elements in sequence as inverted repeats are the key factor for cruciform formation, facilitated by the presence of the AT-rich regions. Here, we used biophysical and biochemical techniques such as Gel electrophoresis, Circular dichroism (CD), and UV-thermal melting analysis to explore the structural status of the designed DNA sequences, which had potential to form cruciform structures under physiological conditions. The gel electrophoresis analysis revealed that the designed 53-mer DNA oligonucleotide sequence CR forms an intermolecular bulge duplex with flanking ends, while another sequence CRC adopts an intramolecular hairpin structure with flanking ends. Their equimolar complex (CRCRC) bestowed much-retarded migration due to the formation of a quite intriguing cruciform structure. CD studies confirmed that all the alternative structures (cruciform, bulge duplex, and hairpin with flanking ends) exhibit characteristics of B-DNA type conformation. A triphasic UV-thermal melting curve displayed by the complex formed by the equimolar ratio (CRCRC) is also suggestive of the formation of the cruciform structure. The interaction studies of CR, CRC, and their equimolar complex (1:1) with a photosensitizer methylene blue (MB) indicated that MB could not stabilize the discrete structures formed by CR and CRC sequences, however, the cruciform structure showed a quite significant increment in the melting temperature. Such studies facilitate our understanding of various secondary structures possibly present inside the cell and their interactions with drug/dye molecules.
Collapse
Affiliation(s)
- Mohan Kumar
- Department of Chemistry, University of Delhi, Delhi, India; Department of Chemistry, Shri Varshney College, Aligarh, Uttar Pradesh, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| | | |
Collapse
|
8
|
Roy K, Mahendru S, Kukreti R, Kukreti S. Unusual stability exhibited by (AT) XN 12(AT) Y motif associated with high fetal hemoglobin levels. J Biomol Struct Dyn 2019; 37:3848-3857. [PMID: 30295130 DOI: 10.1080/07391102.2018.1532320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Quasi-palindromic sequences (AT)XN12(AT)Y present in HS2 (hypersensitive site 2) of the human β-globin locus are known to be significantly associated with increased fetal hemoglobin (HbF) levels. High HbF levels in some adults arise due to pathological conditions such as sickle cell disease and β-thalassemia. However, elevated levels of HbF are also associated with a reducing morbidity and mortality in patients with β-thalassemia and thus ameliorate the severity of the disease. Using gel-electrophoresis, ultraviolet (UV)-thermal denaturation, and circular dichroism (CD) techniques, we demonstrated that it exhibits a hairpin-duplex equilibrium. Intramolecular species (hairpin) were observed in both low and high salt concentrations in gel assay studies displaying the unusual stability of intramolecular species even at the high counter-ion concentration. The unusual stability of hairpin secondary structures was also demonstrated by the monophasic nature of the melting profiles for the oligonucleotides which persisted at low as well as high salt and oligomer concentrations. Change in CD spectra as a function of oligomer concentration indicates that the bimolecular duplex formation is selectively favored over monomolecular hairpin formation at and above 9 µM oligomer concentration. Thus, we hypothesize that imperfect inverted repeat sequence (AT)XN12(AT)Y of HS2 of β-globin gene LCR forms the unusually stable hairpins which may result in the formation of a cruciform structure that may be recruited for binding by various nuclear proteins that could result in elevated HbF levels. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kapil Roy
- a Department of Chemistry , Nucleic Acids Research Lab, University of Delhi (North Campus) , Delhi , India
| | - Swati Mahendru
- a Department of Chemistry , Nucleic Acids Research Lab, University of Delhi (North Campus) , Delhi , India
| | - Ritushree Kukreti
- b Genomics and Molecular Medicine Unit , Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research , Delhi , India
| | - Shrikant Kukreti
- a Department of Chemistry , Nucleic Acids Research Lab, University of Delhi (North Campus) , Delhi , India
