1
|
Sharma S, Artner T, Preissner KT, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free RNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118584. [PMID: 39306538 DOI: 10.1016/j.atherosclerosis.2024.118584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 11/17/2024]
Abstract
Cardiovascular diseases (CVD) and their complications continue to be the leading cause of mortality globally. With recent advancements in molecular analytics, individualized treatments are gradually applied to the diagnosis and treatment of CVD. In the field of diagnostics, liquid biopsy combined with modern analytical technologies is the most popular natural source to identify disease biomarkers, as has been successfully demonstrated in the cancer field. While it is not easy to obtain any diseased tissue for different types of CVD such as atherosclerosis, deep vein thrombosis or stroke, liquid biopsies provide a simple and non-invasive alternative to surgical tissue specimens to obtain dynamic molecular information reflecting disease states. The release of cell-free ribonucleic acids (cfRNA) from stressed/damaged/dying and/or necrotic cells is a common physiological phenomenon. CfRNAs are a heterogeneous population of various types of extracellular RNA found in body fluids (blood, urine, saliva, cerebrospinal fluid) or in association with vascular/atherosclerotic tissue, offering insights into disease pathology on a diagnostic front. In particular, cf-ribosomal RNA has been shown to act as a damaging molecule in several cardio-vascular disease conditions. Moreover, such pathophysiological functions of cfRNA in CVD have been successfully antagonized by the administration of RNases. In this review, we discuss the origin, structure, types, and potential utilization of cfRNA in the diagnosis of CVD. Together with the analysis of established CVD biomarkers, the profiling of cfRNA in body fluids may thereby provide a promising approach for early disease detection and monitoring.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Klaus T Preissner
- Kerckhoff-Heart Research Institute, Department Cardiology, Justus-Liebig-University, Giessen, Germany
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Koutsandreas T, Felden B, Chevet E, Chatziioannou A. Protein homeostasis imprinting across evolution. NAR Genom Bioinform 2024; 6:lqae014. [PMID: 38486886 PMCID: PMC10939379 DOI: 10.1093/nargab/lqae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/07/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
Protein homeostasis (a.k.a. proteostasis) is associated with the primary functions of life, and therefore with evolution. However, it is unclear how cellular proteostasis machines have evolved to adjust protein biogenesis needs to environmental constraints. Herein, we describe a novel computational approach, based on semantic network analysis, to evaluate proteostasis plasticity during evolution. We show that the molecular components of the proteostasis network (PN) are reliable metrics to deconvolute the life forms into Archaea, Bacteria and Eukarya and to assess the evolution rates among species. Semantic graphs were used as new criteria to evaluate PN complexity in 93 Eukarya, 250 Bacteria and 62 Archaea, thus representing a novel strategy for taxonomic classification, which provided information about species divergence. Kingdom-specific PN components were identified, suggesting that PN complexity may correlate with evolution. We found that the gains that occurred throughout PN evolution revealed a dichotomy within both the PN conserved modules and within kingdom-specific modules. Additionally, many of these components contribute to the evolutionary imprinting of other conserved mechanisms. Finally, the current study suggests a new way to exploit the genomic annotation of biomedical ontologies, deriving new knowledge from the semantic comparison of different biological systems.
Collapse
Affiliation(s)
- Thodoris Koutsandreas
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- e-NIOS Applications PC, Kallithea-Athens, Greece
| | - Brice Felden
- University of Rennes, INSERM U1230, Rennes, France
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- e-NIOS Applications PC, Kallithea-Athens, Greece
| |
Collapse
|
3
|
Georgoulis V, Koumpis E, Hatzimichael E. The Role of Non-Coding RNAs in Myelodysplastic Neoplasms. Cancers (Basel) 2023; 15:4810. [PMID: 37835504 PMCID: PMC10571949 DOI: 10.3390/cancers15194810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Myelodysplastic syndromes or neoplasms (MDS) are a heterogeneous group of myeloid clonal disorders characterized by peripheral blood cytopenias, blood and marrow cell dysplasia, and increased risk of evolution to acute myeloid leukemia (AML). Non-coding RNAs, especially microRNAs and long non-coding RNAs, serve as regulators of normal and malignant hematopoiesis and have been implicated in carcinogenesis. This review presents a comprehensive summary of the biology and role of non-coding RNAs, including the less studied circRNA, siRNA, piRNA, and snoRNA as potential prognostic and/or predictive biomarkers or therapeutic targets in MDS.
Collapse
Affiliation(s)
- Vasileios Georgoulis
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
| | - Epameinondas Koumpis
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
| | - Eleftheria Hatzimichael
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19 107, USA
| |
Collapse
|
4
|
Quadrini M, Tesei L, Merelli E. Automatic generation of pseudoknotted RNAs taxonomy. BMC Bioinformatics 2023; 23:575. [PMID: 37322429 DOI: 10.1186/s12859-023-05362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The ability to compare RNA secondary structures is important in understanding their biological function and for grouping similar organisms into families by looking at evolutionarily conserved sequences such as 16S rRNA. Most comparison methods and benchmarks in the literature focus on pseudoknot-free structures due to the difficulty of mapping pseudoknots in classical tree representations. Some approaches exist that permit to cluster pseudoknotted RNAs but there is not a general framework for evaluating their performance. RESULTS We introduce an evaluation framework based on a similarity/dissimilarity measure obtained by a comparison method and agglomerative clustering. Their combination automatically partition a set of molecules into groups. To illustrate the framework we define and make available a benchmark of pseudoknotted (16S and 23S) and pseudoknot-free (5S) rRNA secondary structures belonging to Archaea, Bacteria and Eukaryota. We also consider five different comparison methods from the literature that are able to manage pseudoknots. For each method we clusterize the molecules in the benchmark to obtain the taxa at the rank phylum according to the European Nucleotide Archive curated taxonomy. We compute appropriate metrics for each method and we compare their suitability to reconstruct the taxa.
Collapse
Affiliation(s)
- Michela Quadrini
- School of Sciences and Technology, University of Camerino, Via Madonna delle Carceri 7, 62032, Camerino, MC, Italy
| | - Luca Tesei
- School of Sciences and Technology, University of Camerino, Via Madonna delle Carceri 7, 62032, Camerino, MC, Italy.
| | - Emanuela Merelli
- School of Sciences and Technology, University of Camerino, Via Madonna delle Carceri 7, 62032, Camerino, MC, Italy
| |
Collapse
|
5
|
Cao L, Chen P, Hou X, Ma J, Yang N, Xu Y, Zhang Y, Zhao A, Zhang J, Li X, Huang H. Genetic characteristics and growth patterns of the hybrid grouper derived from the hybridization of Epinephelus fuscoguttatus (female) × Epinephelus polyphekadion (male). JOURNAL OF FISH BIOLOGY 2023; 102:328-339. [PMID: 36317644 DOI: 10.1111/jfb.15263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Hybridization is one of the primary methods used to cultivate farmed grouper species. The hybrid grouper derived from crossing Epinephelus fuscoguttatus (♀) and E. polyphekadion (♂) exhibits growth superiority over its parents. The genetic characteristics and growth patterns of the hybrid grouper have not yet been defined. This study confirms the ploidy level of the hybrid grouper (2n = 48) using chromosome count analysis and flow cytometry. The 5S rDNA family was used to evaluate genetic diversity. Only one 5S class (~400 bp) was detected in the hybrid grouper, which could be used to distinguish between two different types based on nucleotide sequences, likely representing homologous unit classes from the female and male parental species. Growth patterns of 5-8-month-old hybrid groupers were also monitored. In this phase, a positive allometric growth pattern in body mass with total length was found. Body height and body mass were significantly correlated based on correlation and path coefficient, suggesting that body height could serve as an excellent index to increase body mass. These results aid our understanding of the genetic evolution of the hybrid grouper and inform the development of improved rearing techniques.
Collapse
Affiliation(s)
- Liu Cao
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Tropical Ocean University, Sanya, China
| | - Pan Chen
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Tropical Ocean University, Sanya, China
| | - Xingrong Hou
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Tropical Ocean University, Sanya, China
| | - Jun Ma
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Tropical Ocean University, Sanya, China
| | - Ning Yang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Tropical Ocean University, Sanya, China
| | - Yanping Xu
- Hainan Tropical Ocean University, Sanya, China
| | | | - Anqi Zhao
- Hainan Tropical Ocean University, Sanya, China
| | | | - Xinyu Li
- Hainan Tropical Ocean University, Sanya, China
| | - Hai Huang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
6
|
More than meets no eyes: Taxonomic status of a Liotyphlops (Serpentes: Anomalepididae) blindsnake from the Atlantic Rainforest. ZOOL ANZ 2023. [DOI: 10.1016/j.jcz.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Greco M, Morard R, Darling K, Kucera M. Macroevolutionary patterns in intragenomic rDNA variability among planktonic foraminifera. PeerJ 2023; 11:e15255. [PMID: 37123000 PMCID: PMC10143585 DOI: 10.7717/peerj.15255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Ribosomal intragenomic variability in prokaryotes and eukaryotes is a genomic feature commonly studied for its inflationary impact on molecular diversity assessments. However, the evolutionary mechanisms and distribution of this phenomenon within a microbial group are rarely explored. Here, we investigate the intragenomic variability in 33 species of planktonic foraminifera, calcifying marine protists, by inspecting 2,403 partial SSU sequences obtained from single-cell clone libraries. Our analyses show that polymorphisms are common among planktonic foraminifera species, but the number of polymorphic sites significantly differs among clades. With our molecular simulations, we could assess that most of these mutations are located in paired regions that do not affect the secondary structure of the SSU fragment. Finally, by mapping the number of polymorphic sites on the phylogeny of the clades, we were able to discuss the evolution and potential sources of intragenomic variability in planktonic foraminifera, linking this trait to the distinctive nuclear and genomic dynamics of this microbial group.
