1
|
Strzałka A, Mikołajczyk J, Kowalska K, Skurczyński M, Holmes NA, Jakimowicz D. The role of two major nucleoid-associated proteins in Streptomyces, HupA and HupS, in stress survival and gene expression regulation. Microb Cell Fact 2024; 23:275. [PMID: 39402545 PMCID: PMC11472566 DOI: 10.1186/s12934-024-02549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Streptomyces are sporulating soil bacteria with enormous potential for secondary metabolites biosynthesis. Regulatory networks governing Streptomyces coelicolor differentiation and secondary metabolites production are complex and composed of numerous regulatory proteins ranging from specific transcriptional regulators to sigma factors. Nucleoid-associated proteins (NAPs) are also believed to contribute to regulation of gene expression. Upon DNA binding, these proteins impact DNA accessibility. Among NAPs, HU proteins are the most widespread and abundant. Unlike other bacteria, the Streptomyces genomes encode two HU homologs: HupA and HupS, which differ in structure and expression profile. However, it remained unclear whether the functions of both homologs overlap. Additionally, although both proteins have been shown to bind the chromosome, their rolesin transcriptional regulation have not been studied so far. RESULTS In this study, we explore whether HupA and HupS affect S. coelicolor growth under optimal and stressful conditions and how they control global gene expression. By testing both single and double mutants, we address the question of the complementarity of both HU homologs. We show that the lack of both hup genes led to growth and sporulation inhibition, as well as increased spore fragility. We also demonstrate that both HU homologs can be considered global transcriptional regulators, influencing expression of between 2% and 6% genes encoding among others proteins linked to global regulatory networks and secondary metabolite production. CONCLUSIONS We identify the independent HupA and HupS regulons, as well as genes under the control of both HupA and HupS proteins. Our data indicate a partial overlap between the functions of HupA and HupS during S. coelicolor growth. HupA and HupS play important roles in Streptomyces regulatory network and impact secondary metabolite clusters.
Collapse
Affiliation(s)
- Agnieszka Strzałka
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - Jakub Mikołajczyk
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Klaudia Kowalska
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Michał Skurczyński
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Neil A Holmes
- The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Dagmara Jakimowicz
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
2
|
Becker NA, Peters JP, Lewis E, Daby CL, Clark K, Maher LJ. Engineered transcription activator-like effector dimer proteins confer DNA loop-dependent gene repression comparable to Lac repressor. Nucleic Acids Res 2024; 52:9996-10004. [PMID: 39077947 PMCID: PMC11381355 DOI: 10.1093/nar/gkae656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Natural prokaryotic gene repression systems often exploit DNA looping to increase the local concentration of gene repressor proteins at a regulated promoter via contributions from repressor proteins bound at distant sites. Using principles from the Escherichia coli lac operon we design analogous repression systems based on target sequence-programmable Transcription Activator-Like Effector dimer (TALED) proteins. Such engineered switches may be valuable for synthetic biology and therapeutic applications. Previous TALEDs with inducible non-covalent dimerization showed detectable, but limited, DNA loop-based repression due to the repressor protein dimerization equilibrium. Here, we show robust DNA loop-dependent bacterial promoter repression by covalent TALEDs and verify that DNA looping dramatically enhances promoter repression in E. coli. We characterize repression using a thermodynamic model that quantitates this favorable contribution of DNA looping. This analysis unequivocally and quantitatively demonstrates that optimized TALED proteins can drive loop-dependent promoter repression in E. coli comparable to the natural LacI repressor system. This work elucidates key design principles that set the stage for wide application of TALED-dependent DNA loop-based repression of target genes.
Collapse
Affiliation(s)
- Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Justin P Peters
- Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Elizabeth Lewis
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Camden L Daby
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Karl Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Becker NA, Peters JP, James Maher L. High-Resolution Characterization of DNA/Protein Complexes in Living Bacteria. Methods Mol Biol 2024; 2819:103-123. [PMID: 39028504 DOI: 10.1007/978-1-0716-3930-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The occurrence of DNA looping is ubiquitous. This process plays a well-documented role in the regulation of prokaryotic gene expression, such as in regulation of the Escherichia coli lactose (lac) operon. Here we present two complementary methods for high-resolution in vivo detection of DNA/protein binding within the bacterial nucleoid by using either chromatin immunoprecipitation combined with phage λ exonuclease digestion (ChIP-exo) or chromatin endogenous cleavage (ChEC), coupled with ligation-mediated polymerase chain reaction (LM-PCR) and Southern blot analysis. As an example, we apply these in vivo protein-mapping methods to E. coli to show direct binding of architectural proteins in the Lac repressor-mediated DNA repression loop.
Collapse
Affiliation(s)
- Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, IA, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
4
|
HU Knew? Bacillus subtilis HBsu Is Required for DNA Replication Initiation. J Bacteriol 2022; 204:e0015122. [PMID: 35862733 PMCID: PMC9380533 DOI: 10.1128/jb.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The prokaryotic nucleoid-associated protein (NAP) HU is both highly conserved and ubiquitous. Deletion of HU causes pleiotropic phenotypes, making it difficult to uncover the critical functions of HU within a bacterial cell. In their recent work, Karaboja and Wang (J Bacteriol 204:e00119-22, 2022, https://doi.org/10.1128/JB.00119-22) show that one essential function of Bacillus subtilis HU (HBsu) is to drive the DnaA-dependent initiation of DNA replication at the chromosome origin. We discuss the possible roles of HBsu in replication initiation and other essential cellular functions.
Collapse
|
5
|
Starr CH, Bryant Z, Spakowitz AJ. Coarse-grained modeling reveals the impact of supercoiling and loop length in DNA looping kinetics. Biophys J 2022; 121:1949-1962. [PMID: 35421389 PMCID: PMC9199097 DOI: 10.1016/j.bpj.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/19/2021] [Accepted: 04/06/2022] [Indexed: 11/02/2022] Open
Abstract
Measurements of protein-mediated DNA looping reveal that in vivo conditions favor the formation of loops shorter than those that occur in vitro, yet the precise physical mechanisms underlying this shift remain unclear. To understand the extent to which in vivo supercoiling may explain these shifts, we develop a theoretical model based on coarse-grained molecular simulation and analytical transition state theory, enabling us to map out looping energetics and kinetics as a function of two key biophysical parameters: superhelical density and loop length. We show that loops on the scale of a persistence length respond to supercoiling over a much wider range of superhelical densities and to a larger extent than longer loops. This effect arises from a tendency for loops to be centered on the plectonemic end region, which bends progressively more tightly with superhelical density. This trend reveals a mechanism by which supercoiling favors shorter loop lengths. In addition, our model predicts a complex kinetic response to supercoiling for a given loop length, governed by a competition between an enhanced rate of looping due to torsional buckling and a reduction in looping rate due to chain straightening as the plectoneme tightens at higher superhelical densities. Together, these effects lead to a flattening of the kinetic response to supercoiling within the physiological range for all but the shortest loops. Using experimental estimates for in vivo superhelical densities, we discuss our model's ability to explain available looping data, highlighting both the importance of supercoiling as a regulatory force in genetics and the additional complexities of looping phenomena in vivo.
Collapse
Affiliation(s)
- Charles H Starr
- Biophysics Program, Stanford University, Stanford, California
| | - Zev Bryant
- Biophysics Program, Stanford University, Stanford, California; Department of Bioengineering, Stanford University, Stanford, California
| | - Andrew J Spakowitz
- Biophysics Program, Stanford University, Stanford, California; Department of Chemical Engineering, Stanford University, Stanford, California; Department of Materials Science and Engineering, Stanford University, Stanford, California; Department of Applied Physics, Stanford University, Stanford, California.
| |
Collapse
|
6
|
Aldawood E, Roberts IS. Regulation of Escherichia coli Group 2 Capsule Gene Expression: A Mini Review and Update. Front Microbiol 2022; 13:858767. [PMID: 35359738 PMCID: PMC8960920 DOI: 10.3389/fmicb.2022.858767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
The expression of a group 2 capsule (K antigen), such as the K1 or K5 antigen, is a key virulence factor of Escherichia coli responsible for extra-intestinal infections. Capsule expression confers resistance to innate host defenses and plays a critical role in invasive disease. Capsule expression is temperature-dependent being expressed at 37°C but not at 20°C when outside the host. Group 2 capsule gene expression involves two convergent promoters PR1 and PR3, the regulation of which is critical to capsule expression. Temperature-dependent expression is controlled at transcriptional level directly by the binding of H-NS to PR1 and PR3 and indirectly through BipA with additional input from IHF and SlyA. More recently, other regulatory proteins, FNR, Fur, IHF, MprA, and LrhA, have been implicated in regulating capsule gene expression in response to other environmental stimuli and there is merging data for the growth phase-dependent regulation of the PR1 and PR3 promoters. The aim of the present Mini Review is to provide a unified update on the latest data on how the expression of group 2 capsules is regulated in response to a number of stimuli and the growth phase something that has not to date been addressed.