| |
Collapse
|
9
|
Chaudhary S, Kaushik M, Kukreti R, Kukreti S. Structural switch from a multistranded G-quadruplex to single strands as a consequence of point mutation in the promoter of the human GRIN1 gene. MOLECULAR BIOSYSTEMS 2018; 13:1805-1816. [PMID: 28702665 DOI: 10.1039/c7mb00360a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A huge number of G-rich sequences forming quadruplexes are found in the human genome, especially in telomeric regions, UTRs, and the promoter regions of a number of genes. One such gene is GRIN1 encoding the NR1 subunit of the N-methyl-d-aspartate receptor (NMDA). Several lines of reports have implicated that attenuated function of NMDA results in schizophrenia, a genetic disorder characterized by hallucinations, delusions, and psychosis. Involvement of the GRIN1 gene in the pathogenesis of schizophrenia has been extensively analysed. Recent reports have demonstrated that polymorphism in the promoter region of GRIN1 at position -855 (G/C) has a possible association with schizophrenia. The binding site for the NF-κB transcription factor gets altered due to this mutation, resulting in reduced gene expression as well as NMDA activity. By combining gel electrophoresis (PAGE), circular dichroism (CD) and CD melting techniques, the G → C single nucleotide polymorphism (SNP) at the G-rich sequence (d-CTTAGCCCGAGGAG[combining low line]GGGGGTCCCAAGT; GRIN1) was investigated. We report that the GRIN1 sequence can form an octameric/multistranded quadruplex structure with parallel conformation in the presence of K+ as well as Na+. CD and gel studies are in good correlation in order to detect molecularity and strand conformation. The parallel G-quadruplex species was hypothesized to be octameric in K+/Na+ salts. The mutated sequence (d-CTTAGCCCGAGGAC[combining low line]GGGGGTCCCAAGT; GRIN1M) remained single stranded under physiological conditions. CD melting studies support the formation of an interstranded G-quadruplex structure by the GRIN1 sequence. Two structural models are propounded for a multistranded parallel G-quadruplex conformation which might be responsible for regulating the gene expression normally underlying memory and learning.
Collapse
Affiliation(s)
- Swati Chaudhary
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India.
| | | | | | | |
Collapse
|
10
|
Berselli M, Lavezzo E, Toppo S. NeSSie: a tool for the identification of approximate DNA sequence symmetries. Bioinformatics 2018. [DOI: 10.1093/bioinformatics/bty142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michele Berselli
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Singh A, Kukreti S. Homoduplex to i-motif structural switch exhibited by a cytosine rich strand of the MYH7 heavy chain β gene promoter at physiological pH. RSC Adv 2018; 8:34202-34214. [PMID: 35548637 PMCID: PMC9087296 DOI: 10.1039/c8ra05179h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/09/2018] [Indexed: 11/21/2022] Open
Abstract
Genomic locations such as promoter, exon, intron, telomeric and non-telomeric regions are rich in GC-rich sequences with the potential to form G- and C-tetraplexes on both strands independently. Herein, we employed biophysical and biochemical methods to study a 34-mer C-rich DNA sequence of the myosin heavy chain β gene (MYH7β) promoter, namely HM34C for humans and the rabbit counterpart, RM34C, which differs from HM34C at three positions (three bases). Circular dichroism (CD), UV-thermal denaturation and native gel electrophoresis studies demonstrated that both the C-rich promoter segments form C-tetraplex (i-motif) structures. The CD studies revealed that HM34C forms the i-motif structure at acidic pH (5.2) in the presence of 0.1 M NaCl but remains unstructured at physiological pH. Interestingly, RM34C can form the stable i-motif structure in acidic as well as physiological pH. A shift in the positive peak from 280 nm to 275 nm with the increase in temperature from 4 °C to 30 °C was observed in temperature-dependent CD studies. UV-melting studies showed a biphasic transition for RM34C, indicating the existence of two structural species at neutral pH. In view of these findings we suggest that at physiological pH, the RM34C sequence exists in equilibrium between two structural motifs, i.e. the i-motif and homoduplex structure. This study may add to the understanding of the i-motif/homoduplex in equilibrium in physiological environments. Genomic locations such as promoter, exon, intron, telomeric and non-telomeric regions are rich in GC-rich sequences with the potential to form G- and C-tetraplexes on both strands independently.![]()