Collapse
Affiliation(s)
- Mattia Greco
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Institut de Ciències del Mar (ICM), Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Raphaël Morard
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Kate Darling
- School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Michal Kucera
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
8
|
Hassler HB, Probert B, Moore C, Lawson E, Jackson RW, Russell BT, Richards VP. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. MICROBIOME 2022; 10:104. [PMID: 35799218 PMCID: PMC9264627 DOI: 10.1186/s40168-022-01295-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/23/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND The 16S rRNA gene is used extensively in bacterial phylogenetics, in species delineation, and now widely in microbiome studies. However, the gene suffers from intragenomic heterogeneity, and reports of recombination and an unreliable phylogenetic signal are accumulating. Here, we compare core gene phylogenies to phylogenies constructed using core gene concatenations to estimate the strength of signal for the 16S rRNA gene, its hypervariable regions, and all core genes at the intra- and inter-genus levels. Specifically, we perform four intra-genus analyses (Clostridium, n = 65; Legionella, n = 47; Staphylococcus, n = 36; and Campylobacter, n = 17) and one inter-genus analysis [41 core genera of the human gut microbiome (31 families, 17 orders, and 12 classes), n = 82]. RESULTS At both taxonomic levels, the 16S rRNA gene was recombinant and subject to horizontal gene transfer. At the intra-genus level, the gene showed one of the lowest levels of concordance with the core genome phylogeny (50.7% average). Concordance for hypervariable regions was lower still, with entropy masking providing little to no benefit. A major factor influencing concordance was SNP count, which showed a positive logarithmic association. Using this relationship, we determined that 690 ± 110 SNPs were required for 80% concordance (average 16S rRNA gene SNP count was 254). We also found a wide range in 16S-23S-5S rRNA operon copy number among genomes (1-27). At the inter-genus level, concordance for the whole 16S rRNA gene was markedly higher (73.8% - 10th out of 49 loci); however, the most concordant hypervariable regions (V4, V3-V4, and V1-V2) ranked in the third quartile (62.5 to 60.0%). CONCLUSIONS Ramifications of a poor phylogenetic performance for the 16S rRNA gene are far reaching. For example, in addition to incorrect species/strain delineation and phylogenetic inference, it has the potential to confound community diversity metrics if phylogenetic information is incorporated - for example, with popular approaches such as Faith's phylogenetic diversity and UniFrac. Our results highlight the problematic nature of these approaches and their use (along with entropy masking) is discouraged. Lastly, the wide range in 16S rRNA gene copy number among genomes also has a strong potential to confound diversity metrics. Video Abstract.
Collapse
Affiliation(s)
- Hayley B. Hassler
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | - Brett Probert
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | - Carson Moore
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | - Elizabeth Lawson
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | | | - Brook T. Russell
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634 USA
| | - Vincent P. Richards
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
9
|
Abstract
Compensatory substitutions happen when one mutation is advantageously selected because it restores the loss of fitness induced by a previous deleterious mutation. How frequent such mutations occur in evolution and what is the structural and functional context permitting their emergence remain open questions. We built an atlas of intra-protein compensatory substitutions using a phylogenetic approach and a dataset of 1,630 bacterial protein families for which high-quality sequence alignments and experimentally derived protein structures were available. We identified more than 51,000 positions coevolving by the mean of predicted compensatory mutations. Using the evolutionary and structural properties of the analyzed positions, we demonstrate that compensatory mutations are scarce (typically only a few in the protein history) but widespread (the majority of proteins experienced at least one). Typical coevolving residues are evolving slowly, are located in the protein core outside secondary structure motifs, and are more often in contact than expected by chance, even after accounting for their evolutionary rate and solvent exposure. An exception to this general scheme is residues coevolving for charge compensation, which are evolving faster than noncoevolving sites, in contradiction with predictions from simple coevolutionary models, but similar to stem pairs in RNA. While sites with a significant pattern of coevolution by compensatory mutations are rare, the comparative analysis of hundreds of structures ultimately permits a better understanding of the link between the three-dimensional structure of a protein and its fitness landscape.
Collapse
Affiliation(s)
- Shilpi Chaurasia
- RG Molecular Systems Evolution, Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Excelra Knowledge Solutions Pvt Ltd, Hyderabad, India
| | - Julien Y Dutheil
- RG Molecular Systems Evolution, Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute of Evolution Sciences of Montpellier (ISEM), CNRS, University of Montpellier, IRD, EPHE, 34095 Montpellier, France
| |
Collapse
|
10
|
Template switching in DNA replication can create and maintain RNA hairpins. Proc Natl Acad Sci U S A 2022; 119:2107005119. [PMID: 35046021 PMCID: PMC8794818 DOI: 10.1073/pnas.2107005119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
The evolutionary origin of RNA stem structures and the preservation of their base pairing under a spontaneous and random mutation process have puzzled theoretical evolutionary biologists. DNA replication-related template switching is a mutation mechanism that creates reverse-complement copies of sequence regions within a genome by replicating briefly along either the complementary or nascent DNA strand. Depending on the relative positions and context of the four switch points, this process may produce a reverse-complement repeat capable of forming the stem of a perfect DNA hairpin or fix the base pairing of an existing stem. Template switching is typically thought to trigger large structural changes, and its possible role in the origin and evolution of RNA genes has not been studied. Here, we show that the reconstructed ancestral histories of RNA genes contain mutation patterns consistent with the DNA replication-related template switching. In addition to multibase compensatory mutations, the mechanism can explain complex sequence changes, although mutations breaking the structure rarely get fixed in evolution. Our results suggest a solution for the long-standing dilemma of RNA gene evolution and demonstrate how template switching can both create perfect stems with a single mutation event and help maintaining the stem structure over time. Interestingly, template switching also provides an elegant explanation for the asymmetric base pair frequencies within RNA stems.
Collapse
|
11
|
El Sheikha AF. Why the importance of geo-origin tracing of edible bird nests is arising? Food Res Int 2021; 150:110806. [PMID: 34863497 DOI: 10.1016/j.foodres.2021.110806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Edible bird's nest (EBN) swiftlet existed naturally 48,000 years ago in caves as their natural dwellings. Nowadays, edible bird's nest has become a very important industry due to its high nutritional, medicinal and economic value. Additionally, edible bird's nest has a long quality guarantee period. Obviously, the nutritional components and medicinal functions vary depending on geographical origins. Recently, the global demand for edible bird's nest has markedly increased, accompanied by the increasing attention of all key players of the global food trade system, i.e., producers, consumers, traders and the authorities to obtain safe and high-quality edible bird's nest. Hence, this target can be accomplished via the enforcement of an efficient and universal geo-tracing technique. Current methods of the geo-tracking of edible bird's nest, i.e., automation, physical and analytical techniques have several limitations and all of them fail to discriminate different quality grades of edible bird's nest. Meanwhile, in many studies and applications, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) has proven to be a "cutting edge" technique for greatly enhance food traceability from field to fork through its ability in distinguishing the food products in terms of their quality and safety. This article provides an overview of (1) edible bird's nest as a multiuse strategic food product, (2) quality issues associated with edible bird's nest including implications that the site of acquisition of the edible bird's nest has food safety implications, (3) current regulations and geo-tracking approaches to ensure the safety and quality of edible bird's nest with the special focus on polymerase chain reaction-denaturing gradient gel electrophoresis technique as a vigorous and universal geo-tracing tool to be suggested for edible bird's nest geo-traceability.
Collapse
Affiliation(s)
- Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4K1, Canada; School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private Ottawa, ON K1N 6N5, Canada; Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, 32511 Shibin El Kom, Minufiya Government, Egypt.
| |
Collapse
|
12
|
Kim CK, Jin MW, Kim YK. The complete mitochondrial genome sequences of Bupleurum falcatum (Apiales: Apiaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:2576-2577. [PMID: 33457868 PMCID: PMC7782287 DOI: 10.1080/23802359.2020.1781566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bupleurum falcatum has a long history of use in traditional oriental medicine. The first complete mitochondrial genome sequences of B. falcatum were 463,792 bp based on 494,582 aligned reads. A total of 51 genes was annotated including 32 protein-coding genes, 16 tRNA genes, and three rRNA genes. In a comparison of B. falcatum and carrot (Daucus carota) revealed that the former species has four exclusive genes, but lacks six genes present in the latter. The compositional structure and phylogenetic relationships indicated that the mitochondrial genome of B. falcatum is similar to that of D. carota.