Collapse
Affiliation(s)
- Esraa Aldawood
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Clinical Laboratory Science, Collage of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Ian S. Roberts
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- *Correspondence: Ian S. Roberts,
| |
Collapse
|
7
|
Tse DH, Becker NA, Young RT, Olson WK, Peters JP, Schwab TL, Clark KJ, Maher LJ. Designed architectural proteins that tune DNA looping in bacteria. Nucleic Acids Res 2021; 49:10382-10396. [PMID: 34478548 PMCID: PMC8501960 DOI: 10.1093/nar/gkab759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022] Open
Abstract
Architectural proteins alter the shape of DNA. Some distort the double helix by introducing sharp kinks. This can serve to relieve strain in tightly-bent DNA structures. Here, we design and test artificial architectural proteins based on a sequence-specific Transcription Activator-like Effector (TALE) protein, either alone or fused to a eukaryotic high mobility group B (HMGB) DNA-bending domain. We hypothesized that TALE protein binding would stiffen DNA to bending and twisting, acting as an architectural protein that antagonizes the formation of small DNA loops. In contrast, fusion to an HMGB domain was hypothesized to generate a targeted DNA-bending architectural protein that facilitates DNA looping. We provide evidence from Escherichia coli Lac repressor gene regulatory loops supporting these hypotheses in living bacteria. Both data fitting to a thermodynamic DNA looping model and sophisticated molecular modeling support the interpretation of these results. We find that TALE protein binding inhibits looping by stiffening DNA to bending and twisting, while the Nhp6A domain enhances looping by bending DNA without introducing twisting flexibility. Our work illustrates artificial approaches to sculpt DNA geometry with functional consequences. Similar approaches may be applicable to tune the stability of small DNA loops in eukaryotes.
Collapse
Affiliation(s)
- David H Tse
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Robert T Young
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Center for Quantitative Biology, Piscataway, NJ 08854, USA
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Center for Quantitative Biology, Piscataway, NJ 08854, USA
| | - Justin P Peters
- Department of Chemistry and Biochemistry, University of Northern Iowa, 1227 West 27th Street, Cedar Falls, IA 50614, USA
| | - Tanya L Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Kamagata K, Itoh Y, Tan C, Mano E, Wu Y, Mandali S, Takada S, Johnson RC. Testing mechanisms of DNA sliding by architectural DNA-binding proteins: dynamics of single wild-type and mutant protein molecules in vitro and in vivo. Nucleic Acids Res 2021; 49:8642-8664. [PMID: 34352099 PMCID: PMC8421229 DOI: 10.1093/nar/gkab658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
Architectural DNA-binding proteins (ADBPs) are abundant constituents of eukaryotic or bacterial chromosomes that bind DNA promiscuously and function in diverse DNA reactions. They generate large conformational changes in DNA upon binding yet can slide along DNA when searching for functional binding sites. Here we investigate the mechanism by which ADBPs diffuse on DNA by single-molecule analyses of mutant proteins rationally chosen to distinguish between rotation-coupled diffusion and DNA surface sliding after transient unbinding from the groove(s). The properties of yeast Nhp6A mutant proteins, combined with molecular dynamics simulations, suggest Nhp6A switches between two binding modes: a static state, in which the HMGB domain is bound within the minor groove with the DNA highly bent, and a mobile state, where the protein is traveling along the DNA surface by means of its flexible N-terminal basic arm. The behaviors of Fis mutants, a bacterial nucleoid-associated helix-turn-helix dimer, are best explained by mobile proteins unbinding from the major groove and diffusing along the DNA surface. Nhp6A, Fis, and bacterial HU are all near exclusively associated with the chromosome, as packaged within the bacterial nucleoid, and can be modeled by three diffusion modes where HU exhibits the fastest and Fis the slowest diffusion.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Hao N, Sullivan AE, Shearwin KE, Dodd IB. The loopometer: a quantitative in vivo assay for DNA-looping proteins. Nucleic Acids Res 2021; 49:e39. [PMID: 33511418 PMCID: PMC8053113 DOI: 10.1093/nar/gkaa1284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/22/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Proteins that can bring together separate DNA sites, either on the same or on different DNA molecules, are critical for a variety of DNA-based processes. However, there are no general and technically simple assays to detect proteins capable of DNA looping in vivo nor to quantitate their in vivo looping efficiency. Here, we develop a quantitative in vivo assay for DNA-looping proteins in Escherichia coli that requires only basic DNA cloning techniques and a LacZ assay. The assay is based on loop assistance, where two binding sites for the candidate looping protein are inserted internally to a pair of operators for the E. coli LacI repressor. DNA looping between the sites shortens the effective distance between the lac operators, increasing LacI looping and strengthening its repression of a lacZ reporter gene. Analysis based on a general model for loop assistance enables quantitation of the strength of looping conferred by the protein and its binding sites. We use this ‘loopometer’ assay to measure DNA looping for a variety of bacterial and phage proteins.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601, Australia
| | - Adrienne E Sullivan
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ian B Dodd
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
10
|
Saran R, Wang Y, Li ITS. Mechanical Flexibility of DNA: A Quintessential Tool for DNA Nanotechnology. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7019. [PMID: 33302459 PMCID: PMC7764255 DOI: 10.3390/s20247019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The mechanical properties of DNA have enabled it to be a structural and sensory element in many nanotechnology applications. While specific base-pairing interactions and secondary structure formation have been the most widely utilized mechanism in designing DNA nanodevices and biosensors, the intrinsic mechanical rigidity and flexibility are often overlooked. In this article, we will discuss the biochemical and biophysical origin of double-stranded DNA rigidity and how environmental and intrinsic factors such as salt, temperature, sequence, and small molecules influence it. We will then take a critical look at three areas of applications of DNA bending rigidity. First, we will discuss how DNA's bending rigidity has been utilized to create molecular springs that regulate the activities of biomolecules and cellular processes. Second, we will discuss how the nanomechanical response induced by DNA rigidity has been used to create conformational changes as sensors for molecular force, pH, metal ions, small molecules, and protein interactions. Lastly, we will discuss how DNA's rigidity enabled its application in creating DNA-based nanostructures from DNA origami to nanomachines.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| | - Yong Wang
- Department of Physics, Materials Science and Engineering Program, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Isaac T. S. Li
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| |
Collapse
|
11
|
Becker NA, Peters JP, Schwab TL, Phillips WJ, Wallace JP, Clark KJ, Maher LJ. Characterization of Gene Repression by Designed Transcription Activator-like Effector Dimer Proteins. Biophys J 2020; 119:2045-2054. [PMID: 33091377 PMCID: PMC7732741 DOI: 10.1016/j.bpj.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022] Open
Abstract
Gene regulation by control of transcription initiation is a fundamental property of living cells. Much of our understanding of gene repression originated from studies of the Escherichia coli lac operon switch, in which DNA looping plays an essential role. To validate and generalize principles from lac for practical applications, we previously described artificial DNA looping driven by designed transcription activator-like effector dimer (TALED) proteins. Because TALE monomers bind the idealized symmetrical lac operator sequence in two orientations, our prior studies detected repression due to multiple DNA loops. We now quantitatively characterize gene repression in living E. coli by a collection of individual TALED loops with systematic loop length variation. Fitting of a thermodynamic model allows unequivocal demonstration of looping and comparison of the engineered TALED repression system with the natural lac repressor system.
Collapse
Affiliation(s)
- Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Justin P Peters
- Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, Iowa
| | - Tanya L Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - William J Phillips
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jordan P Wallace
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
12
|
Bettridge K, Verma S, Weng X, Adhya S, Xiao J. Single-molecule tracking reveals that the nucleoid-associated protein HU plays a dual role in maintaining proper nucleoid volume through differential interactions with chromosomal DNA. Mol Microbiol 2020; 115:12-27. [PMID: 32640056 DOI: 10.1111/mmi.14572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
HU (Histone-like protein from Escherichia coli strain U93) is the most conserved nucleoid-associated protein in eubacteria, but how it impacts global chromosome organization is poorly understood. Using single-molecule tracking, we demonstrate that HU exhibits nonspecific, weak, and transitory interactions with the chromosomal DNA. These interactions are largely mediated by three conserved, surface-exposed lysine residues (triK), which were previously shown to be responsible for nonspecific binding to DNA. The loss of these weak, transitory interactions in a HUα(triKA) mutant results in an over-condensed and mis-segregated nucleoid. Mutating a conserved proline residue (P63A) in the HUα subunit, deleting the HUβ subunit, or deleting nucleoid-associated naRNAs, each previously implicated in HU's high-affinity binding to kinked or cruciform DNA, leads to less dramatically altered interacting dynamics of HU compared to the HUα(triKA) mutant, but highly expanded nucleoids. Our results suggest HU plays a dual role in maintaining proper nucleoid volume through its differential interactions with chromosomal DNA. On the one hand, HU compacts the nucleoid through specific DNA structure-binding interactions. On the other hand, it decondenses the nucleoid through many nonspecific, weak, and transitory interactions with the bulk chromosome. Such dynamic interactions may contribute to the viscoelastic properties and fluidity of the bacterial nucleoid to facilitate proper chromosome functions.
