1
|
Zeng Y, Tan X, Xiao P, Gao P, Wang L, Zhang A. Natronobacterium gregoryi Argonaute inhibits class 1 integron integrase-mediated excision and integration. Nucleic Acids Res 2025; 53:gkaf248. [PMID: 40266686 PMCID: PMC12016799 DOI: 10.1093/nar/gkaf248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 03/13/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025] Open
Abstract
Argonaute (Ago) proteins, ubiquitous in all domains of life, serve as key components in defense against foreign nucleic acids. While eukaryotic Agos (eAgos) are well characterized for guide RNA-mediated RNA targeting, prokaryotic Agos (pAgos) exhibit diverse functions, particularly in protecting bacteria from invasive DNA. The previous study identified Class 1 integron integrase (IntI-1), a tyrosine site-specific recombinase involved in horizontal transfer of antibiotic resistance genes, as a potential interaction partner of Natronobacterium gregoryi Argonaute (NgAgo), a member of pAgos. Here, we demonstrated that this interaction was direct, depended on the PIWI domain, and was independent of the catalytic activity of NgAgo. Notably, no interaction occurred between NgAgo and Cre (another tyrosine site-specific recombinase), highlighting the specificity of NgAgo-IntI-1 interaction. Furthermore, NgAgo could inhibit binding of IntI-1 to its target DNA, and then impede IntI-1-mediated integration and excision. Consistent with the above finding, few pAgos could be found in prokaryotic genomes containing IntI, whereas IntI showed significant co-occurrence with another bacterial defense system, CRISPR-Cas. In summary, our study elucidated a novel defense mechanism of pAgos through interaction with IntI-1 for inhibiting IntI-1-mediated gene excision/integration process.
Collapse
Affiliation(s)
- Yue Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Peng Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Peiying Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Libo Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products (Ministry of Agriculture), International Research Center for Animal Disease (Ministry of Science and Technology), Wuhan, Hubei 430070, China
| |
Collapse
|
2
|
Vorobevskaia E, Loot C, Mazel D, Schlierf M. The recombination efficiency of the bacterial integron depends on the mechanical stability of the synaptic complex. SCIENCE ADVANCES 2024; 10:eadp8756. [PMID: 39671485 PMCID: PMC11641012 DOI: 10.1126/sciadv.adp8756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Multiple antibiotic resistances are a major global health threat. The predominant tool for adaptation in Gram-negative bacteria is the integron. Under stress, it rearranges gene cassettes to offer an escape using the tyrosine recombinase IntI, recognizing folded DNA hairpins, the attC sites. Four recombinases and two attC sites form the synaptic complex. Yet, for unclear reasons, the recombination efficiency varies greatly. Here, we established an optical tweezers force spectroscopy assay to probe the synaptic complex stability and revealed, for seven combinations of attC sites, significant variability in the mechanical stability. We found a strong correlation between mechanical stability and recombination efficiency of attC sites in vivo, indicating a regulatory mechanism from the DNA structure to the macromolecular complex stability. Taking into account known forces during DNA metabolism, we propose that the variation of the integron in vivo recombination efficiency is mediated by the synaptic complex stability. We anticipate that further recombination processes are also affected by their corresponding mechanical stability.
Collapse
Affiliation(s)
| | - Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Michael Schlierf
- B CUBE, TU Dresden, Tatzberg 41, 01307 Dresden, Germany
- Physics of Life, DFG Cluster of Excellence, TU Dresden, 01062 Dresden, Germany
- Faculty of Physics, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
3
|
Matlock W, Shaw LP, Stoesser N. Global genomic epidemiology of bla GES-5 carbapenemase-associated integrons. Microb Genom 2024; 10:001312. [PMID: 39630499 PMCID: PMC11616780 DOI: 10.1099/mgen.0.001312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
Antimicrobial resistance (AMR) gene cassettes comprise an AMR gene flanked by short recombination sites (attI and attC or attC and attC). Integrons are genetic elements able to capture, excise and shuffle these cassettes, providing 'adaptation on demand', and can be found on both chromosomes and plasmids. Understanding the patterns of integron diversity may help to understand the epidemiology of AMR genes. As a case study, we examined the clinical resistance gene bla GES-5, an integron-associated class A carbapenemase first reported in Greece in 2004 and since observed worldwide, which to our knowledge has not been the subject of a previous global analysis. Using a dataset comprising all de-duplicated NCBI contigs containing bla GES-5 (n=104), we developed a pangenome graph-based workflow to characterize and cluster the diversity of bla GES-5-associated integrons. We demonstrate that bla GES-5-associated integrons on plasmids are different to those on chromosomes. Chromosomal integrons were almost all identified in Pseudomonas aeruginosa ST235, with a consistent gene cassette content and order. We observed instances where insertion sequence IS110 disrupted attC sites, which might immobilize the gene cassettes and explain the conserved integron structure despite the presence of intI1 integrase promoters, which would typically facilitate capture or excision and rearrangement. The plasmid-associated integrons were more diverse in their gene cassette content and order, which could be an indication of greater integrase activity and 'shuffling' of integrons on plasmids.