Collapse
Affiliation(s)
- Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Korea
| | - Min-Woo Jin
- School of Information Communication Engineering, Wonkwang University, Iksan, Korea
| | - Yong-Kab Kim
- School of Information Communication Engineering, Wonkwang University, Iksan, Korea
| |
Collapse
|
13
|
Qing X, Bik H, Yergaliyev TM, Gu J, Fonderie P, Brown-Miyara S, Szitenberg A, Bert W. Widespread prevalence but contrasting patterns of intragenomic rRNA polymorphisms in nematodes: Implications for phylogeny, species delimitation and life history inference. Mol Ecol Resour 2019; 20:318-332. [PMID: 31721426 DOI: 10.1111/1755-0998.13118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/26/2019] [Accepted: 11/07/2019] [Indexed: 01/15/2023]
Abstract
Ribosomal RNA genes have long been a favoured locus in phylogenetic and metabarcoding studies. Within a genome, rRNA loci are organized as tandem repeated arrays and the copies are homogenized through the process of concerted evolution. However, some level of rRNA variation (intragenomic polymorphism) is known to persist and be maintained in the genomes of many species. In nematode worms, the extent of rRNA polymorphism (RP) across species and the evolutionary and life history factors that contribute to the maintenance of intragenomic RP is largely unknown. Here, we present an extensive analysis across 30 terrestrial nematode species representing a range of free-living and parasitic taxa isolated worldwide. Our results indicate that RP is common and widespread, ribosome function appears to be maintained despite mutational changes, and intragenomic variants are stable in the genome and neutrally evolving. However, levels of variation were varied widely across rRNA locus and species, with some taxa observed to lack RP entirely. Higher levels of RP were significantly correlated with shorter generation time and high reproductive rates, and population-level factors may play a role in the geographic and phylogenetic structuring of rRNA variants observed in genera such as Rotylenchulus and Pratylenchus. Although RP did not dramatically impact the clustering and recovery of taxa in mock metabarcoding analyses, the present study has significant implications for global biodiversity estimates of nematode species derived from environmental rRNA amplicon studies, as well as our understanding of the evolutionary and ecological factors shaping genetic diversity across the nematode Tree of Life.
Collapse
Affiliation(s)
- Xue Qing
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium.,Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Holly Bik
- Department of Nematology, University of California-Riverside, Riverside, CA, USA
| | - Timur M Yergaliyev
- Dead Sea and Arava Science Center, Dead Sea Branch, Masada National Park, Tamar Regional Council, Tel Aviv, Israel.,A. Baitursynov Kostanay State University, Kostanay, Kazakhstan
| | - Jianfeng Gu
- Technical Center of Ningbo Customs (Ningbo Inspection and Quarantine Science Technology Academy), Ningbo, China
| | - Pamela Fonderie
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Sigal Brown-Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Amir Szitenberg
- Dead Sea and Arava Science Center, Dead Sea Branch, Masada National Park, Tamar Regional Council, Tel Aviv, Israel
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
High proportions of bacteria and archaea across most biomes remain uncultured. ISME JOURNAL 2019; 13:3126-3130. [PMID: 31388130 PMCID: PMC6863901 DOI: 10.1038/s41396-019-0484-y] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023]
Abstract
A recent paper by Martiny argues that "high proportions" of bacteria in diverse Earth environments have been cultured. Here we reanalyze a portion of the data in that paper, and argue that the conclusion is based on several technical errors, most notably a calculation of sequence similarity that does not account for sequence gaps, and the reliance on 16S rRNA gene amplicons that are known to be biased towards cultured organisms. We further argue that the paper is also based on a conceptual error: namely, that sequence similarity cannot be used to infer "culturability" because one cannot infer physiology from 16S rRNA gene sequences. Combined with other recent, more reliable studies, the evidence supports the conclusion that most bacterial and archaeal taxa remain uncultured.
Collapse
|
15
|
Bernier CR, Petrov AS, Kovacs NA, Penev PI, Williams LD. Translation: The Universal Structural Core of Life. Mol Biol Evol 2019; 35:2065-2076. [PMID: 29788252 PMCID: PMC6063299 DOI: 10.1093/molbev/msy101] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Universal Gene Set of Life (UGSL) is common to genomes of all extant organisms. The UGSL is small, consisting of <100 genes, and is dominated by genes encoding the translation system. Here we extend the search for biological universality to three dimensions. We characterize and quantitate the universality of structure of macromolecules that are common to all of life. We determine that around 90% of prokaryotic ribosomal RNA (rRNA) forms a common core, which is the structural and functional foundation of rRNAs of all cytoplasmic ribosomes. We have established a database, which we call the Sparse and Efficient Representation of the Extant Biology (the SEREB database). This database contains complete and cross-validated rRNA sequences of species chosen, as far as possible, to sparsely and efficiently sample all known phyla. Atomic-resolution structures of ribosomes provide data for structural comparison and validation of sequence-based models. We developed a similarity statistic called pairing adjusted sequence entropy, which characterizes paired nucleotides by their adherence to covariation and unpaired nucleotides by conventional conservation of identity. For canonically paired nucleotides the unit of structure is the nucleotide pair. For unpaired nucleotides, the unit of structure is the nucleotide. By quantitatively defining the common core of rRNA, we systematize the conservation and divergence of the translational system across the tree of life, and can begin to understand the unique evolutionary pressures that cause its universality. We explore the relationship between ribosomal size and diversity, geological time, and organismal complexity.
Collapse
Affiliation(s)
- Chad R Bernier
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Nicholas A Kovacs
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
16
|
Emamjomeh A, Zahiri J, Asadian M, Behmanesh M, Fakheri BA, Mahdevar G. Identification, Prediction and Data Analysis of Noncoding RNAs: A Review. Med Chem 2019; 15:216-230. [PMID: 30484409 DOI: 10.2174/1573406414666181015151610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 06/03/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs) which play an important role in various cellular processes are important in medicine as well as in drug design strategies. Different studies have shown that ncRNAs are dis-regulated in cancer cells and play an important role in human tumorigenesis. Therefore, it is important to identify and predict such molecules by experimental and computational methods, respectively. However, to avoid expensive experimental methods, computational algorithms have been developed for accurately and fast prediction of ncRNAs. OBJECTIVE The aim of this review was to introduce the experimental and computational methods to identify and predict ncRNAs structure. Also, we explained the ncRNA's roles in cellular processes and drugs design, briefly. METHOD In this survey, we will introduce ncRNAs and their roles in biological and medicinal processes. Then, some important laboratory techniques will be studied to identify ncRNAs. Finally, the state-of-the-art models and algorithms will be introduced along with important tools and databases. RESULTS The results showed that the integration of experimental and computational approaches improves to identify ncRNAs. Moreover, the high accurate databases, algorithms and tools were compared to predict the ncRNAs. CONCLUSION ncRNAs prediction is an exciting research field, but there are different difficulties. It requires accurate and reliable algorithms and tools. Also, it should be mentioned that computational costs of such algorithm including running time and usage memory are very important. Finally, some suggestions were presented to improve computational methods of ncRNAs gene and structural prediction.
Collapse
Affiliation(s)
- Abbasali Emamjomeh
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Asadian
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Barat A Fakheri
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Ghasem Mahdevar
- Department of Mathematics, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
17
|
El Sheikha AF. Molecular Detection of Mycotoxigenic Fungi in Foods: The Case for Using PCR-DGGE. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2018.1547644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Aly Farag El Sheikha
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, China
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, Shibin El Kom, Minufiya Government, Egypt
| |
Collapse
|
18
|
Said M, Hřibová E, Danilova TV, Karafiátová M, Čížková J, Friebe B, Doležel J, Gill BS, Vrána J. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2213-2227. [PMID: 30069594 PMCID: PMC6154037 DOI: 10.1007/s00122-018-3148-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/23/2018] [Indexed: 05/04/2023]
Abstract
Fluorescence in situ hybridization with probes for 45 cDNAs and five tandem repeats revealed homoeologous relationships of Agropyron cristatum with wheat. The results will contribute to alien gene introgression in wheat improvement. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat and a promising source of novel genes for wheat improvement. To date, identification of A. cristatum chromosomes has not been possible, and its molecular karyotype has not been available. Furthermore, homoeologous relationship between the genomes of A. cristatum and wheat has not been determined. To develop chromosome-specific landmarks, A. cristatum genomic DNA was sequenced, and new tandem repeats were discovered. Their distribution on mitotic chromosomes was studied by fluorescence in situ hybridization (FISH), which revealed specific patterns for five repeats in addition to 5S and 45S ribosomal DNA and rye subtelomeric repeats pSc119.2 and pSc200. FISH with one tandem repeat together with 45S rDNA enabled identification of all A. cristatum chromosomes. To analyze the structure and cross-species homoeology of A. cristatum chromosomes with wheat, probes for 45 mapped wheat cDNAs covering all seven chromosome groups were localized by FISH. Thirty-four cDNAs hybridized to homoeologous chromosomes of A. cristatum, nine hybridized to homoeologous and non-homoeologous chromosomes, and two hybridized to unique positions on non-homoeologous chromosomes. FISH using single-gene probes revealed that the wheat-A. cristatum collinearity was distorted, and important structural rearrangements were observed for chromosomes 2P, 4P, 5P, 6P and 7P. Chromosomal inversions were found for pericentric region of 4P and whole chromosome arm 6PL. Furthermore, reciprocal translocations between 2PS and 4PL were detected. These results provide new insights into the genome evolution within Triticeae and will facilitate the use of crested wheatgrass in alien gene introgression into wheat.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Eva Hřibová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Tatiana V Danilova
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Bikram S Gill
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic.