Collapse
Affiliation(s)
- Kelsey Bettridge
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Subhash Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoli Weng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Bylino OV, Ibragimov AN, Shidlovskii YV. Evolution of Regulated Transcription. Cells 2020; 9:E1675. [PMID: 32664620 PMCID: PMC7408454 DOI: 10.3390/cells9071675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
The genomes of all organisms abound with various cis-regulatory elements, which control gene activity. Transcriptional enhancers are a key group of such elements in eukaryotes and are DNA regions that form physical contacts with gene promoters and precisely orchestrate gene expression programs. Here, we follow gradual evolution of this regulatory system and discuss its features in different organisms. In eubacteria, an enhancer-like element is often a single regulatory element, is usually proximal to the core promoter, and is occupied by one or a few activators. Activation of gene expression in archaea is accompanied by the recruitment of an activator to several enhancer-like sites in the upstream promoter region. In eukaryotes, activation of expression is accompanied by the recruitment of activators to multiple enhancers, which may be distant from the core promoter, and the activators act through coactivators. The role of the general DNA architecture in transcription control increases in evolution. As a whole, it can be seen that enhancers of multicellular eukaryotes evolved from the corresponding prototypic enhancer-like regulatory elements with the gradually increasing genome size of organisms.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
| | - Airat N. Ibragimov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
- I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
14
|
Liu Q, Song W, Zhou Y, Dong X, Xin Y. Phenotypic divergence of thermotolerance: Molecular basis and cold adaptive evolution related to intrinsic DNA flexibility of glacier‐inhabitingCryobacteriumstrains. Environ Microbiol 2020; 22:1409-1420. [DOI: 10.1111/1462-2920.14957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Qing Liu
- China General Microbiological Culture Collection Center (CGMCC)Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| | - Wei‐Zhi Song
- Centre for Marine Bio‐InnovationUniversity of New South Wales Sydney New South Wales Australia
| | - Yu‐Guang Zhou
- China General Microbiological Culture Collection Center (CGMCC)Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| | - Xiu‐Zhu Dong
- State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| | - Yu‐Hua Xin
- China General Microbiological Culture Collection Center (CGMCC)Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| |
Collapse
|
15
|
Sarangi MK, Zvoda V, Holte MN, Becker NA, Peters JP, Maher LJ, Ansari A. Evidence for a bind-then-bend mechanism for architectural DNA binding protein yNhp6A. Nucleic Acids Res 2019; 47:2871-2883. [PMID: 30698746 PMCID: PMC6451137 DOI: 10.1093/nar/gkz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/18/2018] [Accepted: 01/18/2019] [Indexed: 01/17/2023] Open
Abstract
The yeast Nhp6A protein (yNhp6A) is a member of the eukaryotic HMGB family of chromatin factors that enhance apparent DNA flexibility. yNhp6A binds DNA nonspecifically with nM affinity, sharply bending DNA by >60°. It is not known whether the protein binds to unbent DNA and then deforms it, or if bent DNA conformations are ‘captured’ by protein binding. The former mechanism would be supported by discovery of conditions where unbent DNA is bound by yNhp6A. Here, we employed an array of conformational probes (FRET, fluorescence anisotropy, and circular dichroism) to reveal solution conditions in which an 18-base-pair DNA oligomer indeed remains bound to yNhp6A while unbent. In 100 mM NaCl, yNhp6A-bound DNA unbends as the temperature is raised, with no significant dissociation of the complex detected up to ∼45°C. In 200 mM NaCl, DNA unbending in the intact yNhp6A complex is again detected up to ∼35°C. Microseconds-resolved laser temperature-jump perturbation of the yNhp6a–DNA complex revealed relaxation kinetics that yielded unimolecular DNA bending/unbending rates on timescales of 500 μs−1 ms. These data provide the first direct observation of bending/unbending dynamics of DNA in complex with yNhp6A, suggesting a bind-then-bend mechanism for this protein.
Collapse
Affiliation(s)
- Manas Kumar Sarangi
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Viktoriya Zvoda
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
16
|
Peters JP, Rao VN, Becker NA, Maher LJ. Dependence of DNA looping on Escherichia coli culture density. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 10:32-41. [PMID: 31523479 PMCID: PMC6737385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Repression of a promoter by entrapment within a tightly bent DNA loop is a common mechanism of gene regulation in bacteria. Besides the mechanical properties of the looped DNA and affinity of the protein that anchors the loop, cellular energetics and DNA negative supercoiling are likely factors determining the stability of the repression loop. E. coli cells undergo numerous highly regulated and dynamic transitions as resources are depleted during bacterial growth. We hypothesized that the probability of DNA looping depends on the growth status of the E. coli culture. We utilized a well-characterized repression loop model assembled from elements of the lac operon to measure loop length-dependent repression at three different culture densities. Remarkably, even with changes in supercoiling, there exists a dynamic compensation in which the contribution of DNA looping to gene repression remains essentially constant.
Collapse
Affiliation(s)
- Justin P Peters
- />Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and ScienceRochester 55905, MN, USA
- Present address: Department of Chemistry and Biochemistry, University of Northern IowaCedar Falls 50614, IA, USA
| | - Vishwas N Rao
- />Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and ScienceRochester 55905, MN, USA
| | - Nicole A Becker
- />Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and ScienceRochester 55905, MN, USA
| | - L James Maher
- />Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and ScienceRochester 55905, MN, USA
| |
Collapse
|
17
|
Yan Y, Leng F, Finzi L, Dunlap D. Protein-mediated looping of DNA under tension requires supercoiling. Nucleic Acids Res 2019; 46:2370-2379. [PMID: 29365152 PMCID: PMC5861448 DOI: 10.1093/nar/gky021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Protein-mediated DNA looping is ubiquitous in chromatin organization and gene regulation, but to what extent supercoiling or nucleoid associated proteins promote looping is poorly understood. Using the lac repressor (LacI), a paradigmatic loop-mediating protein, we measured LacI-induced looping as a function of either supercoiling or the concentration of the HU protein, an abundant nucleoid protein in Escherichia coli. Negative supercoiling to physiological levels with magnetic tweezers easily drove the looping probability from 0 to 100% in single DNA molecules under slight tension that likely exists in vivo. In contrast, even saturating (micromolar) concentrations of HU could not raise the looping probability above 30% in similarly stretched DNA or 80% in DNA without tension. Negative supercoiling is required to induce significant looping of DNA under any appreciable tension.
Collapse
Affiliation(s)
- Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Chatterjee R, Shreenivas MM, Sunil R, Chakravortty D. Enteropathogens: Tuning Their Gene Expression for Hassle-Free Survival. Front Microbiol 2019; 9:3303. [PMID: 30687282 PMCID: PMC6338047 DOI: 10.3389/fmicb.2018.03303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
Enteropathogenic bacteria have been the cause of the majority of foodborne illnesses. Much of the research has been focused on elucidating the mechanisms by which these pathogens evade the host immune system. One of the ways in which they achieve the successful establishment of a niche in the gut microenvironment and survive is by a chain of elegantly regulated gene expression patterns. Studies have shown that this process is very elaborate and is also regulated by several factors. Pathogens like, enteropathogenic Escherichia coli (EPEC), Salmonella Typhimurium, Shigella flexneri, Yersinia sp. have been seen to employ various regulated gene expression strategies. These include toxin-antitoxin systems, quorum sensing systems, expression controlled by nucleoid-associated proteins (NAPs), several regulons and operons specific to these pathogens. In the following review, we have tried to discuss the common gene regulatory systems of enteropathogenic bacteria as well as pathogen-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Rohith Sunil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
19
|
Becker NA, Peters JP, Maher LJ. High-Resolution Characterization of DNA/Protein Complexes in Living Bacteria. Methods Mol Biol 2018; 1837:95-115. [PMID: 30109607 DOI: 10.1007/978-1-4939-8675-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The occurrence of DNA looping is ubiquitous. This process plays a well-documented role in the regulation of prokaryotic gene expression, such as the Escherichia coli lactose (lac) operon. Here, we present two complementary methods for high-resolution in vivo detection of DNA/protein binding within the bacterial nucleoid by using either chromatin immunoprecipitation combined with phage λ exonuclease digestion (ChIP-exo) or chromatin endogenous cleavage (ChEC), coupled with ligation-mediated polymerase chain reaction (LM-PCR) and Southern blot analysis. As an example we apply these in vivo protein-mapping methods to E. coli to show direct binding of architectural proteins in the Lac repressor-mediated DNA repression loop.