Collapse
Affiliation(s)
- William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Liam P. Shaw
- Department of Biology, University of Oxford, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
4
|
Wang X, Dai Y, Kong N, Cao M, Zhang L, Wei Q. Screening Key Sites of Class 2 Integron Integrase that Impact Recombination Efficiency. Curr Microbiol 2024; 81:163. [PMID: 38710822 DOI: 10.1007/s00284-024-03674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024]
Abstract
By capturing and expressing exogenous resistance gene cassettes through site-specific recombination, integrons play important roles in the horizontal transfer of antimicrobial resistant genes among bacteria. The characteristics of integron integrase make it to be a potential gene editing tool enzyme. In this study, a random mutation library using error-prone PCR was constructed, and amino acid residues mutants that impact on attI2 × attC or attC × attC recombination efficiency were screened and analyzed. Thirteen amino acid mutations were identified to be critical impacted on site-specific recombination of IntI2, including the predicted catalyzed site Y301. Nine of 13 mutated amino acid residues that have critically impacted on IntI2 activity were relative concentrated and near the predicted catalyzed site Y301 in the predicted three-dimensional structure indicated the importance of this area in maintain the activity of IntI2. No mutant with obviously increased recombination activity (more than four-fold as high as that of wild IntI2) was found in library screening, except P95S, R100K slightly increased (within two-fold) the excision activity of IntI2, and S243T slightly increased (within two-fold) both excision and integration activity of IntI2. These findings will provide clues for further specific modification of integron integrase to be a tool enzyme as well as establishing a new gene editing system and applied practically.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
- Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai JiaoTong University School of Medicine, 748 Middle Zhongshan Road, Shanghai, 201602, China
| | - Yueru Dai
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Nana Kong
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Mei Cao
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Long Zhang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China.
| |
Collapse
|
5
|
Loot C, Millot GA, Richard E, Littner E, Vit C, Lemoine F, Néron B, Cury J, Darracq B, Niault T, Lapaillerie D, Parissi V, Rocha EPC, Mazel D. Integron cassettes integrate into bacterial genomes via widespread non-classical attG sites. Nat Microbiol 2024; 9:228-240. [PMID: 38172619 DOI: 10.1038/s41564-023-01548-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
Integrons are genetic elements involved in bacterial adaptation which capture, shuffle and express genes encoding adaptive functions embedded in cassettes. These events are governed by the integron integrase through site-specific recombination between attC and attI integron sites. Using computational and molecular genetic approaches, here we demonstrate that the integrase also catalyses cassette integration into bacterial genomes outside of its known att sites. Once integrated, these cassettes can be expressed if located near bacterial promoters and can be excised at the integration point or outside, inducing chromosomal modifications in the latter case. Analysis of more than 5 × 105 independent integration events revealed a very large genomic integration landscape. We identified consensus recombination sequences, named attG sites, which differ greatly in sequence and structure from classical att sites. These results unveil an alternative route for dissemination of adaptive functions in bacteria and expand the role of integrons in bacterial evolution.
Collapse
Affiliation(s)
- Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France.
| | - Gael A Millot
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Egill Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Eloi Littner
- Sorbonne Université, Collège Doctoral, Paris, France
- DGA CBRN Defence, Vert-le-Petit, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Microbial Evolutionary Genomics, Paris, France
| | - Claire Vit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Frédéric Lemoine
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Bertrand Néron
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Jean Cury
- Université Paris-Saclay, Inria, Laboratoire de Recherche en Informatique, CNRS UMR 8623, Orsay, France
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Théophile Niault
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Delphine Lapaillerie
- Université de Bordeaux, Fundamental Microbiology and Pathogenicity Laboratory, CNRS UMR 5234, Département de Sciences Biologiques et Médicales, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - Vincent Parissi
- Université de Bordeaux, Fundamental Microbiology and Pathogenicity Laboratory, CNRS UMR 5234, Département de Sciences Biologiques et Médicales, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Microbial Evolutionary Genomics, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
6
|
Zhu Y, Wang T, Zhu W, Wei Q. Influence of class 2 integron integrase concentration on gene cassette insertion and excision in vivo. Braz J Microbiol 2023; 54:645-653. [PMID: 36808308 PMCID: PMC10235263 DOI: 10.1007/s42770-023-00926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Integron can capture and express antimicrobial resistance gene cassettes and plays important roles in horizontal gene transfer. The establishment of a complete in vitro reaction system will help to reveal integron integrase mediated site-specific recombination process and regulation mechanism. As an enzymatic reaction, the concentration of integrase is assumed to have a great influence on the reaction rate. To determine the influence of different concentrations of integrase on the reaction rate and to find the best range of enzyme concentration were essential to optimizing the in vitro reaction system. In this study, plasmids with gradient transcription levels of class 2 integron integrase gene intI2 under different promoters were constructed. Among plasmids pI2W16, pINTI2N, pI2W, and pI2NW, intI2 transcription levels ranged from about 0.61-fold to 49.65-fold of that in pINTI2N. And the frequencies of gene cassette sat2 integration and excision catalyzed by IntI2 were positively correlated with the transcription levels of intI2 within this range. Western blotting results indicated high expression of IntI2 partly existed in the form of an inclusion body. When compared with Pc of class 1 integron, the spacer sequence of PintI2 can increase the strength of PcW but decrease the strength of PcS. In conclusion, the frequencies of gene cassette integration and excision were positively correlated with the concentration of IntI2. intI2 driving by PcW with PintI2 spacer sequence can obtain the optimum IntI2 concentration required to achieve the maximum recombination efficiency in vivo in this study.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Tong Wang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Wenwen Zhu
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China.