| |
Collapse
|
19
|
Rafiee A, Riazi-Rad F, Havaskary M, Nuri F. Long noncoding RNAs: regulation, function and cancer. Biotechnol Genet Eng Rev 2018; 34:153-180. [PMID: 30071765 DOI: 10.1080/02648725.2018.1471566] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are non-protein-coding RNA transcripts that exert a key role in many cellular processes and have potential toward addressing disease etiology. Here, we review existing noncoding RNA classes and then describe a variety of mechanisms and functions by which lncRNAs regulate gene expression such as chromatin remodeling, genomic imprinting, gene transcription and post-transcriptional processing. We also examine several lncRNAs that contribute significantly to pathogenesis, oncogenesis, tumor suppression and cell cycle arrest of diverse cancer types and also give a summary of the pathways that lncRNAs might be involved in.
Collapse
Affiliation(s)
- Aras Rafiee
- a Department of Biology , Central Tehran Branch, Islamic Azad University , Tehran , Iran
| | - Farhad Riazi-Rad
- b Immunology Department , Pasteur institute of Iran , Tehran , Iran
| | - Mohammad Havaskary
- c Young Researchers Club, Central Tehran Branch, Islamic Azad University , Tehran , Iran
| | - Fatemeh Nuri
- d Department of Biology , Central Tehran Branch, Islamic Azad University , Tehran , Iran
| |
Collapse
|
20
|
Beasley-Hall PG, Tierney SM, Weinstein P, Austin AD. A revised phylogeny of macropathine cave crickets (Orthoptera: Rhaphidophoridae) uncovers a paraphyletic Australian fauna. Mol Phylogenet Evol 2018; 126:153-161. [PMID: 29678644 DOI: 10.1016/j.ympev.2018.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
Australian cave crickets are members of the subfamily Macropathinae (Orthoptera: Rhaphidophoridae). The subfamily is thought to have originated prior to the tectonic separation of the supercontinent Gondwana based on distributions of extant lineages and molecular phylogenetic evidence, although the Australian fauna have been underrepresented in previous studies. The current study augments existing multigene data (using 12S, 16S, and 28S rRNA genes) to investigate the placement of the Australian representatives within the Macropathinae and to assess divergence dates of select clades. Results suggest that the endemic Tasmanian genus Parvotettix is the sister lineage to the remaining members of the subfamily, an outcome that presents a paraphyletic Australian fauna in contrast to previous studies. All other Australian taxa represented in this study (Micropathus and Novotettix) emerged as a sister group to the New Zealand and South American macropathine lineages. Estimation of phylogenetic divergence ages among the aforementioned clades were calibrated using two methods, in absence of suitable fossil records: (i) tectonic events depicting the fragmentation of Gondwanan landmasses that invoke vicariant scenarios of present day geographic distributions; and (ii) molecular evolutionary rates. Geological calibrations place the median age of the most recent common ancestor of extant macropathines at ∼125 to ∼165 Ma, whereas analyses derived from molecular substitution rates suggest a considerably younger origin of ∼32 Ma. This phylogenetic study represents the most rigorous taxonomic sampling of the Australian cave cricket fauna to date and stresses the influence of lineage representation on biogeographic inference.
Collapse
Affiliation(s)
- Perry G Beasley-Hall
- Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia(1).
| | - Simon M Tierney
- Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 27531, Australia
| | - Phillip Weinstein
- Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
21
|
Abstract
This chapter presents a historical overview of the development and changes in scientific approaches to classifying members of the Agrobacterium genus. We also describe the changes in the inference of evolutionary relationships among Agrobacterium biovars and Agrobacterium strains from using the 16S rRNA marker to recA genes and to the use of multilocus sequence analysis (MLSA). Further, the impacts of the genomic era enabling low cost and rapid whole genome sequencing on Agrobacterium phylogeny are reviewed with a focus on the use of new and sophisticated bioinformatics approaches to refine phylogenetic inferences. An updated genome-based phylogeny of ninety-seven Agrobacterium tumefaciens complex isolates representing ten known genomic species is presented, providing additional support to the monophyly of the Agrobacterium clade. Additional taxon sampling within Agrobacterium genomovar G3 indicates potential exceptions to interpretation of the concept of bacterial genomics species as ecological species because the genomovar G3 genomic cluster, which initially includes clinical strains, now also includes plant-associated and cave isolates.
Collapse
Affiliation(s)
- Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
22
|
Vargas-Albores F, Ortiz-Suárez LE, Villalpando-Canchola E, Martínez-Porchas M. Size-variable zone in V3 region of 16S rRNA. RNA Biol 2017; 14:1514-1521. [PMID: 28440695 DOI: 10.1080/15476286.2017.1317912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The size distribution of complete 16S-rRNA sequences from the SILVA-database and nucleotide shifts that might interfere with the secondary structure of the molecules were evaluated. Overall, 513,309 sequences recorded in SILVA were used to estimate the size of hypervariable regions of the gene. Redundant sequences were treated as a single sequence to achieve a better representation of the molecular diversity. Nucleotides found in each position in 95% of the sequences were considered the consensus sequences for different size-groups (consensus95). The sizes of different regions ranged from 96.7 to 283.1 nucleotides and had similar distribution patterns, except for the V3 region, which exhibited a bimodal distribution composed of 2 main peaks of 161 and 186 nt. The alignment of Consensuses95 of fractions 161 and 186 showed a high degree of similarity and conservation, except for the central positions (gap zone), where the sequence was highly variable and several deletions were observed. Structurally, the gap zone forms the central part of helix 17 (H17), and its extension was directly reflected in the size of this helix. H17 is part of a multihelix conjunction known as the 5-way junction (5 WJ), which is indispensable for 30 S ribosome assembly. However, because a drastic variation in the sequence size of V3 region occurs at a central position in loop H17 without affecting the base of the loop, it has no apparent effect on 5 WJ. Finally, considering that these differences were detected in non-redundant sequences, it can be concluded that this is not an uncommon or isolated event and that the V3 region is possibly more likely to mutate than are other regions.
Collapse
Affiliation(s)
- Francisco Vargas-Albores
- a Centro de Investigación en Alimentación y Desarrollo , Carretera a La Victoria . Hermosillo , Sonora , México
| | | | | | - Marcel Martínez-Porchas
- a Centro de Investigación en Alimentación y Desarrollo , Carretera a La Victoria . Hermosillo , Sonora , México
| |
Collapse
|
23
|
Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon. Sci Rep 2016; 6:32165. [PMID: 27577787 PMCID: PMC5006002 DOI: 10.1038/srep32165] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/28/2016] [Indexed: 12/04/2022] Open
Abstract
The analysis of environmental microbial communities has largely relied on a PCR-dependent amplification of genes entailing species identity as 16S rRNA. This approach is susceptible to biases depending on the level of primer matching in different species. Moreover, possible yet-to-discover taxa whose rRNA could differ enough from known ones would not be revealed. DNA-based methods moreover do not provide information on the actual physiological relevance of each taxon within an environment and are affected by the variable number of rRNA operons in different genomes. To overcome these drawbacks we propose an approach of direct sequencing of 16S ribosomal RNA without any primer- or PCR-dependent step. The method was tested on a microbial community developing in an anammox bioreactor sampled at different time-points. A conventional PCR-based amplicon pyrosequencing was run in parallel. The community resulting from direct rRNA sequencing was highly consistent with the known biochemical processes operative in the reactor. As direct rRNA-seq is based not only on taxon abundance but also on physiological activity, no comparison between its results and those from PCR-based approaches can be applied. The novel principle is in this respect proposed not as an alternative but rather as a complementary methodology in microbial community studies.