Collapse
Affiliation(s)
- Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
20
|
Tardin C. The mechanics of DNA loops bridged by proteins unveiled by single-molecule experiments. Biochimie 2017; 142:80-92. [PMID: 28804000 DOI: 10.1016/j.biochi.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/06/2017] [Indexed: 12/28/2022]
Abstract
Protein-induced DNA bridging and looping is a common mechanism for various and essential processes in bacterial chromosomes. This mechanism is preserved despite the very different bacterial conditions and their expected influence on the thermodynamic and kinetic characteristics of the bridge formation and stability. Over the last two decades, single-molecule techniques carried out on in vitro DNA systems have yielded valuable results which, in combination with theoretical works, have clarified the effects of different parameters of nucleoprotein complexes on the protein-induced DNA bridging and looping process. In this review, I will outline the features that can be measured for such processes with various single-molecule techniques in use in the field. I will then describe both the experimental results and the theoretical models that illuminate the contribution of the DNA molecule itself as well as that of the bridging proteins in the DNA looping mechanism at play in the nucleoid of E. coli.
Collapse
Affiliation(s)
- Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
21
|
Leng F. Protein-induced DNA linking number change by sequence-specific DNA binding proteins and its biological effects. Biophys Rev 2017; 8:123-133. [PMID: 28510217 DOI: 10.1007/s12551-016-0239-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/27/2016] [Indexed: 12/18/2022] Open
Abstract
Sequence-specific DNA-binding proteins play essential roles in many fundamental biological events such as DNA replication, recombination, and transcription. One common feature of sequence-specific DNA-binding proteins is to introduce structural changes to their DNA recognition sites including DNA-bending and DNA linking number change (ΔLk). In this article, I review recent progress in studying protein-induced ΔLk by several sequence-specific DNA-binding proteins, such as E. coli cAMP receptor protein (CRP) and lactose repressor (LacI). It was demonstrated recently that protein-induced ΔLk is an intrinsic property for sequence-specific DNA-binding proteins and does not correlate to protein-induced other structural changes, such as DNA bending. For instance, although CRP bends its DNA recognition site by 90°, it was not able to introduce a ΔLk to it. However, LacI was able to simultaneously bend and introduce a ΔLk to its DNA binding sites. Intriguingly, LacI also constrained superhelicity within LacI-lac O1 complexes if (-) supercoiled DNA templates were provided. I also discuss how protein-induced ΔLk help sequence-specific DNA-binding proteins regulate their biological functions. For example, it was shown recently that LacI utilizes the constrained superhelicity (ΔLk) in LacI-lac O1 complexes and serves as a topological barrier to constrain free, unconstrained (-) supercoils within the 401-bp DNA loop. These constrained (-) supercoils enhance LacI's binding affinity and therefore the repression of the lac promoter. Other biological functions include how DNA replication initiators λ O and DnaA use the induced ΔLk to open/melt bacterial DNA replication origins.
Collapse
Affiliation(s)
- Fenfei Leng
- Biomolecular Sciences Institute and Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
22
|
Mogil LS, Becker NA, Maher LJ. Supercoiling Effects on Short-Range DNA Looping in E. coli. PLoS One 2016; 11:e0165306. [PMID: 27783696 PMCID: PMC5081198 DOI: 10.1371/journal.pone.0165306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
DNA-protein loops can be essential for gene regulation. The Escherichia coli lactose (lac) operon is controlled by DNA-protein loops that have been studied for decades. Here we adapt this model to test the hypothesis that negative superhelical strain facilitates the formation of short-range (6-8 DNA turns) repression loops in E. coli. The natural negative superhelicity of E. coli DNA is regulated by the interplay of gyrase and topoisomerase enzymes, adding or removing negative supercoils, respectively. Here, we measured quantitatively DNA looping in three different E. coli strains characterized by different levels of global supercoiling: wild type, gyrase mutant (gyrB226), and topoisomerase mutant (ΔtopA10). DNA looping in each strain was measured by assaying repression of the endogenous lac operon, and repression of ten reporter constructs with DNA loop sizes between 70-85 base pairs. Our data are most simply interpreted as supporting the hypothesis that negative supercoiling facilitates gene repression by small DNA-protein loops in living bacteria.
Collapse
MESH Headings
- DNA Gyrase/genetics
- DNA Gyrase/metabolism
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Electrophoresis, Agar Gel
- Escherichia coli/genetics
- Genes, Reporter
- Lac Operon/genetics
- Mutation
- Nucleic Acid Conformation
Collapse
Affiliation(s)
- Lauren S. Mogil
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, United States of America
- Biochemistry and Molecular Biology track, Mayo Graduate School, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, United States of America
| | - Nicole A. Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, United States of America
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, United States of America
- * E-mail:
| |
Collapse
|
23
|
Finzi L, Dunlap D. Supercoiling biases the formation of loops involved in gene regulation. Biophys Rev 2016; 8:65-74. [PMID: 28510212 DOI: 10.1007/s12551-016-0211-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/17/2016] [Indexed: 11/25/2022] Open
Abstract
The function of DNA as a repository of genetic information is well-known. The post-genomic effort is to understand how this information-containing filament is chaperoned to manage its compaction and topological states. Indeed, the activities of enzymes that transcribe, replicate, or repair DNA are regulated to a large degree by access. Proteins that act at a distance along the filament by binding at one site and contacting another site, perhaps as part of a bigger complex, create loops that constitute topological domains and influence regulation. DNA loops and plectonemes are not necessarily spontaneous, especially large loops under tension for which high energy is required to bring their ends together, or small loops that require accessory proteins to facilitate DNA bending. However, the torsion in stiff filaments such as DNA dramatically modulates the topology, driving it from extended and genetically accessible to more looped and compact, genetically secured forms. Furthermore, there are accessory factors that bias the response of the DNA filament to supercoiling. For example, small molecules like polyamines, which neutralize the negative charge repulsions along the phosphate backbone, enhance flexibility and promote writhe over twist in response to torsion. Such increased flexibility likely pushes the topological equilibrium from twist toward writhe at tensions thought to exist in vivo. A predictable corollary is that stiffening DNA antagonizes looping and bending. Certain sequences are known to be more or less flexible or to exhibit curvature, and this may affect interactions with binding proteins. In vivo all of these factors operate simultaneously on DNA that is generally negatively supercoiled to some degree. Therefore, in order to better understand gene regulation that involves protein-mediated DNA loops, it is critical to understand the thermodynamics and kinetics of looping in DNA that is under tension, negatively supercoiled, and perhaps exposed to molecules that alter elasticity. Recent experiments quantitatively reveal how much negatively supercoiling DNA lowers the free energy of looping, possibly biasing the operation of genetic switches.
Collapse
Affiliation(s)
- Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr. N.E., Atlanta, GA, 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr. N.E., Atlanta, GA, 30322, USA.
| |
Collapse
|
24
|
Leng F. Protein-induced DNA linking number change by sequence-specific DNA binding proteins and its biological effects. Biophys Rev 2016; 8:197-207. [PMID: 28510223 DOI: 10.1007/s12551-016-0204-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022] Open
Abstract
Sequence-specific DNA-binding proteins play essential roles in many fundamental biological events such as DNA replication, recombination, and transcription. One common feature of sequence-specific DNA-binding proteins is to introduce structural changes to their DNA recognition sites including DNA-bending and DNA linking number change (ΔLk). In this article, I review recent progress in studying protein-induced ΔLk by several sequence-specific DNA-binding proteins, such as E. coli cAMP receptor protein (CRP) and lactose repressor (LacI). It was demonstrated recently that protein-induced ΔLk is an intrinsic property for sequence-specific DNA-binding proteins and does not correlate to protein-induced other structural changes, such as DNA bending. For instance, although CRP bends its DNA recognition site by 90°, it was not able to introduce a ΔLk to it. However, LacI was able to simultaneously bend and introduce a ΔLk to its DNA binding sites. Intriguingly, LacI also constrained superhelicity within LacI-lac O1 complexes if (-) supercoiled DNA templates were provided. I also discuss how protein-induced ΔLk help sequence-specific DNA-binding proteins regulate their biological functions. For example, it was shown recently that LacI utilizes the constrained superhelicity (ΔLk) in LacI-lac O1 complexes and serves as a topological barrier to constrain free, unconstrained (-) supercoils within the 401-bp DNA loop. These constrained (-) supercoils enhance LacI's binding affinity and therefore the repression of the lac promoter. Other biological functions include how DNA replication initiators λ O and DnaA use the induced ΔLk to open/melt bacterial DNA replication origins.