| |
Collapse
|
7
|
Filipić B, Malešević M, Vasiljević Z, Novović K, Kojić M, Jovčić B. Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene. Folia Microbiol (Praha) 2022; 68:431-440. [PMID: 36567375 DOI: 10.1007/s12223-022-01026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
Trimethoprim-sulfamethoxazole (SXT) is the preferable treatment option of the infections caused by Achromobacter spp. Our study aimed to analyze the SXT resistance of 98 Achromobacter spp. isolates from pediatric patients, among which 33 isolates were SXT-resistant. The presence of intI1 was screened by PCR and genome sequence analyses. The intI1 gene was detected in 10 of SXT-resistant isolates that had shorter intI1 PCR fragments named intI1S. Structural changes in intI1S were confirmed by genome sequencing and analyses which revealed 86 amino acids deletion in IntI1S protein compared to canonical IntI1 protein. All IntI1S isolates were of non-CF origin. Pan-genome analysis of intI1S bearing A. xylosoxidans isolates comprised 9052 genes, with the core genome consisting of 5455 protein-coding genes. Results in this study indicate that IntI1S isolates were derived from clinical settings and that cystic fibrosis (CF) patients were potential reservoirs for healthcare-associated infections that occurred in non-CF patients.
Collapse
Affiliation(s)
| | - Milka Malešević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branko Jovčić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia. .,Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
8
|
Ghaly TM, Tetu SG, Penesyan A, Qi Q, Rajabal V, Gillings MR. Discovery of integrons in Archaea: Platforms for cross-domain gene transfer. SCIENCE ADVANCES 2022; 8:eabq6376. [PMID: 36383678 PMCID: PMC9668308 DOI: 10.1126/sciadv.abq6376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Horizontal gene transfer between different domains of life is increasingly being recognized as an important evolutionary driver, with the potential to increase the pace of biochemical innovation and environmental adaptation. However, the mechanisms underlying the recruitment of exogenous genes from foreign domains are mostly unknown. Integrons are a family of genetic elements that facilitate this process within Bacteria. However, they have not been reported outside Bacteria, and thus their potential role in cross-domain gene transfer has not been investigated. Here, we discover that integrons are also present in 75 archaeal metagenome-assembled genomes from nine phyla, and are particularly enriched among Asgard archaea. Furthermore, we provide experimental evidence that integrons can facilitate the recruitment of archaeal genes by bacteria. Our findings establish a previously unknown mechanism of cross-domain gene transfer whereby bacteria can incorporate archaeal genes from their surrounding environment via integron activity. These findings have important implications for prokaryotic ecology and evolution.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Qin Qi
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Michael R. Gillings
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
9
|
Hipólito A, García-Pastor L, Blanco P, Trigo da Roza F, Kieffer N, Vergara E, Jové T, Álvarez J, Escudero J. The expression of aminoglycoside resistance genes in integron cassettes is not controlled by riboswitches. Nucleic Acids Res 2022; 50:8566-8579. [PMID: 35947699 PMCID: PMC9410878 DOI: 10.1093/nar/gkac662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
Regulation of gene expression is a key factor influencing the success of antimicrobial resistance determinants. A variety of determinants conferring resistance against aminoglycosides (Ag) are commonly found in clinically relevant bacteria, but whether their expression is regulated or not is controversial. The expression of several Ag resistance genes has been reported to be controlled by a riboswitch mechanism encoded in a conserved sequence. Yet this sequence corresponds to the integration site of an integron, a genetic platform that recruits genes of different functions, making the presence of such a riboswitch counterintuitive. We provide, for the first time, experimental evidence against the existence of such Ag-sensing riboswitch. We first tried to reproduce the induction of the well characterized aacA5 gene using its native genetic environment, but were unsuccessful. We then broadened our approach and analyzed the inducibility of all AgR genes encoded in integrons against a variety of antibiotics. We could not observe biologically relevant induction rates for any gene in the presence of several aminoglycosides. Instead, unrelated antibiotics produced mild but consistently higher increases in expression, that were the result of pleiotropic effects. Our findings rule out the riboswitch control of aminoglycoside resistance genes in integrons.
Collapse
Affiliation(s)
- Alberto Hipólito
- Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Spain,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain
| | - Lucía García-Pastor
- Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Spain,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain
| | | | | | - Nicolas Kieffer
- Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Spain,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain
| | - Ester Vergara
- Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Spain,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, University of Limoges, Limoges, France
| | - Julio Álvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Spain,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain
| | | |
Collapse
|
10
|
Unbridled Integrons: A Matter of Host Factors. Cells 2022; 11:cells11060925. [PMID: 35326376 PMCID: PMC8946536 DOI: 10.3390/cells11060925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022] Open
Abstract
Integrons are powerful recombination systems found in bacteria, which act as platforms capable of capturing, stockpiling, excising and reordering mobile elements called cassettes. These dynamic genetic machineries confer a very high potential of adaptation to their host and have quickly found themselves at the forefront of antibiotic resistance, allowing for the quick emergence of multi-resistant phenotypes in a wide range of bacterial species. Part of the success of the integron is explained by its ability to integrate various environmental and biological signals in order to allow the host to respond to these optimally. In this review, we highlight the substantial interconnectivity that exists between integrons and their hosts and its importance to face changing environments. We list the factors influencing the expression of the cassettes, the expression of the integrase, and the various recombination reactions catalyzed by the integrase. The combination of all these host factors allows for a very tight regulation of the system at the cost of a limited ability to spread by horizontal gene transfer and function in remotely related hosts. Hence, we underline the important consequences these factors have on the evolution of integrons. Indeed, we propose that sedentary chromosomal integrons that were less connected or connected via more universal factors are those that have been more successful upon mobilization in mobile genetic structures, in contrast to those that were connected to species-specific host factors. Thus, the level of specificity of the involved host factors network may have been decisive for the transition from chromosomal integrons to the mobile integrons, which are now widespread. As such, integrons represent a perfect example of the conflicting relationship between the ability to control a biological system and its potential for transferability.