Collapse
|
24
|
De Novo Transcriptome Analysis of Medicinally Important Plantago ovata Using RNA-Seq. PLoS One 2016; 11:e0150273. [PMID: 26943165 PMCID: PMC4778938 DOI: 10.1371/journal.pone.0150273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/11/2016] [Indexed: 01/19/2023] Open
Abstract
Plantago ovata is an economically and medicinally important plant of the family Plantaginaceae. It is used extensively for the production of seed husk for its application in pharmaceutical, food and cosmetic industries. In the present study, the transcriptome of P. ovata ovary was sequenced using Illumina Genome Analyzer platform to characterize the mucilage biosynthesis pathway in the plant. De novo assembly was carried out using Oases followed by velvet. A total of 46,955 non-redundant transcripts (≥100 bp) using ~29 million high-quality paired end reads were generated. Functional categorization of these transcripts revealed the presence of several genes involved in various biological processes like metabolic pathways, mucilage biosynthesis, biosynthesis of secondary metabolites and antioxidants. In addition, simple sequence-repeat motifs, non-coding RNAs and transcription factors were also identified. Expression profiling of some genes involved in mucilage biosynthetic pathway was performed in different tissues of P. ovata using Real time PCR analysis. The study has resulted in a valuable resource for further studies on gene expression, genomics and functional genomics in P. ovata.
Collapse
|
25
|
Kucharík M, Hofacker IL, Stadler PF, Qin J. Pseudoknots in RNA folding landscapes. Bioinformatics 2016; 32:187-94. [PMID: 26428288 PMCID: PMC4708108 DOI: 10.1093/bioinformatics/btv572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/10/2015] [Accepted: 09/27/2015] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION The function of an RNA molecule is not only linked to its native structure, which is usually taken to be the ground state of its folding landscape, but also in many cases crucially depends on the details of the folding pathways such as stable folding intermediates or the timing of the folding process itself. To model and understand these processes, it is necessary to go beyond ground state structures. The study of rugged RNA folding landscapes holds the key to answer these questions. Efficient coarse-graining methods are required to reduce the intractably vast energy landscapes into condensed representations such as barrier trees or basin hopping graphs : BHG) that convey an approximate but comprehensive picture of the folding kinetics. So far, exact and heuristic coarse-graining methods have been mostly restricted to the pseudoknot-free secondary structures. Pseudoknots, which are common motifs and have been repeatedly hypothesized to play an important role in guiding folding trajectories, were usually excluded. RESULTS We generalize the BHG framework to include pseudoknotted RNA structures and systematically study the differences in predicted folding behavior depending on whether pseudoknotted structures are allowed to occur as folding intermediates or not. We observe that RNAs with pseudoknotted ground state structures tend to have more pseudoknotted folding intermediates than RNAs with pseudoknot-free ground state structures. The occurrence and influence of pseudoknotted intermediates on the folding pathway, however, appear to depend very strongly on the individual RNAs so that no general rule can be inferred. AVAILABILITY AND IMPLEMENTATION The algorithms described here are implemented in C++ as standalone programs. Its source code and Supplemental material can be freely downloaded from http://www.tbi.univie.ac.at/bhg.html. CONTACT qin@bioinf.uni-leipzig.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Ivo L Hofacker
- Institute for Theoretical Chemistry, Research Group BCB, Faculty of Computer Science, University of Vienna, Austria, RTH, University of Copenhagen, Frederiksberg, Denmark
| | - Peter F Stadler
- Institute for Theoretical Chemistry, RTH, University of Copenhagen, Frederiksberg, Denmark, Department of Computer Science & IZBI & iDiv & LIFE, Leipzig University, Max Planck Institute for Mathematics in the Sciences, Fraunhofer Institute IZI, Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA and
| | - Jing Qin
- Institute for Theoretical Chemistry, RTH, University of Copenhagen, Frederiksberg, Denmark, IMADA, University of Southern Denmark, Campusvej 55, Odense, Denmark
| |
Collapse
|
26
|
Kahnt B, Gerth M, Paxton RJ, Bleidorn C, Husemann M. The complete mitochondrial genome of the endemic and highly specialized South African bee speciesRediviva intermixta(Hymenoptera: Melittidae), with a comparison with other bee mitogenomes. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Belinda Kahnt
- General Zoology; Institute of Biology; Martin-Luther-University Halle-Wittenberg; Hoher Weg 8 06120 Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig; Deutscher Platz 5e 04103 Leipzig Germany
| | - Michael Gerth
- Molecular Evolution and Systematics of Animals; Institute of Biology; University of Leipzig; Talstraße 33 04103 Leipzig Germany
| | - Robert J. Paxton
- General Zoology; Institute of Biology; Martin-Luther-University Halle-Wittenberg; Hoher Weg 8 06120 Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig; Deutscher Platz 5e 04103 Leipzig Germany
| | - Christoph Bleidorn
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig; Deutscher Platz 5e 04103 Leipzig Germany
- Molecular Evolution and Systematics of Animals; Institute of Biology; University of Leipzig; Talstraße 33 04103 Leipzig Germany
| | - Martin Husemann
- General Zoology; Institute of Biology; Martin-Luther-University Halle-Wittenberg; Hoher Weg 8 06120 Halle (Saale) Germany
| |
Collapse
|
27
|
|
28
|
Mohamed HF. Molecular analysis and anticancer properties of two identified isolates, Fusarium solani and Emericella nidulans isolated from Wady El-Natron soil in Egypt against Caco-2 (ATCC) cell line. Asian Pac J Trop Biomed 2015; 2:863-9. [PMID: 23569862 DOI: 10.1016/s2221-1691(12)60244-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 04/27/2012] [Accepted: 06/28/2012] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To characterize, identify and investigate the anticancer properties of two new soil fungal isolates, Emericella nidulans and Fusarium solani isolated from Wady El-Natron in Egypt against colon cancer Caco-2 (ATCC) cell line. METHODS Soil sample was cultured and two strains were chosen for morphological and phenotypical characterization. Partial sequences of the 18s rRNA gene and the internal transcribed spacer region ITS of the two isolates were amplified by PCR. Phylogenetic tree construction and analysis of the resulted multiple sequences from the two fugal isolates were also carried out. In vitro anticancer activity of the two strains was done against colon Caco-2 cancer cell line. Reverse transcription - PCR was carried out to detect level of expression of p53 in Caco-2 cell line. RESULTS HF.1 displayed morphological and genotypic characteristics most similar to that of Fusarium solani while HF.2 was most similar to Emericella nidulans with high similarity of 99% and 97% respectively. The multiple sequence alignment of the two fungal isolates showed that, the maximum identical conserved domains in the 18s rRNA genes were identified with the nucleotide regions of 51st to 399th base pairs, 88th to 525th base pairs respectively. While those in the ITS genes were identified with the nucleotide regions of 88th to 463rd and 51st to 274th. The two isolates showed IC50 value with (6.24±5.21) and (9.84±0.36) µg/mL) concentrations respectively at 28h. Reverse transcription - PCR indicated that these cells showed high level of expression for p53 mRNA. CONCLUSIONS The morphology and molecular analysis identified HF.1 and HF.2 to be Fusarium solani and Emericella nidulans; new isolates of anticancer producing fungi from Wady El-Natroon city in Egypt. Treatment with the two isolates caused P53 expression in Caco-2 cell line. These two isolates can be used as an anticancer agents.
Collapse
Affiliation(s)
- Hala F Mohamed
- University of Al-Azhar, Faculty of Science (Girls Branch), Department of Botany and Microbiology,Youssef Abbas Street, Nasr City, Cairo, Egypt
| |
Collapse
|
29
|
Kucharík M, Hofacker IL, Stadler PF, Qin J. Basin Hopping Graph: a computational framework to characterize RNA folding landscapes. ACTA ACUST UNITED AC 2014; 30:2009-17. [PMID: 24648041 DOI: 10.1093/bioinformatics/btu156] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
MOTIVATION RNA folding is a complicated kinetic process. The minimum free energy structure provides only a static view of the most stable conformational state of the system. It is insufficient to give detailed insights into the dynamic behavior of RNAs. A sufficiently sophisticated analysis of the folding free energy landscape, however, can provide the relevant information. RESULTS We introduce the Basin Hopping Graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect basins when the direct transitions between them are 'energetically favorable'. Edge weights endcode the corresponding saddle heights and thus measure the difficulties of these favorable transitions. BHGs can be approximated accurately and efficiently for RNA molecules well beyond the length range accessible to enumerative algorithms. AVAILABILITY AND IMPLEMENTATION The algorithms described here are implemented in C++ as standalone programs. Its source code and supplemental material can be freely downloaded from http://www.tbi.univie.ac.at/bhg.html.