Collapse
Affiliation(s)
- Fenfei Leng
- Biomolecular Sciences Institute and Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
25
|
Lack of the H-NS Protein Results in Extended and Aberrantly Positioned DNA during Chromosome Replication and Segregation in Escherichia coli. J Bacteriol 2016; 198:1305-16. [PMID: 26858102 DOI: 10.1128/jb.00919-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The architectural protein H-NS binds nonspecifically to hundreds of sites throughout the chromosome and can multimerize to stiffen segments of DNA as well as to form DNA-protein-DNA bridges. H-NS has been suggested to contribute to the orderly folding of the Escherichia coli chromosome in the highly compacted nucleoid. In this study, we investigated the positioning and dynamics of the origins, the replisomes, and the SeqA structures trailing the replication forks in cells lacking the H-NS protein. In H-NS mutant cells, foci of SeqA, replisomes, and origins were irregularly positioned in the cell. Further analysis showed that the average distance between the SeqA structures and the replisome was increased by ∼100 nm compared to that in wild-type cells, whereas the colocalization of SeqA-bound sister DNA behind replication forks was not affected. This result may suggest that H-NS contributes to the folding of DNA along adjacent segments. H-NS mutant cells were found to be incapable of adopting the distinct and condensed nucleoid structures characteristic of E. coli cells growing rapidly in rich medium. It appears as if H-NS mutant cells adopt a “slow-growth” type of chromosome organization under nutrient-rich conditions, which leads to a decreased cellular DNA content. IMPORTANCE It is not fully understood how and to what extent nucleoid-associated proteins contribute to chromosome folding and organization during replication and segregation in Escherichia coli. In this work, we find in vivo indications that cells lacking the nucleoid-associated protein H-NS have a lower degree of DNA condensation than wild-type cells. Our work suggests that H-NS is involved in condensing the DNA along adjacent segments on the chromosome and is not likely to tether newly replicated strands of sister DNA. We also find indications that H-NS is required for rapid growth with high DNA content and for the formation of a highly condensed nucleoid structure under such conditions.
Collapse
|
26
|
Fulcrand G, Chapagain P, Dunlap D, Leng F. Direct observation of a 91 bp LacI-mediated, negatively supercoiled DNA loop by atomic force microscope. FEBS Lett 2016; 590:613-8. [PMID: 26878689 DOI: 10.1002/1873-3468.12094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 01/08/2023]
Abstract
Escherichia coli lactose repressor (LacI), a tetrameric protein, is a paradigmatic transcriptional factor that controls the expression of lacZYA in the lac operon. It specifically binds to the O1, O2, and O3 operators of the lac promoter, forms DNA loops, and regulates transcription of the lac operon. In this article, utilizing combined techniques of DNA-nicking assay and AFM imaging, we directly observed a 91 bp LacI-mediated, negatively supercoiled DNA loop mimicking the DNA loop between the O1 and O3 operators in the lac promoter.
Collapse
Affiliation(s)
- Geraldine Fulcrand
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Prem Chapagain
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Physics, Florida International University, Miami, FL, USA
| | - David Dunlap
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| |
Collapse
|
27
|
High-resolution mapping of architectural DNA binding protein facilitation of a DNA repression loop in Escherichia coli. Proc Natl Acad Sci U S A 2015; 112:7177-82. [PMID: 26039992 PMCID: PMC4466710 DOI: 10.1073/pnas.1500412112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Double-stranded DNA is one of the stiffest polymers in biology, resisting both bending and twisting over hundreds of base pairs. However, tightly bent DNA loops are formed by proteins that turn off (repress) genes in bacteria. It has been shown that “architectural” proteins capable of kinking any DNA molecule without sequence preference facilitate this kind of gene repression. The mechanism of this effect is unknown for DNA loops involving the well-known Escherichia coli lac repressor. Here we adapt high-resolution protein-mapping techniques to show that an architectural protein directly binds tightly looped DNA to facilitate gene repression by the lac repressor. Double-stranded DNA is a locally inflexible polymer that resists bending and twisting over hundreds of base pairs. Despite this, tight DNA bending is biologically important for DNA packaging in eukaryotic chromatin and tight DNA looping is important for gene repression in prokaryotes. We and others have previously shown that sequence nonspecific DNA kinking proteins, such as Escherichia coli heat unstable and Saccharomyces cerevisiae non-histone chromosomal protein 6A (Nhp6A), facilitate lac repressor (LacI) repression loops in E. coli. It has been unknown if this facilitation involves direct protein binding to the tightly bent DNA loop or an indirect effect promoting global negative supercoiling of DNA. Here we adapt two high-resolution in vivo protein-mapping techniques to demonstrate direct binding of the heterologous Nhp6A protein at a LacI repression loop in living E. coli cells.
Collapse
|
28
|
Building bridges within the bacterial chromosome. Trends Genet 2015; 31:164-73. [DOI: 10.1016/j.tig.2015.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/22/2022]
|
29
|
DNA topology confers sequence specificity to nonspecific architectural proteins. Proc Natl Acad Sci U S A 2014; 111:16742-7. [PMID: 25385626 DOI: 10.1073/pnas.1405016111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topological constraints placed on short fragments of DNA change the disorder found in chain molecules randomly decorated by nonspecific, architectural proteins into tightly organized 3D structures. The bacterial heat-unstable (HU) protein builds up, counter to expectations, in greater quantities and at particular sites along simulated DNA minicircles and loops. Moreover, the placement of HU along loops with the "wild-type" spacing found in the Escherichia coli lactose (lac) and galactose (gal) operons precludes access to key recognition elements on DNA. The HU protein introduces a unique spatial pathway in the DNA upon closure. The many ways in which the protein induces nearly the same closed circular configuration point to the statistical advantage of its nonspecificity. The rotational settings imposed on DNA by the repressor proteins, by contrast, introduce sequential specificity in HU placement, with the nonspecific protein accumulating at particular loci on the constrained duplex. Thus, an architectural protein with no discernible DNA sequence-recognizing features becomes site-specific and potentially assumes a functional role upon loop formation. The locations of HU on the closed DNA reflect long-range mechanical correlations. The protein responds to DNA shape and deformability—the stiff, naturally straight double-helical structure—rather than to the unique features of the constituent base pairs. The structures of the simulated loops suggest that HU architecture, like nucleosomal architecture, which modulates the ability of regulatory proteins to recognize their binding sites in the context of chromatin, may influence repressor-operator interactions in the context of the bacterial nucleoid.
Collapse
|
30
|
Driessen RPC, Sitters G, Laurens N, Moolenaar GF, Wuite GJL, Goosen N, Dame RT. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry 2014; 53:6430-8. [PMID: 25291500 PMCID: PMC5451147 DOI: 10.1021/bi500344j] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
helical structure of double-stranded DNA is destabilized by
increasing temperature. Above a critical temperature (the melting
temperature), the two strands in duplex DNA become fully separated.
Below this temperature, the structural effects are localized. Using
tethered particle motion in a temperature-controlled sample chamber,
we systematically investigated the effect of increasing temperature
on DNA structure and the interplay between this effect and protein
binding. Our measurements revealed that (1) increasing temperature
enhances DNA flexibility, effectively leading to more compact folding
of the double-stranded DNA chain, and (2) temperature differentially
affects different types of DNA-bending chromatin proteins from mesophilic
and thermophilic organisms. Thus, our findings aid in understanding
genome organization in organisms thriving at moderate as well as extreme
temperatures. Moreover, our results underscore the importance of carefully
controlling and measuring temperature in single-molecule DNA (micromanipulation)
experiments.
Collapse
Affiliation(s)
- Rosalie P C Driessen
- Molecular Genetics, Leiden Institute of Chemistry and Cell Observatory, Leiden University , 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Perez PJ, Clauvelin N, Grosner MA, Colasanti AV, Olson WK. What controls DNA looping? Int J Mol Sci 2014; 15:15090-108. [PMID: 25167135 PMCID: PMC4200792 DOI: 10.3390/ijms150915090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 01/15/2023] Open
Abstract
The looping of DNA provides a means of communication between sequentially distant genomic sites that operate in tandem to express, copy, and repair the information encoded in the DNA base sequence. The short loops implicated in the expression of bacterial genes suggest that molecular factors other than the naturally stiff double helix are involved in bringing the interacting sites into close spatial proximity. New computational techniques that take direct account of the three-dimensional structures and fluctuations of protein and DNA allow us to examine the likely means of enhancing such communication. Here, we describe the application of these approaches to the looping of a 92 base-pair DNA segment between the headpieces of the tetrameric Escherichia coli Lac repressor protein. The distortions of the double helix induced by a second protein--the nonspecific nucleoid protein HU--increase the computed likelihood of looping by several orders of magnitude over that of DNA alone. Large-scale deformations of the repressor, sequence-dependent features in the DNA loop, and deformability of the DNA operators also enhance looping, although to lesser degrees. The correspondence between the predicted looping propensities and the ease of looping derived from gene-expression and single-molecule measurements lends credence to the derived structural picture.