Collapse
|
11
|
Sonbol S, Siam R. Abundance of integrons in halophilic bacteria. Can J Microbiol 2022; 68:435-445. [PMID: 35239425 DOI: 10.1139/cjm-2021-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrons are genetic platforms used for expressing open reading frames (ORFs) arranged in gene cassettes. Excision and integration of gene cassettes is controlled by their associated integron integrase (IntI). Using IntegronFinder software, we analyzed all complete halophilic genomes available in the HaloDom database, along with selected partial halophilic genomes. We identified 18 new complete bacterial integrons and 46 clusters of attC sites lacking a neighboring integron-integrase (CALINs). Different classes of insertion sequences (ISs) were also identified within and nearby integrons and CALINs; with the abundance of IS1182 elements and different ISs that can presumably mobilize adjacent genomic structures. Different promoters for intI genes (PintI) showed nearby binding sites for arginine repressor (ArgR), raising the possibility that IntIs expression and recombination activity are regulated by these proteins. Our findings reveal the existence of new integrons in halophilic bacteria with possible adaptive roles.
Collapse
Affiliation(s)
- Sarah Sonbol
- The American University in Cairo School of Sciences and Engineering, 110156, Biotechnology, New Cairo, Egypt, 11835;
| | - Rania Siam
- The American University in Cairo School of Sciences and Engineering, 110156, Biology department and Biotechnology graduate program, New Cairo, Cairo, Egypt.,University of Medicine and Health Sciences, Basseterre, St. Kitts, West Indies, Saint Kitts and Nevis;
| |
Collapse
|
12
|
Fonseca ÉL, Vicente AC. Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms 2022; 10:microorganisms10020224. [PMID: 35208680 PMCID: PMC8876359 DOI: 10.3390/microorganisms10020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022] Open
Abstract
Integrons are considered hot spots for bacterial evolution, since these platforms allow one-step genomic innovation by capturing and expressing genes that provide advantageous novelties, such as antibiotic resistance. The acquisition and shuffling of gene cassettes featured by integrons enable the population to rapidly respond to changing selective pressures. However, in order to avoid deleterious effects and fitness burden, the integron activity must be tightly controlled, which happens in an elegant and elaborate fashion, as discussed in detail in the present review. Here, we aimed to provide an up-to-date overview of the complex regulatory networks that permeate the expression and functionality of integrons at both transcriptional and translational levels. It was possible to compile strong shreds of evidence clearly proving that these versatile platforms include functions other than acquiring and expressing gene cassettes. The well-balanced mechanism of integron expression is intricately related with environmental signals, host cell physiology, fitness, and survival, ultimately leading to adaptation on the demand.
Collapse
|
13
|
Badel C, Da Cunha V, Oberto J. Archaeal tyrosine recombinases. FEMS Microbiol Rev 2021; 45:fuab004. [PMID: 33524101 PMCID: PMC8371274 DOI: 10.1093/femsre/fuab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
The integration of mobile genetic elements into their host chromosome influences the immediate fate of cellular organisms and gradually shapes their evolution. Site-specific recombinases catalyzing this integration have been extensively characterized both in bacteria and eukarya. More recently, a number of reports provided the in-depth characterization of archaeal tyrosine recombinases and highlighted new particular features not observed in the other two domains. In addition to being active in extreme environments, archaeal integrases catalyze reactions beyond site-specific recombination. Some of these integrases can catalyze low-sequence specificity recombination reactions with the same outcome as homologous recombination events generating deep rearrangements of their host genome. A large proportion of archaeal integrases are termed suicidal due to the presence of a specific recombination target within their own gene. The paradoxical maintenance of integrases that disrupt their gene upon integration implies novel mechanisms for their evolution. In this review, we assess the diversity of the archaeal tyrosine recombinases using a phylogenomic analysis based on an exhaustive similarity network. We outline the biochemical, ecological and evolutionary properties of these enzymes in the context of the families we identified and emphasize similarities and differences between archaeal recombinases and their bacterial and eukaryal counterparts.
Collapse
Affiliation(s)
- Catherine Badel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
14
|
Vit C, Richard E, Fournes F, Whiteway C, Eyer X, Lapaillerie D, Parissi V, Mazel D, Loot C. Cassette recruitment in the chromosomal Integron of Vibrio cholerae. Nucleic Acids Res 2021; 49:5654-5670. [PMID: 34048565 PMCID: PMC8191803 DOI: 10.1093/nar/gkab412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 01/16/2023] Open
Abstract
Integrons confer a rapid adaptation capability to bacteria. Integron integrases are able to capture and shuffle novel functions embedded in cassettes. Here, we investigated cassette recruitment in the Vibrio cholerae chromosomal integron during horizontal transfer. We demonstrated that the endogenous integrase expression is sufficiently triggered, after SOS response induction mediated by the entry of cassettes during conjugation and natural transformation, to mediate significant cassette insertions. These insertions preferentially occur at the attIA site, despite the presence of about 180 attC sites in the integron array. Thanks to the presence of a promoter in the attIA site vicinity, all these newly inserted cassettes are expressed and prone to selection. We also showed that the RecA protein is critical for cassette recruitment in the V. cholerae chromosomal integron but not in mobile integrons. Moreover, unlike the mobile integron integrases, that of V. cholerae is not active in other bacteria. Mobile integrons might have evolved from the chromosomal ones by overcoming host factors, explaining their large dissemination in bacteria and their role in antibioresistance expansion.