Collapse
Affiliation(s)
- Marcel Kucharík
- Institute for Theoretical Chemistry and Research group BCB, Faculty of Computer Science, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria, Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark, Department of Computer Science & IZBI & iDiv & LIFE, Härtelstraße 16-18, D-04107 University of Leipzig, Max Planck Institute for Mathematics in the Sciences and Fraunhofer Institute IZI, Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA and Department of Mathematics and Computer Science, University Of Southern Denmark, Odense, Denmark
| | - Ivo L Hofacker
- Institute for Theoretical Chemistry and Research group BCB, Faculty of Computer Science, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria, Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark, Department of Computer Science & IZBI & iDiv & LIFE, Härtelstraße 16-18, D-04107 University of Leipzig, Max Planck Institute for Mathematics in the Sciences and Fraunhofer Institute IZI, Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA and Department of Mathematics and Computer Science, University Of Southern Denmark, Odense, DenmarkInstitute for Theoretical Chemistry and Research group BCB, Faculty of Computer Science, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria, Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark, Department of Computer Science & IZBI & iDiv & LIFE, Härtelstraße 16-18, D-04107 University of Leipzig, Max Planck Institute for Mathematics in the Sciences and Fraunhofer Institute IZI, Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA and Department of Mathematics and Computer Science, University Of Southern Denmark, Odense, DenmarkInstitute for Theoretical Chemistry and Research group BCB, Faculty of Computer Science, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria, Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark, Department of Computer Science & IZBI & iDiv & LIFE, Härtelstraße 16-18, D-04107 University of Leipzig, Max Planck Institute for Mathematics in the Sciences and Fraunhofer Institute IZI, Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA and Department of Mathematics and Computer Science, University Of Southern Denmark, Odense, Denmark
| | - Peter F Stadler
- Institute for Theoretical Chemistry and Research group BCB, Faculty of Computer Science, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria, Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark, Department of Computer Science & IZBI & iDiv & LIFE, Härtelstraße 16-18, D-04107 University of Leipzig, Max Planck Institute for Mathematics in the Sciences and Fraunhofer Institute IZI, Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA and Department of Mathematics and Computer Science, University Of Southern Denmark, Odense, DenmarkInstitute for Theoretical Chemistry and Research group BCB, Faculty of Computer Science, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria, Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark, Department of Computer Science & IZBI & iDiv & LIFE, Härtelstraße 16-18, D-04107 University of Leipzig, Max Planck Institute for Mathematics in the Sciences and Fraunhofer Institute IZI, Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA and Department of Mathematics and Computer Science, University Of Southern Denmark, Odense, DenmarkInstitute for Theoretical Chemistry and Research group BCB, Faculty of Computer Science, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria, Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark, Department of Computer Science & IZBI & iDiv & LIFE, Härtelstraße 16-18, D-04107 University of Leipzig, Max Planck Institute for Mathematics in the Sciences and Fraunhofer Institute IZI, Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA and Department of Mathematics and Computer Science, University Of Southern Denmark, Odense, DenmarkInstitute for Theoretical Chemistry and Research group BCB, Faculty of Computer Science, Univer
| | - Jing Qin
- Institute for Theoretical Chemistry and Research group BCB, Faculty of Computer Science, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria, Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark, Department of Computer Science & IZBI & iDiv & LIFE, Härtelstraße 16-18, D-04107 University of Leipzig, Max Planck Institute for Mathematics in the Sciences and Fraunhofer Institute IZI, Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA and Department of Mathematics and Computer Science, University Of Southern Denmark, Odense, DenmarkInstitute for Theoretical Chemistry and Research group BCB, Faculty of Computer Science, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria, Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark, Department of Computer Science & IZBI & iDiv & LIFE, Härtelstraße 16-18, D-04107 University of Leipzig, Max Planck Institute for Mathematics in the Sciences and Fraunhofer Institute IZI, Leipzig, Germany, Santa Fe Institute, Santa Fe, NM 87501, USA and Department of Mathematics and Computer Science, University Of Southern Denmark, Odense, Denmark
| |
Collapse
|
30
|
Phylogeny and evolution of RNA structure. Methods Mol Biol 2014. [PMID: 24639167 DOI: 10.1007/978-1-62703-709-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Darwin's conviction that all living beings on Earth are related and the graph of relatedness is tree-shaped has been essentially confirmed by phylogenetic reconstruction first from morphology and later from data obtained by molecular sequencing. Limitations of the phylogenetic tree concept were recognized as more and more sequence information became available. The other path-breaking idea of Darwin, natural selection of fitter variants in populations, is cast into simple mathematical form and extended to mutation-selection dynamics. In this form the theory is directly applicable to RNA evolution in vitro and to virus evolution. Phylogeny and population dynamics of RNA provide complementary insights into evolution and the interplay between the two concepts will be pursued throughout this chapter. The two strategies for understanding evolution are ultimately related through the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling both phylogeny and evolution of RNA driven by reproduction and mutation. Thereby the focus will be laid on models for phylogenetic sequence evolution as well as evolution and design of RNA structures with selected examples and notes on simulation methods. In the perspectives an attempt is made to combine molecular structure, population dynamics, and phylogeny in modeling evolution.
Collapse
|
31
|
Anstead CA, Chilton NB. Comparison of the DNA sequences and secondary structure of the mitochondrial 16S rRNA gene of Ixodes kingi, Ixodes sculptus and Ixodes angustus. Mol Cell Probes 2014; 28:155-62. [PMID: 24556375 DOI: 10.1016/j.mcp.2014.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 11/18/2022]
Abstract
The DNA sequences and predicted secondary structure of domains IV and V of the mitochondrial (mt) 16S rRNA gene were compared for three species of Ixodes: Ixodes kingi, Ixodes sculptus and Ixodes angustus. Each species had a unique set of DNA sequences for the 16S gene. Many of the differences in DNA sequence within and among species occurred in a "hypervariable" region of domain V, and either represented partial or full compensatory base pair changes that maintained the helices within the secondary structure, or nucleotide alterations at unpaired positions that had no effect on the secondary structure. The results of the phylogenetic analyses revealed that I. kingi, I. sculptus and I. angustus were placed in a clade with some other species of the subgenera Pholeoixodes and Ixodiopsis. In addition, individuals of I. sculptus from Saskatchewan (Canada) and Colorado (USA) did not form a monophyletic clade, suggesting the possible existence of cryptic species.
Collapse
Affiliation(s)
- Clare A Anstead
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada S7N 5E2
| | - Neil B Chilton
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada S7N 5E2.
| |
Collapse
|
32
|
Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers BM, Guo P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 2014; 66:74-89. [PMID: 24270010 DOI: 10.1016/j.addr.2013.11.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Human genome sequencing revealed that only ~1.5% of the DNA sequence coded for proteins. More and more evidence has uncovered that a substantial part of the 98.5% so-called "junk" DNAs actually code for noncoding RNAs. Two milestones, chemical drugs and protein drugs, have already appeared in the history of drug development, and it is expected that the third milestone in drug development will be RNA drugs or drugs that target RNA. This review focuses on the development of RNA therapeutics for potential cancer treatment by applying RNA nanotechnology. A therapeutic RNA nanoparticle is unique in that its scaffold, ligand, and therapeutic component can all be composed of RNA. The special physicochemical properties lend to the delivery of siRNA, miRNA, ribozymes, or riboswitches; imaging using fluogenenic RNA; and targeting using RNA aptamers. With recent advances in solving the chemical, enzymatic, and thermodynamic stability issues, RNA nanoparticles have been found to be advantageous for in vivo applications due to their uniform nano-scale size, precise stoichiometry, polyvalent nature, low immunogenicity, low toxicity, and target specificity. In vivo animal studies have revealed that RNA nanoparticles can specifically target tumors with favorable pharmacokinetic and pharmacodynamic parameters without unwanted accumulation in normal organs. This review summarizes the key studies that have led to the detailed understanding of RNA nanoparticle formation as well as chemical and thermodynamic stability issue. The methods for RNA nanoparticle construction, and the current challenges in the clinical application of RNA nanotechnology, such as endosome trapping and production costs, are also discussed.
Collapse
Affiliation(s)
- Yi Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Fengmei Pi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ashwani Sharma
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Mehdi Rajabi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Farzin Haque
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dan Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Markos Leggas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
33
|
Mallatt J, Chittenden KD. The GC content of LSU rRNA evolves across topological and functional regions of the ribosome in all three domains of life. Mol Phylogenet Evol 2014; 72:17-30. [PMID: 24394731 DOI: 10.1016/j.ympev.2013.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/21/2022]
Abstract
Large-subunit rRNA is the ribozyme that catalyzes protein synthesis by translation, and many of its features vary along a deep-to-superficial gradient. By measuring the G+C proportions in this rRNA in all three domains of life (60 bacteria, 379 eukaryote, and 23 archaean sequences), we tested whether the proportion of GC nucleotides varies along this in-out gradient. The rRNA regions used were several zones identified by Bokov and Steinberg (2009) as being arranged from deep to superficial within the LSU. To the Bokov-Steinberg zones, we added the most superficial zone of all, the divergent domains (expansion segments), which are greatly enlarged in eukaryotes. Regression lines constructed from the hundreds of species of organisms revealed the expected in-out gradient, showing that species with high %GC (or high %AT) in their rRNA distribute more of these abundant nucleotides into the peripheral zones. This could be explained by the evolutionary rates of replacement of all nucleotides (A, C, G, T), because these latter rates are fastest at the periphery and slowest near the conserved core. As an overall explanation, we propose that when extrinsic factors (whole-genome nucleotide composition, or environmental temperature) demand the percentage of GC in the rRNA of a species be high or low, then the deep-lying zones are buffered against GC variation because they are the slowest to evolve. The deep, conserved zones are also the most involved in translation, hinting that stabilizing selection there prevents a high GC variability that would diminish LSU rRNA's core functions. We found only a few domain-specific trends in rRNA-GC distribution, which relate to many Archaea living at high temperatures or to the highly complex genes and adaptations of Eukaryota. Use of rRNA sequences in molecular phylogenetic studies, for reconstructing the relationships of organisms across the tree of life, requires accurate models of how rRNA evolves. The demonstration that GC distributes in regular patterns across rRNA regions can improve these tree-reconstruction models in the future and should yield phylogenies of greater accuracy.