Collapse
Affiliation(s)
- Pamela J Perez
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Nicolas Clauvelin
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Michael A Grosner
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Andrew V Colasanti
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Wilma K Olson
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
32
|
Johnson S, van de Meent JW, Phillips R, Wiggins CH, Lindén M. Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion. Nucleic Acids Res 2014; 42:10265-77. [PMID: 25120267 PMCID: PMC4176382 DOI: 10.1093/nar/gku563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The bacterial transcription factor LacI loops DNA by binding to two separate locations on the DNA simultaneously. Despite being one of the best-studied model systems for transcriptional regulation, the number and conformations of loop structures accessible to LacI remain unclear, though the importance of multiple coexisting loops has been implicated in interactions between LacI and other cellular regulators of gene expression. To probe this issue, we have developed a new analysis method for tethered particle motion, a versatile and commonly used in vitro single-molecule technique. Our method, vbTPM, performs variational Bayesian inference in hidden Markov models. It learns the number of distinct states (i.e. DNA–protein conformations) directly from tethered particle motion data with better resolution than existing methods, while easily correcting for common experimental artifacts. Studying short (roughly 100 bp) LacI-mediated loops, we provide evidence for three distinct loop structures, more than previously reported in single-molecule studies. Moreover, our results confirm that changes in LacI conformation and DNA-binding topology both contribute to the repertoire of LacI-mediated loops formed in vitro, and provide qualitatively new input for models of looping and transcriptional regulation. We expect vbTPM to be broadly useful for probing complex protein–nucleic acid interactions.
Collapse
Affiliation(s)
- Stephanie Johnson
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - Jan-Willem van de Meent
- Department of Statistics, Columbia University, 1255 Amsterdam Avenue MC 4690, New York, New York 10027
| | - Rob Phillips
- Departments of Applied Physics and Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125
| | - Chris H Wiggins
- Department of Applied Physics and Applied Mathematics, Columbia University, 200 S.W. Mudd, 500 W. 120th St. MC 4701, New York, New York 10027
| | - Martin Lindén
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden Department of Cell and Molecular Biology, Uppsala University, Box 256, SE-751 05 Uppsala, Sweden
| |
Collapse
|
33
|
Graham TGW, Wang X, Song D, Etson CM, van Oijen AM, Rudner DZ, Loparo JJ. ParB spreading requires DNA bridging. Genes Dev 2014; 28:1228-38. [PMID: 24829297 PMCID: PMC4052768 DOI: 10.1101/gad.242206.114] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The bacterial parABS system is employed for plasmid partitioning and chromosome segregation. ParB binds to parS sites and associates with broad regions of adjacent DNA, a phenomenon known as spreading. However, the molecular basis for spreading is unknown. Using single-molecule approaches, Graham et al. demonstrate DNA bridging by B. subtilis ParB (Spo0J). Spo0J mutations that disrupt DNA bridging lead to defective spreading and SMC condensin complex recruitment. This study suggests a novel, conserved mechanism by which ParB proteins function in chromosome organization and segregation. The parABS system is a widely employed mechanism for plasmid partitioning and chromosome segregation in bacteria. ParB binds to parS sites on plasmids and chromosomes and associates with broad regions of adjacent DNA, a phenomenon known as spreading. Although essential for ParB function, the mechanism of spreading remains poorly understood. Using single-molecule approaches, we discovered that Bacillus subtilis ParB (Spo0J) is able to trap DNA loops. Point mutants in Spo0J that disrupt DNA bridging are defective in spreading and recruitment of structural maintenance of chromosomes (SMC) condensin complexes in vivo. DNA bridging helps to explain how a limited number of Spo0J molecules per parS site (∼20) can spread over many kilobases and suggests a mechanism by which ParB proteins could facilitate the loading of SMC complexes. We show that DNA bridging is a property of diverse ParB homologs, suggesting broad evolutionary conservation.
Collapse
Affiliation(s)
- Thomas G W Graham
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dan Song
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; Harvard Biophysics Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Candice M Etson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; Harvard Biophysics Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Antoine M van Oijen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
34
|
Bi H, Zhang C. Integration Host Factor is Required for the Induction of Acid Resistance in Escherichia coli. Curr Microbiol 2014; 69:218-24. [DOI: 10.1007/s00284-014-0595-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
|
35
|
Donczew R, Zakrzewska-Czerwińska J, Zawilak-Pawlik A. Beyond DnaA: the role of DNA topology and DNA methylation in bacterial replication initiation. J Mol Biol 2014; 426:2269-82. [PMID: 24747048 DOI: 10.1016/j.jmb.2014.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Abstract
The replication of chromosomal DNA is a fundamental event in the life cycle of every cell. The first step of replication, initiation, is controlled by multiple factors to ensure only one round of replication per cell cycle. The process of initiation has been described most thoroughly for bacteria, especially Escherichia coli, and involves many regulatory proteins that vary considerably between different species. These proteins control the activity of the two key players of initiation in bacteria: the initiator protein DnaA and the origin of chromosome replication (oriC). Factors involved in the control of the availability, activity, or oligomerization of DnaA during initiation are generally regarded as the most important and thus have been thoroughly characterized. Other aspects of the initiation process, such as origin accessibility and susceptibility to unwinding, have been less explored. However, recent findings indicate that these factors have a significant role. This review focuses on DNA topology, conformation, and methylation as important factors that regulate the initiation process in bacteria. We present a comprehensive summary of the factors involved in the modulation of DNA topology, both locally at oriC and more globally at the level of the entire chromosome. We show clearly that the conformation of oriC dynamically changes, and control of this conformation constitutes another, important factor in the regulation of bacterial replication initiation. Furthermore, the process of initiation appears to be associated with the dynamics of the entire chromosome and this association is an important but largely unexplored phenomenon.
Collapse
Affiliation(s)
- Rafał Donczew
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland; Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-138 Wrocław, Poland.
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| |
Collapse
|
36
|
Becker NA, Greiner AM, Peters JP, Maher LJ. Bacterial promoter repression by DNA looping without protein-protein binding competition. Nucleic Acids Res 2014; 42:5495-504. [PMID: 24598256 PMCID: PMC4027209 DOI: 10.1093/nar/gku180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The Escherichia coli lactose operon provides a paradigm for understanding gene control by DNA looping where the lac repressor (LacI) protein competes with RNA polymerase for DNA binding. Not all promoter loops involve direct competition between repressor and RNA polymerase. This raises the possibility that positioning a promoter within a tightly constrained DNA loop is repressive per se, an idea that has previously only been considered in vitro. Here, we engineer living E. coli bacteria to measure repression due to promoter positioning within such a tightly constrained DNA loop in the absence of protein–protein binding competition. We show that promoters held within such DNA loops are repressed ∼100-fold, with up to an additional ∼10-fold repression (∼1000-fold total) dependent on topological positioning of the promoter on the inner or outer face of the DNA loop. Chromatin immunoprecipitation data suggest that repression involves inhibition of both RNA polymerase initiation and elongation. These in vivo results show that gene repression can result from tightly looping promoter DNA even in the absence of direct competition between repressor and RNA polymerase binding.
Collapse
Affiliation(s)
- Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | - Alexander M Greiner
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA Luther College, Departments of Biology and Chemistry, Decorah, IA 52101, USA
| | - Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
37
|
Priest DG, Cui L, Kumar S, Dunlap DD, Dodd IB, Shearwin KE. Quantitation of the DNA tethering effect in long-range DNA looping in vivo and in vitro using the Lac and λ repressors. Proc Natl Acad Sci U S A 2014; 111:349-54. [PMID: 24344307 PMCID: PMC3890862 DOI: 10.1073/pnas.1317817111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Efficient and specific interactions between proteins bound to the same DNA molecule can be dependent on the length of the DNA tether that connects them. Measurement of the strength of this DNA tethering effect has been largely confined to short separations between sites, and it is not clear how it contributes to long-range DNA looping interactions, such as occur over separations of tens to hundreds of kilobase pairs in vivo. Here, gene regulation experiments using the LacI and λ CI repressors, combined with mathematical modeling, were used to quantitate DNA tethering inside Escherichia coli cells over the 250- to 10,000-bp range. Although LacI and CI loop DNA in distinct ways, measurements of the tethering effect were very similar for both proteins. Tethering strength decreased with increasing separation, but even at 5- to 10-kb distances, was able to increase contact probability 10- to 20-fold and drive efficient looping. Tethering in vitro with the Lac repressor was measured for the same 600-to 3,200-bp DNAs using tethered particle motion, a single molecule technique, and was 5- to 45-fold weaker than in vivo over this range. Thus, the enhancement of looping seen previously in vivo at separations below 500 bp extends to large separations, underlining the need to understand how in vivo factors aid DNA looping. Our analysis also suggests how efficient and specific looping could be achieved over very long DNA separations, such as what occurs between enhancers and promoters in eukaryotic cells.