Collapse
Affiliation(s)
- Claire Vit
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France.,Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Egill Richard
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France.,Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Florian Fournes
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France
| | - Clémence Whiteway
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France
| | - Xavier Eyer
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France
| | - Delphine Lapaillerie
- CNRS, UMR5234, Fundamental Microbiology and Pathogenicity laboratory, University of Bordeaux. Département de Sciences Biologiques et Médicales, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), France
| | - Vincent Parissi
- CNRS, UMR5234, Fundamental Microbiology and Pathogenicity laboratory, University of Bordeaux. Département de Sciences Biologiques et Médicales, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), France
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France
| | - Céline Loot
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris, France
| |
Collapse
|
15
|
Vit C, Loot C, Escudero JA, Nivina A, Mazel D. Integron Identification in Bacterial Genomes and Cassette Recombination Assays. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2075:189-208. [PMID: 31584164 DOI: 10.1007/978-1-4939-9877-7_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Integrons are genetic elements involved in bacterial adaptation to the environment. Sedentary chromosomal integrons (SCIs) can stockpile and rearrange a myriad of different functions encoded in gene cassettes. Through their association with transposable elements and conjugative plasmids, some SCIs have acquired mobility and are now termed Mobile Integrons (MIs). MIs have reached the hospitals and are involved in the rise and spread of antibiotic resistance genes through horizontal gene transfer among numerous bacterial species. Here we aimed at describing methods for the detection of integrons in sequenced bacterial genomes as well as for the experimental characterization of the activity of their different components: the integrase and the recombination sites.
Collapse
Affiliation(s)
- Claire Vit
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France.,Sorbonne Université, Collège doctoral, Paris, France
| | - Céline Loot
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | - José Antonio Escudero
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | - Aleksandra Nivina
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France. .,CNRS, UMR3525, Paris, France.
| |
Collapse
|
16
|
Escudero JA, Nivina A, Kemble HE, Loot C, Tenaillon O, Mazel D. Primary and promiscuous functions coexist during evolutionary innovation through whole protein domain acquisitions. eLife 2020; 9:58061. [PMID: 33319743 PMCID: PMC7790495 DOI: 10.7554/elife.58061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Molecular examples of evolutionary innovation are scarce and generally involve point mutations. Innovation can occur through larger rearrangements, but here experimental data is extremely limited. Integron integrases innovated from double-strand- toward single-strand-DNA recombination through the acquisition of the I2 α-helix. To investigate how this transition was possible, we have evolved integrase IntI1 to what should correspond to an early innovation state by selecting for its ancestral activity. Using synonymous alleles to enlarge sequence space exploration, we have retrieved 13 mutations affecting both I2 and the multimerization domains of IntI1. We circumvented epistasis constraints among them using a combinatorial library that revealed their individual and collective fitness effects. We obtained up to 104-fold increases in ancestral activity with various asymmetrical trade-offs in single-strand-DNA recombination. We show that high levels of primary and promiscuous functions could have initially coexisted following I2 acquisition, paving the way for a gradual evolution toward innovation.
Collapse
Affiliation(s)
- José Antonio Escudero
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.,CNRS, UMR3525, Paris, France.,Molecular Basis of Adaptation, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,VISAVET Health Surveillance Centre. Universidad Complutense Madrid. Avenida Puerta de Hierro, Madrid, Spain
| | - Aleksandra Nivina
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.,CNRS, UMR3525, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Harry E Kemble
- Infection, Antimicrobials, Modelling, Evolution, INSERM, UMR 1137, Université Paris Diderot, Université Paris Nord, Paris, France
| | - Céline Loot
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.,CNRS, UMR3525, Paris, France
| | - Olivier Tenaillon
- Infection, Antimicrobials, Modelling, Evolution, INSERM, UMR 1137, Université Paris Diderot, Université Paris Nord, Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.,CNRS, UMR3525, Paris, France
| |
Collapse
|
17
|