Collapse
Affiliation(s)
- Jon Mallatt
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States.
| | - Kevin D Chittenden
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| |
Collapse
|
34
|
Feng C, Fang-yan C, Yu-bin T. Isolation, Identification of a Halotolerant Acid Red B Degrading Strain and its Decolorization Performance. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.apcbee.2014.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Lai D, Proctor JR, Meyer IM. On the importance of cotranscriptional RNA structure formation. RNA (NEW YORK, N.Y.) 2013; 19:1461-1473. [PMID: 24131802 PMCID: PMC3851714 DOI: 10.1261/rna.037390.112] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The expression of genes, both coding and noncoding, can be significantly influenced by RNA structural features of their corresponding transcripts. There is by now mounting experimental and some theoretical evidence that structure formation in vivo starts during transcription and that this cotranscriptional folding determines the functional RNA structural features that are being formed. Several decades of research in bioinformatics have resulted in a wide range of computational methods for predicting RNA secondary structures. Almost all state-of-the-art methods in terms of prediction accuracy, however, completely ignore the process of structure formation and focus exclusively on the final RNA structure. This review hopes to bridge this gap. We summarize the existing evidence for cotranscriptional folding and then review the different, currently used strategies for RNA secondary-structure prediction. Finally, we propose a range of ideas on how state-of-the-art methods could be potentially improved by explicitly capturing the process of cotranscriptional structure formation.
Collapse
|
36
|
Description of new mitochondrial genomes (Spodoptera litura, Noctuoidea and Cnaphalocrocis medinalis, Pyraloidea) and phylogenetic reconstruction of Lepidoptera with the comment on optimization schemes. Mol Biol Rep 2013; 40:6333-49. [PMID: 24057247 DOI: 10.1007/s11033-013-2748-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
We newly sequenced mitochondrial genomes of Spodoptera litura and Cnaphalocrocis medinalis belonging to Lepidoptera to obtain further insight into mitochondrial genome evolution in this group and investigated the influence of optimal strategies on phylogenetic reconstruction of Lepidoptera. Estimation of p-distances of each mitochondrial gene for available taxonomic levels has shown the highest value in ND6, whereas the lowest values in COI and COII at the nucleotide level, suggesting different utility of each gene for different hierarchical group when individual genes are utilized for phylogenetic analysis. Phylogenetic analyses mainly yielded the relationships (((((Bombycoidea + Geometroidea) + Noctuoidea) + Pyraloidea) + Papilionoidea) + Tortricoidea), evidencing the polyphyly of Macrolepidoptera. The Noctuoidea concordantly recovered the familial relationships (((Arctiidae + Lymantriidae) + Noctuidae) + Notodontidae). The tests of optimality strategies, such as exclusion of third codon positions, inclusion of rRNA and tRNA genes, data partitioning, RY recoding approach, and recoding nucleotides into amino acids suggested that the majority of the strategies did not substantially alter phylogenetic topologies or nodal supports, except for the sister relationship between Lycaenidae and Pieridae only in the amino acid dataset, which was in contrast to the sister relationship between Lycaenidae and Nymphalidae in Papilionoidea in the remaining datasets.
Collapse
|
37
|
Garcia-Mazcorro JF. Testing evolutionary models to explain the process of nucleotide substitution in gut bacterial 16S rRNA gene sequences. FEMS Microbiol Lett 2013; 346:97-104. [DOI: 10.1111/1574-6968.12207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jose F. Garcia-Mazcorro
- Facultad de Medicina Veterinaria y Zootecnia; Universidad Autónoma de Nuevo León; Nuevo León; México
| |
Collapse
|
38
|
Mahelka V, Kopecký D, Baum BR. Contrasting Patterns of Evolution of 45S and 5S rDNA Families Uncover New Aspects in the Genome Constitution of the Agronomically Important Grass Thinopyrum intermedium (Triticeae). Mol Biol Evol 2013; 30:2065-86. [DOI: 10.1093/molbev/mst106] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
39
|
Kuchipudi SV, Tellabati M, Nelli RK, White GA, Perez BB, Sebastian S, Slomka MJ, Brookes SM, Brown IH, Dunham SP, Chang KC. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells. Virol J 2012; 9:230. [PMID: 23043930 PMCID: PMC3499178 DOI: 10.1186/1743-422x-9-230] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/05/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. RESULTS The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. CONCLUSIONS Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation.
Collapse
Affiliation(s)
- Suresh V Kuchipudi
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire LE12 5RD, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mallatt J, Craig CW, Yoder MJ. Nearly complete rRNA genes from 371 Animalia: Updated structure-based alignment and detailed phylogenetic analysis. Mol Phylogenet Evol 2012; 64:603-17. [DOI: 10.1016/j.ympev.2012.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 12/30/2022]
|
41
|
Widmann J, Stombaugh J, McDonald D, Chocholousova J, Gardner P, Iyer MK, Liu Z, Lozupone CA, Quinn J, Smit S, Wikman S, Zaneveld JR, Knight R. RNASTAR: an RNA STructural Alignment Repository that provides insight into the evolution of natural and artificial RNAs. RNA (NEW YORK, N.Y.) 2012; 18:1319-27. [PMID: 22645380 PMCID: PMC3383963 DOI: 10.1261/rna.032052.111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Automated RNA alignment algorithms often fail to recapture the essential conserved sites that are critical for function. To assist in the refinement of these algorithms, we manually curated a set of 148 alignments with a total of 9600 unique sequences, in which each alignment was backed by at least one crystal or NMR structure. These alignments included both naturally and artificially selected molecules. We used principles of isostericity to improve the alignments from an average of 83%-94% isosteric base pairs. We expect that this alignment collection will assist in a wide range of benchmarking efforts and provide new insight into evolutionary principles governing change in RNA structural motifs. The improved alignments have been contributed to the Rfam database.
Collapse
Affiliation(s)
- Jeremy Widmann
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Jesse Stombaugh
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Daniel McDonald
- Biofrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Jana Chocholousova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Paul Gardner
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Matthew K. Iyer
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zongzhi Liu
- Department of Pathology Informatics, School of Medicine, Yale University, New Haven, Connecticut 06510, USA
| | - Catherine A. Lozupone
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - John Quinn
- Thermo Fisher Scientific, Lafayette, Colorado 80026, USA
| | - Sandra Smit
- Laboratory of Bioinformatics, Wageningen University, 6700 AN Wageningen, The Netherlands
| | | | - Jesse R.R. Zaneveld
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
- Howard Hughes Medical Institute, Boulder, Colorado 80309, USA
- Corresponding authorE-mail
| |
Collapse
|
42
|
Abstract
5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.
Collapse
Affiliation(s)
- G M Gongadze
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
43
|
Bodilis J, Nsigue-Meilo S, Besaury L, Quillet L. Variable copy number, intra-genomic heterogeneities and lateral transfers of the 16S rRNA gene in Pseudomonas. PLoS One 2012; 7:e35647. [PMID: 22545126 PMCID: PMC3335818 DOI: 10.1371/journal.pone.0035647] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies.
Collapse
Affiliation(s)
- Josselin Bodilis
- Laboratoire M2C, Université de Rouen, UMR CNRS 6143, Mont Saint Aignan, France.
| | | | | | | |
Collapse
|
44
|
Bolsheva NL, Gokhman VE, Muravenko OV, Gumovsky AV, Zelenin AV. Comparative cytogenetic study on two species of the genus Entedon Dalman, 1820 (Hymenoptera, Eulophidae) using DNA-binding fluorochromes and molecular and immunofluorescent markers. COMPARATIVE CYTOGENETICS 2012; 6:79-92. [PMID: 24260653 PMCID: PMC3833767 DOI: 10.3897/compcytogen.v6i1.2349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/13/2012] [Indexed: 05/30/2023]
Abstract
Karyotypes of Entedon cionobius Thomson, 1878 and Entedon cioni Thomson, 1878 (Hymenoptera: Eulophidae) were studied using DNA-binding ligands with different base specificity (propidium iodide, chromomycin A3, methyl green and DAPI; all these ligands, except for the last one, were used for the first time in parasitic wasps), C-banding, fluorescence in situ hybridization (FISH) with a 45S rDNA probe and 5-methylcytosine immunodetection. Female karyotypes of both species contain five pairs of relatively large metacentric chromosomes and a pair of smaller acrocentric chromosomes (2n = 12). As in many other Hymenoptera, males of both Entedon Dalman, 1820 species have haploid chromosome sets (n = 6). Fluorochrome staining revealed chromosome-specific banding patterns that were similar between the different fluorochromes, except for the CMA3- and PI-positive and DAPI-negative band in the pericentromeric regions of the long arms of both acrocentric chromosomes. The obtained banding patterns were virtually identical in both species and allowed for the identification of each individual chromosome. C-banding revealed a pattern similar to DAPI staining, although centromeric and telomeric regions were stained more intensively using the former technique. FISH detected a single rDNA site in the same position on the acrocentric chromosomes as the bright CMA3-positive band. Immunodetection of 5-methylcytosine that was performed for the first time in the order Hymenoptera revealed 5-methylcytosine-rich sites in the telomeric, centromeric and certain interstitial regions of most of the chromosomes.