Collapse
Affiliation(s)
- David G. Priest
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; and
| | - Lun Cui
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; and
| | - Sandip Kumar
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - David D. Dunlap
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Ian B. Dodd
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; and
| | - Keith E. Shearwin
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; and
| |
Collapse
|
38
|
Boedicker JQ, Garcia HG, Johnson S, Phillips R. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation. Phys Biol 2013; 10:066005. [PMID: 24231252 DOI: 10.1088/1478-3975/10/6/066005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution.
Collapse
Affiliation(s)
- James Q Boedicker
- Departments of Applied Physics and Biology, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
39
|
Abstract
The formation of DNA loops is a ubiquitous theme in biological processes, including DNA replication, recombination and repair, and gene regulation. These loops are mediated by proteins bound at specific sites along the contour of a single DNA molecule, in some cases many thousands of base pairs apart. Loop formation incurs a thermodynamic cost that is a sensitive function of the length of looped DNA as well as the geometry and elastic properties of the DNA-bound protein. The free energy of DNA looping is logarithmically related to a generalization of the Jacobson-Stockmayer factor for DNA cyclization, termed the J factor. In the present article, we review the thermodynamic origins of this quantity, discuss how it is measured experimentally and connect the macroscopic interpretation of the J factor with a statistical-mechanical description of DNA looping and cyclization.
Collapse
|
40
|
Malamud F, Homem RA, Conforte VP, Yaryura PM, Castagnaro AP, Marano MR, do Amaral AM, Vojnov AA. Identification and characterization of biofilm formation-defective mutants of Xanthomonas citri subsp. citri. Microbiology (Reading) 2013; 159:1911-1919. [DOI: 10.1099/mic.0.064709-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Florencia Malamud
- Instituto de Ciencia y Tecnología Dr César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina
| | - Rafael Augusto Homem
- Embrapa Recursos Genéticos e Biotecnología and Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeiropolis, Sao Pablo, Brazil
| | - Valeria Paola Conforte
- Instituto de Ciencia y Tecnología Dr César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina
| | - Pablo Marcelo Yaryura
- Instituto de Ciencia y Tecnología Dr César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina
| | - Atilio Pedro Castagnaro
- Estación Experimental Agroindustrial Obispo Colombres, Av. William Cross 3150, Las Talitas, Tucumán, Argentina
| | - María Rosa Marano
- IBR-Depto Microbiología, Facultad de Ciencias, Bioquímicas y Farmacéuticas, U.N.R. Suipacha 531, S2002LRK Rosario, Argentina
| | - Alexandre Morais do Amaral
- Embrapa Recursos Genéticos e Biotecnología and Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeiropolis, Sao Pablo, Brazil
| | - Adrián Alberto Vojnov
- Instituto de Ciencia y Tecnología Dr César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina
| |
Collapse
|
41
|
Olson WK, Grosner MA, Czapla L, Swigon D. Structural insights into the role of architectural proteins in DNA looping deduced from computer simulations. Biochem Soc Trans 2013; 41:559-64. [PMID: 23514154 PMCID: PMC3746319 DOI: 10.1042/bst20120341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial gene expression is regulated by DNA elements that often lie far apart along the genomic sequence, but come close together during genetic processing. The intervening residues form loops, which are organized by the binding of various proteins. For example, the Escherichia coli Lac repressor protein binds DNA operators, separated by 92 or 401 bp, and suppresses the formation of gene products involved in the metabolism of lactose. The system also includes several highly abundant architectural proteins, such as the histone-like (heat-unstable) HU protein, which severely deform the double helix upon binding. In order to gain a better understanding of how the naturally stiff DNA double helix forms the short loops detected in vivo, we have developed new computational methods to study the effects of various non-specific binding proteins on the three-dimensional configurational properties of DNA sequences. The present article surveys the approach that we use to generate ensembles of spatially constrained protein-decorated DNA structures (minicircles and Lac repressor-mediated loops) and presents some of the insights gained from the correspondence between computation and experiment about the potential contributions of architectural and regulatory proteins to DNA looping and gene expression.
Collapse
Affiliation(s)
- Wilma K Olson
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, U.S.A.
| | | | | | | |
Collapse
|
42
|
Czapla L, Grosner MA, Swigon D, Olson WK. Interplay of protein and DNA structure revealed in simulations of the lac operon. PLoS One 2013; 8:e56548. [PMID: 23457581 PMCID: PMC3572996 DOI: 10.1371/journal.pone.0056548] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.
Collapse
Affiliation(s)
- Luke Czapla
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Michael A. Grosner
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
43
|
Boedicker JQ, Garcia HG, Phillips R. Theoretical and experimental dissection of DNA loop-mediated repression. PHYSICAL REVIEW LETTERS 2013; 110:018101. [PMID: 23383841 PMCID: PMC3716456 DOI: 10.1103/physrevlett.110.018101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Indexed: 06/01/2023]
Abstract
Transcriptional networks across all domains of life feature a wide range of regulatory architectures. Theoretical models now make clear predictions about how key parameters describing those architectures modulate gene expression, and the ability to construct genetic circuits with tunable parameters enables precise tests of such models. We dissect gene regulation through DNA looping by tuning network parameters such as repressor copy number, DNA binding strengths, and loop length in both thermodynamic models and experiments. Our results help clarify the short-length mechanical properties of DNA.
Collapse
Affiliation(s)
- James Q. Boedicker
- Department of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Hernan G. Garcia
- Department of Physics, Princeton University, Jadwin Hall, Princeton, New Jersey 08544, USA
| | - Rob Phillips
- Department of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| |
Collapse
|
44
|
Becker NA, Peters JP, Maher LJ, Lionberger TA. Mechanism of promoter repression by Lac repressor-DNA loops. Nucleic Acids Res 2012; 41:156-66. [PMID: 23143103 PMCID: PMC3592455 DOI: 10.1093/nar/gks1011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Escherichia coli lactose (lac) operon encodes the first genetic switch to be discovered, and lac remains a paradigm for studying negative and positive control of gene expression. Negative control is believed to involve competition of RNA polymerase and Lac repressor for overlapping binding sites. Contributions to the local Lac repressor concentration come from free repressor and repressor delivered to the operator from remote auxiliary operators by DNA looping. Long-standing questions persist concerning the actual role of DNA looping in the mechanism of promoter repression. Here, we use experiments in living bacteria to resolve four of these questions. We show that the distance dependence of repression enhancement is comparable for upstream and downstream auxiliary operators, confirming the hypothesis that repressor concentration increase is the principal mechanism of repression loops. We find that as few as four turns of DNA can be constrained in a stable loop by Lac repressor. We show that RNA polymerase is not trapped at repressed promoters. Finally, we show that constraining a promoter in a tight DNA loop is sufficient for repression even when promoter and operator do not overlap.
Collapse
Affiliation(s)
- Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
45
|
Schöpflin R, Brutzer H, Müller O, Seidel R, Wedemann G. Probing the elasticity of DNA on short length scales by modeling supercoiling under tension. Biophys J 2012; 103:323-30. [PMID: 22853910 PMCID: PMC3400772 DOI: 10.1016/j.bpj.2012.05.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 01/22/2023] Open
Abstract
The wormlike-chain (WLC) model is widely used to describe the energetics of DNA bending. Motivated by recent experiments, alternative, so-called subelastic chain models were proposed that predict a lower elastic energy of highly bent DNA conformations. Until now, no unambiguous verification of these models has been obtained because probing the elasticity of DNA on short length scales remains challenging. Here we investigate the limits of the WLC model using coarse-grained Monte Carlo simulations to model the supercoiling of linear DNA molecules under tension. At a critical supercoiling density, the DNA extension decreases abruptly due to the sudden formation of a plectonemic structure. This buckling transition is caused by the large energy required to form the tightly bent end-loop of the plectoneme and should therefore provide a sensitive benchmark for model evaluation. Although simulations based on the WLC energetics could quantitatively reproduce the buckling measured in magnetic tweezers experiments, the buckling almost disappears for the tested linear subelastic chain model. Thus, our data support the validity of a harmonic bending potential even for small bending radii down to 3.5 nm.