Nivina A, Grieb MS, Loot C, Bikard D, Cury J, Shehata L, Bernardes J, Mazel D. Structure-specific DNA recombination sites: Design, validation, and machine learning-based refinement. SCIENCE ADVANCES 2020; 6:eaay2922. [PMID: 32832653 PMCID: PMC7439510 DOI: 10.1126/sciadv.aay2922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Recombination systems are widely used as bioengineering tools, but their sites have to be highly similar to a consensus sequence or to each other. To develop a recombination system free of these constraints, we turned toward attC sites from the bacterial integron system: single-stranded DNA hairpins specifically recombined by the integrase. Here, we present an algorithm that generates synthetic attC sites with conserved structural features and minimal sequence-level constraints. We demonstrate that all generated sites are functional, their recombination efficiency can reach 60%, and they can be embedded into protein coding sequences. To improve recombination of less efficient sites, we applied large-scale mutagenesis and library enrichment coupled to next-generation sequencing and machine learning. Our results validated the efficiency of this approach and allowed us to refine synthetic attC design principles. They can be embedded into virtually any sequence and constitute a unique example of a structure-specific DNA recombination system.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Unité Plasticité du Génome Bactérien, Institut Pasteur, 75724 Paris, France
- CNRS UMR 3525, 75724 Paris, France
- Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maj Svea Grieb
- Unité Plasticité du Génome Bactérien, Institut Pasteur, 75724 Paris, France
- CNRS UMR 3525, 75724 Paris, France
| | - Céline Loot
- Unité Plasticité du Génome Bactérien, Institut Pasteur, 75724 Paris, France
- CNRS UMR 3525, 75724 Paris, France
| | - David Bikard
- Unité Plasticité du Génome Bactérien, Institut Pasteur, 75724 Paris, France
- CNRS UMR 3525, 75724 Paris, France
| | - Jean Cury
- Unité Plasticité du Génome Bactérien, Institut Pasteur, 75724 Paris, France
- CNRS UMR 3525, 75724 Paris, France
- Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laila Shehata
- Unité Plasticité du Génome Bactérien, Institut Pasteur, 75724 Paris, France
- CNRS UMR 3525, 75724 Paris, France
| | - Juliana Bernardes
- Laboratoire de Biologie Computationnelle et Quantitative, Sorbonne Universités, CNRS UMR 7238,75005 Paris, France
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Institut Pasteur, 75724 Paris, France
- CNRS UMR 3525, 75724 Paris, France
| |
Collapse
|
18
|
Xiao L, Wang X, Kong N, Cao M, Zhang L, Wei Q, Liu W. Polymorphisms of Gene Cassette Promoters of the Class 1 Integron in Clinical Proteus Isolates. Front Microbiol 2019; 10:790. [PMID: 31068909 PMCID: PMC6491665 DOI: 10.3389/fmicb.2019.00790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/27/2019] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To describe the polymorphisms of gene cassette promoters of the class 1 integron in clinical Proteus isolates and their relationship with antibiotic resistance. METHODS Polymorphisms of the gene cassette promoter in 153 strains of Proteus were analyzed by PCR and nucleotide sequencing. Variable regions of atypical class 1 integrons were detected by inverse PCR and nucleotide sequencing. Enterobacterial repetitive intergenic consensus (ERIC)-PCR was used to analyze the phylogenetic relationships of class 1 integron-positive clinical Proteus isolates. Representative beta-lactamase genes (bla), including bla TEM,bla SHV,bla CTX-M-1,bla CTX-M-2,bla CTX-M-8,bla CTX-M-9,bla CTX-M-25 and bla OXA-1, and plasmid-mediated quinolone resistance (PMQR) genes including qnrA, qnrB, qnrC, qnrD, qnrS, oqxA, oqxB, qepA, and aac(6')-Ib were also screened using PCR and sequence analysis. RESULTS Fifteen different gene cassette arrays and 20 different gene cassettes were detected in integron-positive strains. Of them, aadB-aadA2 (37/96) was the most common gene cassette array. Two of these gene cassette arrays (estX-psp-aadA2-cmlA1, estX-psp-aadA2-cmlA1-aadA1a-qacI-tnpA-sul3) have not previously been reported. Three different Pc-P2 variants (PcS, PcWTGN-10, PcH1) were detected among the 96 Proteus strains, with PcH1 being the most common (49/96). Strains carrying the promoters PcS or PcWTGN-10 were more resistant to sulfamethoxazole, gentamicin and tobramycin than those carrying PcH1. Strains with weak promoter (PcH1) harbored significantly more intra- and extra-integron antibiotic resistance genes than isolates with strong promoter (PcWTGN-10). Further, among 153 isolates, representative beta-lactamase genes were detected in 70 isolates (bla TEM-1, 54; bla OXA-1, 40; bla CTX-M-3, 12; bla CTX-M-14, 12; bla CTX-M-65, 5; bla CTX-M-15, 2) and representative PMQR genes were detected in 87 isolates (qnrA, 6; qnrB, 3; qnrC, 5; qnrD, 46; qnrS, 5; oqxA, 7; aac(6')-Ib, 13; aac(6')-Ib-cr, 32). CONCLUSION To the best of our knowledge, this study provides the first evidence for polymorphisms of the class 1 integron variable promoter in clinical Proteus isolates, which generally contain relatively strong promoters. Resistance genotypes showed a higher coincidence rate with the drug-resistant phenotype in strong-promoter-containing strains, resulting in an ability to confer strong resistance to antibiotics among host bacteria and a relatively limited ability to capture gene cassettes. Moreover, strains with relatively weak integron promoters can "afford" a heavier "extra-integron antibiotic resistance gene load". Furthermore, the gene cassettes estX, psp and the gene cassette arrays estX-psp-aadA2-cmlA1, estX-psp-aadA2-cmlA1-aadA1a-qacI-tnpA-sul3 have been confirmed for the first time in clinical Proteus isolates. Beta-lactamase genes and PMQR were investigated, and bla TEM-1 and bla OXA-1 were the most common, with qnrD and aac (6')-Ib-cr also being dominant.