Collapse
Affiliation(s)
- Anju Singh
- Nucleic Acids Research Lab
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
12
|
Javadekar SM, Yadav R, Raghavan SC. DNA structural basis for fragility at peak III of BCL2 major breakpoint region associated with t(14;18) translocation. Biochim Biophys Acta Gen Subj 2017; 1862:649-659. [PMID: 29246583 DOI: 10.1016/j.bbagen.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Abstract
Maintaining genome integrity is crucial for normal cellular functions. DNA double-strand breaks (DSBs), when unrepaired, can potentiate chromosomal translocations. t(14;18) translocation involving BCL2 gene on chromosome 18 and IgH loci at chromosome 14, could lead to follicular lymphoma. Molecular basis for fragility of translocation breakpoint regions is an active area of investigation. Previously, formation of non-B DNA structures like G-quadruplex, triplex, B/A transition were investigated at peak I of BCL2 major breakpoint region (MBR); however, it is less understood at peak III. In vitro gel shift assays show faster mobility for MBR peak III sequences, unlike controls. CD studies of peak III sequences reveal a spectral pattern different from B-DNA. Although complementary C-rich stretches exhibit single-strandedness, corresponding guanine-rich sequences do not show DMS protection, ruling out G-quadruplex and triplex DNA. Extrachromosomal assay indicates that peak III halts transcription, unlike its mutated version. Taken together, multiple lines of evidence suggest formation of potential cruciform DNA structure at MBR peak III, which was also supported by in silico studies. Thus, our study reveals formation of non-B DNA structure which could be a basis for fragility at BCL2 breakpoint regions, eventually leading to chromosomal translocations.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Rakhee Yadav
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
13
|
Singh A, Kukreti S. A triple stranded G-quadruplex formation in the promoter region of human myosin β(Myh7) gene. J Biomol Struct Dyn 2017; 36:2773-2786. [PMID: 28927343 DOI: 10.1080/07391102.2017.1374211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulatory regions in human genome, enriched in guanine-rich DNA sequences have the propensity to fold into G-quadruplex structures. On exploring the genome for search of G-tracts, it was interesting to find that promoter of Human Myosin Gene (MYH7) contains a conserved 23-mer G-rich sequence (HM-23). Mutations in this gene are associated with familial cardiomyopathy. Enrichment of MYH7 gene in G-rich sequences could possibly play a critical role in its regulation. We used polyacrylamide gel electrophoresis (PAGE), UV-Thermal denaturation (UV-Tm) and Circular Dichroism (CD), to demonstrate the formation of a G-quadruplex by 23-mer G-rich sequence HM23 in promoter location of MYH7 gene. We observed that the wild G-rich sequence HM23 containing consecutive G5 stretch in two stacks adopt G-quadruplexes of diverse molecularity by involvement of four-strand, three-strand and two-strands with same parallel topology. Interestingly, the mutated sequence in the absence of continuous G5 stretch obstructs the formation of three-stranded G-quadruplex. We demonstrated that continuous G5 stretch is mandatory for the formation of a unique three-stranded G-quadruplex. Presence of various transcription factors (TF) in vicinity of the sequence HM23 leave fair possibility of recognition by TF binding sites, and so modulate gene expression. These findings may add on our understanding about the effect of base change in the formation of varied structural species in similar solution condition. This study may give insight about structural polymorphism arising due to recognition of non-Watson-Crick G-quadruplex structures by cellular proteins and designing structure specific molecules.