Collapse
Affiliation(s)
- Robert Schöpflin
- CC Bioinformatics, University of Applied Sciences Stralsund, Stralsund, Germany
| | - Hergen Brutzer
- Biotechnology Center Dresden, University of Technology Dresden, Dresden, Germany
| | - Oliver Müller
- CC Bioinformatics, University of Applied Sciences Stralsund, Stralsund, Germany
| | - Ralf Seidel
- Biotechnology Center Dresden, University of Technology Dresden, Dresden, Germany
| | - Gero Wedemann
- CC Bioinformatics, University of Applied Sciences Stralsund, Stralsund, Germany
| |
Collapse
|
46
|
Garcia HG, Sanchez A, Boedicker JQ, Osborne M, Gelles J, Kondev J, Phillips R. Operator sequence alters gene expression independently of transcription factor occupancy in bacteria. Cell Rep 2012; 2:150-61. [PMID: 22840405 DOI: 10.1016/j.celrep.2012.06.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/14/2012] [Accepted: 06/06/2012] [Indexed: 11/17/2022] Open
Abstract
A canonical quantitative view of transcriptional regulation holds that the only role of operator sequence is to set the probability of transcription factor binding, with operator occupancy determining the level of gene expression. In this work, we test this idea by characterizing repression in vivo and the binding of RNA polymerase in vitro in experiments where operators of various sequences were placed either upstream or downstream from the promoter in Escherichia coli. Surprisingly, we find that operators with a weaker binding affinity can yield higher repression levels than stronger operators. Repressor bound to upstream operators modulates promoter escape, and the magnitude of this modulation is not correlated with the repressor-operator binding affinity. This suggests that operator sequences may modulate transcription by altering the nature of the interaction of the bound transcription factor with the transcriptional machinery, implying a new layer of sequence dependence that must be confronted in the quantitative understanding of gene expression.
Collapse
Affiliation(s)
- Hernan G Garcia
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Summers EL, Meindl K, Usón I, Mitra AK, Radjainia M, Colangeli R, Alland D, Arcus VL. The structure of the oligomerization domain of Lsr2 from Mycobacterium tuberculosis reveals a mechanism for chromosome organization and protection. PLoS One 2012; 7:e38542. [PMID: 22719899 PMCID: PMC3374832 DOI: 10.1371/journal.pone.0038542] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/07/2012] [Indexed: 11/21/2022] Open
Abstract
Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rationale for its interaction with the minor groove of DNA, its preference for AT-rich tracts, and its similarity to other bacterial nucleoid-associated DNA-binding domains. In contrast, the details of Lsr2 dimerization (and oligomerization) via its N-terminal domain, and the mechanism of Lsr2-mediated chromosomal cross-linking and protection is unknown. We have solved the structure of the N-terminal domain of Lsr2 (N-Lsr2) at 1.73 Å resolution using crystallographic ab initio approaches. The structure shows an intimate dimer of two ß–ß–a motifs with no close homologues in the structural databases. The organization of individual N-Lsr2 dimers in the crystal also reveals a mechanism for oligomerization. Proteolytic removal of three N-terminal residues from Lsr2 results in the formation of an anti-parallel β-sheet between neighboring molecules and the formation of linear chains of N-Lsr2. Oligomerization can be artificially induced using low concentrations of trypsin and the arrangement of N-Lsr2 into long chains is observed in both monoclinic and hexagonal crystallographic space groups. In solution, oligomerization of N-Lsr2 is also observed following treatment with trypsin. A change in chromosomal topology after the addition of trypsin to full-length Lsr2-DNA complexes and protection of DNA towards DNAse digestion can be observed using electron microscopy and electrophoresis. These results suggest a mechanism for oligomerization of Lsr2 via protease-activation leading to chromosome compaction and protection, and concomitant down-regulation of large numbers of genes. This mechanism is likely to be relevant under conditions of stress where cellular proteases are known to be upregulated.
Collapse
Affiliation(s)
- Emma L. Summers
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Kathrin Meindl
- Instituto de Biología Molecular de Barcelona, Barcelona Science Park, Barcelona, Spain
| | - Isabel Usón
- Institucio Catalana de Recerca i Estudis Avançats at Instituto de Biología Molecular de Barcelona, Barcelona Science Park, Barcelona, Spain
| | - Alok K. Mitra
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Mazdak Radjainia
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Roberto Colangeli
- Division of Infectious Disease and the Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - David Alland
- Division of Infectious Disease and the Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Vickery L. Arcus
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
- * E-mail:
| |
Collapse
|
48
|
EbfC (YbaB) is a new type of bacterial nucleoid-associated protein and a global regulator of gene expression in the Lyme disease spirochete. J Bacteriol 2012; 194:3395-406. [PMID: 22544270 DOI: 10.1128/jb.00252-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly every known species of Eubacteria encodes a homolog of the Borrelia burgdorferi EbfC DNA-binding protein. We now demonstrate that fluorescently tagged EbfC associates with B. burgdorferi nucleoids in vivo and that chromatin immunoprecipitation (ChIP) of wild-type EbfC showed it to bind in vivo to sites throughout the genome, two hallmarks of nucleoid-associated proteins. Comparative RNA sequencing (RNA-Seq) of a mutant B. burgdorferi strain that overexpresses EbfC indicated that approximately 4.5% of borrelial genes are significantly impacted by EbfC. The ebfC gene was highly expressed in rapidly growing bacteria, but ebfC mRNA was undetectable in stationary phase. Combined with previous data showing that EbfC induces bends in DNA, these results demonstrate that EbfC is a nucleoid-associated protein and lead to the hypothesis that B. burgdorferi utilizes cellular fluctuations in EbfC levels to globally control transcription of numerous genes. The ubiquity of EbfC proteins in Eubacteria suggests that these results apply to a wide range of pathogens and other bacteria.
Collapse
|
49
|
Abstract
The double-helical DNA biopolymer is particularly resistant to bending and twisting deformations. This property has important implications for DNA folding in vitro and for the packaging and function of DNA in living cells. Among the outstanding questions in the field of DNA biophysics are the underlying origin of DNA stiffness and the mechanisms by which DNA stiffness is overcome within cells. Exploring these questions requires experimental methods to quantitatively measure DNA bending and twisting stiffness both in vitro and in vivo. Here, we discuss two classical approaches: T4 DNA ligase-mediated DNA cyclization kinetics and lac repressor-mediated DNA looping in Escherichia coli. We review the theoretical basis for these techniques and how each can be applied to quantitate biophysical parameters that describe the DNA polymer. We then show how we have modified these methods and applied them to quantitate how apparent DNA physical properties are altered in vitro and in vivo by sequence-nonspecific architectural DNA-binding proteins such as the E. coli HU protein and eukaryotic HMGB proteins.
Collapse
|
50
|
Czapla L, Peters JP, Rueter EM, Olson WK, Maher LJ. Understanding apparent DNA flexibility enhancement by HU and HMGB architectural proteins. J Mol Biol 2011; 409:278-89. [PMID: 21459097 DOI: 10.1016/j.jmb.2011.03.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 11/25/2022]
Abstract
Understanding and predicting the mechanical properties of protein/DNA complexes are challenging problems in biophysics. Certain architectural proteins bind DNA without sequence specificity and strongly distort the double helix. These proteins rapidly bind and unbind, seemingly enhancing the flexibility of DNA as measured by cyclization kinetics. The ability of architectural proteins to overcome DNA stiffness has important biological consequences, but the detailed mechanism of apparent DNA flexibility enhancement by these proteins has not been clear. Here, we apply a novel Monte Carlo approach that incorporates the precise effects of protein on DNA structure to interpret new experimental data for the bacterial histone-like HU protein and two eukaryotic high-mobility group class B (HMGB) proteins binding to ∼200-bp DNA molecules. These data (experimental measurement of protein-induced increase in DNA cyclization) are compared with simulated cyclization propensities to deduce the global structure and binding characteristics of the closed protein/DNA assemblies. The simulations account for all observed (chain length and concentration dependent) effects of protein on DNA behavior, including how the experimental cyclization maxima, observed at DNA lengths that are not an integral helical repeat, reflect the deformation of DNA by the architectural proteins and how random DNA binding by different proteins enhances DNA cyclization to different levels. This combination of experiment and simulation provides a powerful new approach to resolve a long-standing problem in the biophysics of protein/DNA interactions.
Collapse
Affiliation(s)
- Luke Czapla
- (1)Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|