Collapse
Affiliation(s)
- Linlin Xiao
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xiaotong Wang
- Anhui University of Science and Technology, Anhui, China
| | - Nana Kong
- Anhui University of Science and Technology, Anhui, China
| | - Mei Cao
- Anhui University of Science and Technology, Anhui, China
| | - Long Zhang
- Anhui University of Science and Technology, Anhui, China
| | - Quhao Wei
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
- Anhui University of Science and Technology, Anhui, China
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
- Department of Laboratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
19
|
Integrase-Mediated Recombination of the bel-1 Gene Cassette Encoding the Extended-Spectrum β-Lactamase BEL-1. Antimicrob Agents Chemother 2018; 62:AAC.00030-18. [PMID: 29483118 DOI: 10.1128/aac.00030-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 11/20/2022] Open
Abstract
Integrons are genetic elements that can acquire and rearrange gene cassettes. The blaBEL-1 gene encodes an extended-spectrum β-lactamase, BEL-1, that is present at the second position of the variable region of class 1 integrons identified in Pseudomonas aeruginosa The mobility of the bel-1 gene cassette was analyzed under physiological conditions and with the integrase gene being overexpressed. Cassette mobility in Escherichia coli was detected by excision/integration into the recipient integron In3 on the conjugative plasmid R388 with the overproduced integrase. Despite several antibiotic pressures, the bel-1 cassette remained at the second position in the integron, highlighting its stability in P. aeruginosa Overexpression of the integrase gene in E. coli induced bel-1 cassette recombination. However, cassettes containing two genes (blaBEL-1 and smr2 or blaBEL-1 and aacA4) were excised, suggesting that the bel-1 cassette attC site was defective. We show that bel-1 is a stable gene cassette under physiological growth conditions, irrespective of the selective antibiotic pressure, that may be mobilized upon overexpression of the integrase gene.
Collapse
|
20
|
Grieb MS, Nivina A, Cheeseman BL, Hartmann A, Mazel D, Schlierf M. Dynamic stepwise opening of integron attC DNA hairpins by SSB prevents toxicity and ensures functionality. Nucleic Acids Res 2017; 45:10555-10563. [PMID: 28985409 PMCID: PMC5737091 DOI: 10.1093/nar/gkx670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/22/2017] [Indexed: 11/22/2022] Open
Abstract
Biologically functional DNA hairpins are found in archaea, prokaryotes and eukaryotes, playing essential roles in various DNA transactions. However, during DNA replication, hairpin formation can stall the polymerase and is therefore prevented by the single-stranded DNA binding protein (SSB). Here, we address the question how hairpins maintain their functional secondary structure despite SSB’s presence. As a model hairpin, we used the recombinogenic form of the attC site, essential for capturing antibiotic-resistance genes in the integrons of bacteria. We found that attC hairpins have a conserved high GC-content near their apical loop that creates a dynamic equilibrium between attC fully opened by SSB and a partially structured attC-6–SSB complex. This complex is recognized by the recombinase IntI, which extrudes the hairpin upon binding while displacing SSB. We anticipate that this intriguing regulation mechanism using a base pair distribution to balance hairpin structure formation and genetic stability is key to the dissemination of antibiotic resistance genes among bacteria and might be conserved among other functional hairpins.
Collapse
Affiliation(s)
- Maj Svea Grieb
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| | - Aleksandra Nivina
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, 28 rue du Dr. Roux, 75724 Paris, France.,CNRS UMR3525, 75724 Paris, France.,Paris Descartes University, 75006 Paris, France
| | - Bevan L Cheeseman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Andreas Hartmann
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, 28 rue du Dr. Roux, 75724 Paris, France.,CNRS UMR3525, 75724 Paris, France
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| |
Collapse
|
21
|
Chamosa LS, Álvarez VE, Nardelli M, Quiroga MP, Cassini MH, Centrón D. Lateral Antimicrobial Resistance Genetic Transfer is active in the open environment. Sci Rep 2017; 7:513. [PMID: 28364120 PMCID: PMC5428826 DOI: 10.1038/s41598-017-00600-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/31/2022] Open
Abstract
Historically, the environment has been viewed as a passive deposit of antimicrobial resistance mechanisms, where bacteria show biological cost for maintenance of these genes. Thus, in the absence of antimicrobial pressure, it is expected that they disappear from environmental bacterial communities. To test this scenario, we studied native IntI1 functionality of 11 class 1 integron-positive environmental strains of distant genera collected in cold and subtropical forests of Argentina. We found natural competence and successful site-specific insertion with no significant fitness cost of both aadB and blaVIM-2 antimicrobial resistance gene cassettes, in a model system without antibiotic pressure. A bidirectional flow of antimicrobial resistance gene cassettes between natural and nosocomial habitats is proposed, which implies an active role of the open environment as a reservoir, recipient and source of antimicrobial resistance mechanisms, outlining an environmental threat where novel concepts of rational use of antibiotics are extremely urgent and mandatory.