Collapse
Affiliation(s)
- Anju Singh
- a Nucleic Acids Research Laboratory, Department of Chemistry , University of Delhi , North Campus, Delhi 110007 , India
| | - Shrikant Kukreti
- a Nucleic Acids Research Laboratory, Department of Chemistry , University of Delhi , North Campus, Delhi 110007 , India
| |
Collapse
|
14
|
Dehghani H, Ghobakhloo S, Neishabury M. Electromobility Shift Assay Reveals Evidence in Favor of Allele-Specific Binding of RUNX1 to the 5' Hypersensitive Site 4-Locus Control Region. Hemoglobin 2016; 40:236-9. [PMID: 27492765 DOI: 10.1080/03630269.2016.1189931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In our previous studies on the Iranian β-thalassemia (β-thal) patients, we identified an association between the severity of the β-thal phenotype and the polymorphic palindromic site at the 5' hypersensitive site 4-locus control region (5'HS4-LCR) of the β-globin gene cluster. Furthermore, a linkage disequilibrium was observed between this region and XmnI-HBG2 in the patient population. Based on this data, it was suggested that the well-recognized phenotype-ameliorating role assigned to positive XmnI could be associated with its linked elements in the LCR. To investigate the functional significance of polymorphisms at the 5'HS4-LCR, we studied its influence on binding of transcription factors. Web-based predictions of transcription factor binding revealed a binding site for runt-related transcription factor 1 (RUNX1), when the allele at the center of the palindrome (TGGGG(A/G)CCCCA) was A but not when it was G. Furthermore, electromobility shift assay (EMSA) presented evidence in support of allele-specific binding of RUNX1 to 5'HS4. Considering that RUNX1 is a well-known regulator of hematopoiesis, these preliminary data suggest the importance of further studies to confirm this interaction and consequently investigate its functional and phenotypical relevance. These studies could help us to understand the molecular mechanism behind the phenotype modifying role of the 5'HS4-LCR polymorphic palindromic region (rs16912979), which has been observed in previous studies.
Collapse
Affiliation(s)
- Hossein Dehghani
- a Genetics Research Center, University of Social Welfare and Rehabilitation Sciences , Tehran , Iran
| | - Sepideh Ghobakhloo
- a Genetics Research Center, University of Social Welfare and Rehabilitation Sciences , Tehran , Iran
| | - Maryam Neishabury
- a Genetics Research Center, University of Social Welfare and Rehabilitation Sciences , Tehran , Iran
| |
Collapse
|
15
|
Kaushik M, Kaushik S, Roy K, Singh A, Mahendru S, Kumar M, Chaudhary S, Ahmed S, Kukreti S. A bouquet of DNA structures: Emerging diversity. Biochem Biophys Rep 2016; 5:388-395. [PMID: 28955846 PMCID: PMC5600441 DOI: 10.1016/j.bbrep.2016.01.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/28/2015] [Accepted: 01/22/2016] [Indexed: 11/29/2022] Open
Abstract
Structural polymorphism of DNA has constantly been evolving from the time of illustration of the double helical model of DNA by Watson and Crick. A variety of non-canonical DNA structures have constantly been documented across the globe. DNA attracted worldwide attention as a carrier of genetic information. In addition to the classical Watson–Crick duplex, DNA can actually adopt diverse structures during its active participation in cellular processes like replication, transcription, recombination and repair. Structures like hairpin, cruciform, triplex, G-triplex, quadruplex, i-motif and other alternative non-canonical DNA structures have been studied at length and have also shown their in vivo occurrence. This review mainly focuses on non-canonical structures adopted by DNA oligonucleotides which have certain prerequisites for their formation in terms of sequence, its length, number and orientation of strands along with varied solution conditions. This conformational polymorphism of DNA might be the basis of different functional properties of a specific set of DNA sequences, further giving some insights for various extremely complicated biological phenomena. Many of these structures have already shown their linkages with diseases like cancer and genetic disorders, hence making them an extremely striking target for structure-specific drug designing and therapeutic applications. DNA can adopt diverse range of structures other than classical Watson–Crick duplex. Discussion of alternate structures like hairpin, cruciform, triplex, quadruplex etc. This review gives some insights for the biological relevance of DNA structures.