Collapse
Affiliation(s)
- Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alex V. Gumovsky
- Institute of Zoology, National Academy of Sciences of Ukraine, Kiev 01601, Ukraine
| | - Alexander V. Zelenin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
45
|
Lemaire B, Huysmans S, Smets E, Merckx V. Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. JOURNAL OF PLANT RESEARCH 2011; 124:561-76. [PMID: 21188459 PMCID: PMC3159761 DOI: 10.1007/s10265-010-0395-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/25/2010] [Indexed: 05/08/2023]
Abstract
Rate variation in genes from all three genomes has been observed frequently in plant lineages with a parasitic and mycoheterotrophic mode of life. While the loss of photosynthetic ability leads to a relaxation of evolutionary constraints in genes involved in the photosynthetic apparatus, it remains to be determined how prevalent increased substitution rates are in nuclear DNA of non-photosynthetic angiosperms. In this study we infer rates of molecular evolution of 18S rDNA of all parasitic and mycoheterotorphic plant families (except Lauraceae and Polygalaceae) using relative rate tests. In several holoparasitic and mycoheterotrophic plant lineages extremely high substitution rates are observed compared to other photosynthetic angiosperms. The position and frequency of these substitutions have been identified to understand the mutation dynamics of 18S rRNA in achlorophyllous plants. Despite the presence of significantly elevated substitution rates, very few mutations occur in major functional and structural regions of the small ribosomal molecule, providing evidence that the efficiency of the translational apparatus in non-photosynthetic plants has not been affected.
Collapse
Affiliation(s)
- Benny Lemaire
- Laboratory of Plant Systematics, Institute of Botany and Microbiology, K.U. Leuven, Kasteelpark Arenberg, Belgium.
| | | | | | | |
Collapse
|
46
|
Schudoma C, Larhlimi A, Walther D. The influence of the local sequence environment on RNA loop structures. RNA (NEW YORK, N.Y.) 2011; 17:1247-57. [PMID: 21628431 PMCID: PMC3138562 DOI: 10.1261/rna.2550211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
RNA folding is assumed to be a hierarchical process. The secondary structure of an RNA molecule, signified by base-pairing and stacking interactions between the paired bases, is formed first. Subsequently, the RNA molecule adopts an energetically favorable three-dimensional conformation in the structural space determined mainly by the rotational degrees of freedom associated with the backbone of regions of unpaired nucleotides (loops). To what extent the backbone conformation of RNA loops also results from interactions within the local sequence context or rather follows global optimization constraints alone has not been addressed yet. Because the majority of base stacking interactions are exerted locally, a critical influence of local sequence on local structure appears plausible. Thus, local loop structure ought to be predictable, at least in part, from the local sequence context alone. To test this hypothesis, we used Random Forests on a nonredundant data set of unpaired nucleotides extracted from 97 X-ray structures from the Protein Data Bank (PDB) to predict discrete backbone angle conformations given by the discretized η/θ-pseudo-torsional space. Predictions on balanced sets with four to six conformational classes using local sequence information yielded average accuracies of up to 55%, thus significantly better than expected by chance (17%-25%). Bases close to the central nucleotide appear to be most tightly linked to its conformation. Our results suggest that RNA loop structure does not only depend on long-range base-pairing interactions; instead, it appears that local sequence context exerts a significant influence on the formation of the local loop structure.
Collapse
Affiliation(s)
- Christian Schudoma
- Bioinformatics Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
47
|
Srivastava A, Cai L, Mrázek J, Malmberg RL. Mutational patterns in RNA secondary structure evolution examined in three RNA families. PLoS One 2011; 6:e20484. [PMID: 21698102 PMCID: PMC3117835 DOI: 10.1371/journal.pone.0020484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/03/2011] [Indexed: 01/02/2023] Open
Abstract
The goal of this work was to study mutational patterns in the evolution of RNA secondary structure. We analyzed bacterial tmRNA, RNaseP and eukaryotic telomerase RNA secondary structures, mapping structural variability onto phylogenetic trees constructed primarily from rRNA sequences. We found that secondary structures evolve both by whole stem insertion/deletion, and by mutations that create or disrupt stem base pairing. We analyzed the evolution of stem lengths and constructed substitution matrices describing the changes responsible for the variation in the RNA stem length. In addition, we used principal component analysis of the stem length data to determine the most variable stems in different families of RNA. This data provides new insights into the evolution of RNA secondary structures and patterns of variation in the lengths of double helical regions of RNA molecules. Our findings will facilitate design of improved mutational models for RNA structure evolution.
Collapse
Affiliation(s)
- Anuj Srivastava
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America.
| | | | | | | |
Collapse
|
48
|
Giraud G, Pethig R, Schulze H, Henihan G, Terry JG, Menachery A, Ciani I, Corrigan D, Campbell CJ, Mount AR, Ghazal P, Walton AJ, Crain J, Bachmann TT. Dielectrophoretic manipulation of ribosomal RNA. BIOMICROFLUIDICS 2011; 5:24116. [PMID: 21799722 PMCID: PMC3145241 DOI: 10.1063/1.3604395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/06/2011] [Indexed: 05/13/2023]
Abstract
The manipulation of ribosomal RNA (rRNA) extracted from E. coli cells by dielectrophoresis (DEP) has been demonstrated over the range of 3 kHz-50 MHz using interdigitated microelectrodes. Quantitative measurement using total internal reflection fluorescence microscopy of the time dependent collection indicated a positive DEP response characterized by a plateau between 3 kHz and 1 MHz followed by a decrease in response at higher frequencies. Negative DEP was observed above 9 MHz. The positive DEP response below 1 MHz is described by the Clausius-Mossotti model and corresponds to an induced dipole moment of 3300 D with a polarizability of 7.8×10(-32) F m(2). The negative DEP response above 9 MHz indicates that the rRNA molecules exhibit a net moment of -250 D, to give an effective permittivity value of 78.5 ε(0), close to that of the aqueous suspending medium, and a relatively small surface conductance value of ∼0.1 nS. This suggests that our rRNA samples have a fairly open structure accessible to the surrounding water molecules, with counterions strongly bound to the charged phosphate groups in the rRNA backbone. These results are the first demonstration of DEP for fast capture and release of rRNA units, opening new opportunities for rRNA-based biosensing devices.
Collapse
|
49
|
Evolutionary relationships among Chlamydophila abortus variant strains inferred by rRNA secondary structure-based phylogeny. PLoS One 2011; 6:e19813. [PMID: 21629695 PMCID: PMC3101216 DOI: 10.1371/journal.pone.0019813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022] Open
Abstract
The evolutionary relationships among known Chlamydophila abortus variant strains including the LLG and POS, previously identified as being highly distinct, were investigated based on rRNA secondary structure information. PCR-amplified overlapping fragments of the 16S, 16S-23S intergenic spacer (IS), and 23S domain I rRNAs were subjected to cloning and sequencing. Secondary structure analysis revealed the presence of transitional single nucleotide variations (SNVs), two of which occurred in loops, while seven in stem regions that did not result in compensatory substitutions. Notably, only two SNVs, in 16S and 23S, occurred within evolutionary variable regions. Maximum likelihood and Bayesian phylogeny reconstructions revealed that C. abortus strains could be regarded as representing two distinct lineages, one including the “classical” C. abortus strains and the other the “LLG/POS variant”, with the type strain B577T possibly representing an intermediate of the two lineages. The two C. abortus lineages shared three unique (apomorphic) characters in the 23S domain I and 16S-23S IS, but interestingly lacked synapomorphies in the 16S rRNA. The two lineages could be distinguished on the basis of eight positions; four of these comprised residues that appeared to be signature or unique for the “classical” lineage, while three were unique for the “LLG/POS variant”. The U277 (E. coli numbering) signature character, corresponding to a highly conserved residue of the 16S molecule, and the unique G681 residue, conserved in a functionally strategic region also of 16S, are the most pronounced attributes (autapomorphies) of the “classical” and the “LLG/POS variant” lineages, respectively. Both lineages were found to be descendants of a common ancestor with the Prk/Daruma C. psittaci variant. Compared with the “classical”, the “LLG/POS variant” lineage has retained more ancestral features. The current rRNA secondary structure-based analysis and phylogenetic inference reveal new insights into how these two C. abortus lineages have differentiated during their evolution.
Collapse
|
50
|
Escobar JS, Glémin S, Galtier N. GC-Biased Gene Conversion Impacts Ribosomal DNA Evolution in Vertebrates, Angiosperms, and Other Eukaryotes. Mol Biol Evol 2011; 28:2561-75. [DOI: 10.1093/molbev/msr079] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|