Collapse
Affiliation(s)
- Mahima Kaushik
- Cluster Innovation Centre, University of Delhi, Delhi, India.,Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Kapil Roy
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Anju Singh
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Swati Mahendru
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mohan Kumar
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Swati Chaudhary
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Saami Ahmed
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
16
|
Kaushik M, Kukreti S. Differential structural status of the RNA counterpart of an undecamer quasi-palindromic DNA sequence present in LCR of human β-globin gene cluster. J Biomol Struct Dyn 2014; 33:244-52. [DOI: 10.1080/07391102.2013.877402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Neishabury M, Zamani F, Keyhani E, Azarkeivan A, Abedini SS, Eslami MS, Kakroodi ST, Vesiehsari MJ, Najmabadi H. The influence of the BCL11A polymorphism on the phenotype of patients with beta thalassemia could be affected by the beta globin locus control region and/or the Xmn1-HBG2 genotypic background. Blood Cells Mol Dis 2013; 51:80-4. [DOI: 10.1016/j.bcmd.2013.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/20/2013] [Accepted: 02/23/2013] [Indexed: 10/27/2022]
|
18
|
Bansal A, Prasad M, Roy K, Kukreti S. A short GC-rich palindrome of human mannose receptor gene coding region displays a conformational switch. Biopolymers 2012; 97:950-62. [PMID: 22987586 DOI: 10.1002/bip.22111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Conformational switching in DNA is fundamental to biological processes. The structural status of a palindromic GC-rich dodecamer DNA sequence, integral part of human MRC2 coding region, and a related sequence of opposite polarity from human FDX1 gene were characterized and compared. UV-melting, circular dichroism, and gel electrophoresis experiments demonstrated the formation of intermolecular structures. Although stability and molecularity of both the oligomeric structures were found to be almost identical, their secondary structures differed remarkably as A1 MRC2 sequence showed A-like and B-like DNA conformation, whereas the A2 FDX1 sequence exhibited only the A-like signatures. The study is relevant for understanding structural polymorphism at genomic locations depending on DNA sequence and solution environment.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | | | | | | |
Collapse
|
19
|
Neishabury M, Zamani S, Azarkeivan A, Abedini SS, Darvish H, Zamani F, Najmabadi H. The modifying effect of Xmn1-HBG2 on thalassemic phenotype is associated with its linked elements in the beta globin locus control region, including the palindromic site at 5'HS4. Blood Cells Mol Dis 2011; 48:1-5. [PMID: 22036762 DOI: 10.1016/j.bcmd.2011.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/28/2011] [Indexed: 11/24/2022]
Abstract
The core sequence of 5'HS4-beta globin locus control region and Xmn1-HBG2 site were analyzed and compared among 86 thalassemia patients with homozygous or compound heterozygous beta globin gene mutations and 101 normal individuals. Frequency of the G allele in the polymorphic palindromic sequence of 5'HS4 (TGGGG A/G CCCCA) and positive Xmn1-HBG2 profile was significantly higher in thalassemia patients compared to the normal population. Linkage disequilibrium was observed between the G allele and positive Xmn1-HBG2 profile in patient population. Furthermore, dominance of IVSII-1 in the mutation spectrum of the patients enabled us to identify linkage disequilibrium relationships between IVSII-1, positive Xmn1-HBG2 and the G allele at 5'HS4. The frequency of milder clinical phenotype was significantly higher in patients with GG/++ than cases with AA/-- genotypic pattern in 5'HS4/Xmn1-HBG2 loci. These data together with biochemical evidence suggesting a role for the A/G polymorphism at 5'HS4 palindromic site on modifying chromatin structure and in the absence of any evidence from functional studies relating the Xmn1-HBG2 site to the increased gamma chain expression, suggest that the phenotype modifying role long time assigned to Xmn1-HBG2 is possibly played by more functionally potent elements linked to it in LCR.
Collapse
Affiliation(s)
- Maryam Neishabury
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
20
|
Maintz L, Yu CF, Rodríguez E, Baurecht H, Bieber T, Illig T, Weidinger S, Novak N. Association of single nucleotide polymorphisms in the diamine oxidase gene with diamine oxidase serum activities. Allergy 2011; 66:893-902. [PMID: 21488903 DOI: 10.1111/j.1398-9995.2011.02548.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Histamine intolerance (HIT) is associated with an excess of histamine because of an impaired function of the histamine-degrading enzyme diamine oxidase (DAO). The genetic background of HIT is unknown yet. METHODS Case-control association study of all haplotype tagging and four previously reported DAO SNPs and one HNMT Single nucleotide polymorphism with symptoms of HIT and DAO serum activity in 484 German individuals including 285 patients with clinical symptoms of HIT and 199 controls. RESULTS Diamine oxidase serum activity was significantly associated with seven SNPs within the DAO gene. The minor allele at rs2052129, rs2268999, rs10156191 and rs1049742 increased the risk for a reduced DAO activity whereas showing a moderate protective effect at rs2071514, rs1049748 and rs2071517 in the genotypic (P = 2.1 × 10(-8) , 7.6 × 10(-10) , 8.3 × 10(-10) , 0.009, 0.005, 0.00001, 0.006, respectively) and allelic genetic model (P = 2.5 × 10(-11) , 5.4 × 10(-13) , 8.9 × 10(-13) , 0.00002, 0.006, 0.0003, 0.005, respectively). Reporter gene assays at rs2052129 revealed a lower promoter activity (P = 0.016) of the minor allele. DAO mRNA expression in peripheral blood mononuclear cells of homozygous carriers of the minor allele at rs2052129, rs2268999, rs10156191 was lower (P = 0.002) than homozygous carriers of the major allele. Diamine oxidase variants were not associated with the HIT phenotype per se, only with DAO activity alone and the subgroup of HIT patients displaying a reduced DAO activity. CONCLUSIONS DAO gene variants strongly influence DAO expression and activity but alone are not sufficient to fully effectuate the potentially associated disease state of HIT, suggesting an interplay of genetic and environmental factors.
Collapse
Affiliation(s)
- L Maintz
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Analyzing 5′HS3 and 5′HS4 LCR core regions and NF-E2 in Iranian thalassemia intermedia patients with normal or carrier status for beta-globin mutations. Blood Cells Mol Dis 2011; 46:201-5. [DOI: 10.1016/j.bcmd.2010.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 12/07/2010] [Indexed: 11/23/2022]
|
22
|
Saxena S, Bansal A, Kukreti S. Structural polymorphism exhibited by a homopurine.homopyrimidine sequence found at the right end of human c-jun protooncogene. Arch Biochem Biophys 2008; 471:95-108. [PMID: 18262488 DOI: 10.1016/j.abb.2008.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/15/2008] [Accepted: 01/19/2008] [Indexed: 11/17/2022]
Abstract
Homopurine.homopyrimidine (Pu.Py) tracts are likely to play important biological role in eukaryotes. Using circular dichroism, UV-thermal denaturation and gel electrophoresis, we have analyzed the structural polymorphism of a 21-bp Pu.Py DNA segment within human c-jun protooncogene 3'-region, a potential target for triplex formation. Results show that below physiological pH and in the presence of Na+/K+ with Mg2+ the duplex is destabilized/disproportionated, resulting in strand mediated structural transitions to the self-associated structures of G- and C-rich strands separately, identified as G-quadruplex and i-motif species. A significant differential behavior of the monovalent cations was observed, accordingly the presence of Na+ in acidic as well as neutral pH facilitated the duplex formation, while K+ favored the formation of self-associated structures. In Na+ and Mg2+, under acidic and neutral pH conditions, the duplex displayed triphasic and biphasic melting profiles, respectively. This self-association property of oligonucleotides might limit their use as duplex targets in triplex formation. Study is also relevant for understanding structural and biological properties of DNA sequence containing homopurine tracts.
Collapse
Affiliation(s)
- Sarika Saxena
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | | | | |
Collapse
|
23
|
Wei C, Tang Q, Li C. Structural transition from the random coil to quadruplex of AG(3)(T(2)AG(3))(3) induced by Zn(2+). Biophys Chem 2007; 132:110-3. [PMID: 18031921 DOI: 10.1016/j.bpc.2007.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 10/29/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Structures of G-quadruplex DNAs can be typically stabilized by monovalent cations such as K(+), Na(+). Some divalent and trivalent cations, such as Sr(2+), Pb(2+), Tb(3+) and Eu(3+), can also induce the formation of G-quadruplex DNA. Here we show that Zn(2+) can induce the human telomeric sequence AG(3)(T(2)AG(3))(3) to fold the G-quadruplex structure by UV absorbance difference spectra and circular dichroism (CD) spectroscopy. At micromolar concentrations, the Zn(2+)-induced changes in the UV absorbance difference spectra and CD spectra are the characteristics of antiparallel G-quadruplexes although the long wavelength CD maximum is around 285 nm rather than the typical value of 295 nm. The binding stoichometry of Zn(2+) per one AG(3)(T(2)AG(3))(3) molecule is four. To our knowledge, the structural transition of human telomeric sequence induced by Zn(2+) was observed for the first time.
Collapse
Affiliation(s)
- Chunying Wei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan China.
| | | | | |
Collapse
|