Collapse
Affiliation(s)
- Luciana S Chamosa
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones, Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica E Álvarez
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones, Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Maximiliano Nardelli
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones, Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Paula Quiroga
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones, Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo H Cassini
- Grupo GEMA, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina.,Laboratorio de Biología del Comportamiento, IBYME, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Centrón
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones, Científicas y Tecnológicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
22
|
Aubertheau E, Stalder T, Mondamert L, Ploy MC, Dagot C, Labanowski J. Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1387-1398. [PMID: 27913024 DOI: 10.1016/j.scitotenv.2016.11.136] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Wastewater treatment plants (WWTPs) are one of the main sources of pharmaceutical residue in surface water. Epilithic biofilms were collected downstream from 12 WWTPs of various types and capacities to study the impacts of their discharge through the changes in biofilm composition (compared to a corresponding upstream biofilm) in terms of pharmaceutical concentrations and bacterial community modifications (microbial diversity and resistance integrons). The biofilm is a promising indicator to evaluate the impacts of WWTPs on the surrounding aquatic environment. Indeed, the use of biofilms reveals contamination hot spots. All of the downstream biofilms present significant concentrations (up to 965ng/g) of five to 11 pharmaceuticals (among the 12 analysed). Moreover, the exposition to the discharge point increases the presence of resistance integrons (three to 31 fold for Class 1) and modifies the diversity of the bacterial communities (for example cyanobacteria). The present study confirms that the discharge from WWTPs has an impact on the aquatic environment.
Collapse
Affiliation(s)
- Elodie Aubertheau
- University of Poitiers, UMR CNRS 7285 IC2MP, Department of Water and Geochemistry, ENSIP, 1 Rue Marcel Doré, TSA 41105, 86073 Poitiers Cedex, France
| | - Thibault Stalder
- University of Limoges, INSERM UMR-S1092, Faculté de Médecine, 2 rue du Docteur Marcland, 87065 Limoges Cedex, France; University of Limoges, GRESE EA4330, ENSIL, 16 rue Atlantis, 87068 Limoges Cedex, France
| | - Leslie Mondamert
- University of Poitiers, UMR CNRS 7285 IC2MP, Department of Water and Geochemistry, ENSIP, 1 Rue Marcel Doré, TSA 41105, 86073 Poitiers Cedex, France
| | - Marie-Cécile Ploy
- University of Limoges, INSERM UMR-S1092, Faculté de Médecine, 2 rue du Docteur Marcland, 87065 Limoges Cedex, France
| | - Christophe Dagot
- University of Limoges, INSERM UMR-S1092, Faculté de Médecine, 2 rue du Docteur Marcland, 87065 Limoges Cedex, France; University of Limoges, GRESE EA4330, ENSIL, 16 rue Atlantis, 87068 Limoges Cedex, France
| | - Jérôme Labanowski
- University of Poitiers, UMR CNRS 7285 IC2MP, Department of Water and Geochemistry, ENSIP, 1 Rue Marcel Doré, TSA 41105, 86073 Poitiers Cedex, France.
| |
Collapse
|
23
|
San Millan A, Escudero JA, Gifford DR, Mazel D, MacLean RC. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat Ecol Evol 2016; 1:10. [PMID: 28812563 DOI: 10.1038/s41559-016-0010] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
Abstract
Plasmids are thought to play a key role in bacterial evolution by acting as vehicles for horizontal gene transfer, but the role of plasmids as catalysts of gene evolution remains unexplored. We challenged populations of Escherichia coli carrying the blaTEM-1 β-lactamase gene on either the chromosome or a multicopy plasmid (19 copies per cell) with increasing concentrations of ceftazidime. The plasmid accelerated resistance evolution by increasing the rate of appearance of novel TEM-1 mutations, thereby conferring resistance to ceftazidime, and then by amplifying the effect of TEM-1 mutations due to the increased gene dosage. Crucially, this dual effect was necessary and sufficient for the evolution of clinically relevant levels of resistance. Subsequent evolution occurred by mutations in a regulatory RNA that increased the plasmid copy number, resulting in marginal gains in ceftazidime resistance. These results uncover a role for multicopy plasmids as catalysts for the evolution of antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Alvaro San Millan
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.,Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), 28034 Madrid, Spain
| | - Jose Antonio Escudero
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, 28 Rue du Dr. Roux, 75015 Paris, France.,CNRS, UMR3525, 28 Rue du Dr. Roux, 75015 Paris, France
| | - Danna R Gifford
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Didier Mazel
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, 28 Rue du Dr. Roux, 75015 Paris, France.,CNRS, UMR3525, 28 Rue du Dr. Roux, 75015 Paris, France
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
24
|
Nivina A, Escudero JA, Vit C, Mazel D, Loot C. Efficiency of integron cassette insertion in correct orientation is ensured by the interplay of the three unpaired features of attC recombination sites. Nucleic Acids Res 2016; 44:7792-803. [PMID: 27496283 PMCID: PMC5027507 DOI: 10.1093/nar/gkw646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 01/29/2023] Open
Abstract
The integron is a bacterial recombination system that allows acquisition, stockpiling and expression of cassettes carrying protein-coding sequences, and is responsible for the emergence and rise of multiresistance in Gram-negative bacteria. The functionality of this system depends on the insertion of promoterless cassettes in correct orientation, allowing their expression from the promoter located upstream of the cassette array. Correct orientation is ensured by strand selectivity of integron integrases for the bottom strand of cassette recombination sites (attC), recombined in form of folded single-stranded hairpins. Here, we investigated the basis of such strand selectivity by comparing recombination of wild-type and mutated attC sites with different lengths, sequences and structures. We show that all three unpaired structural features that distinguish the bottom and top strands contribute to strand selectivity. The localization of Extra-Helical Bases (EHBs) directly favors integrase binding to the bottom strand. The Unpaired Central Spacer (UCS) and the Variable Terminal Structure (VTS) influence strand selectivity indirectly, probably through the stabilization of the bottom strand and the resulting synapse due to the nucleotide skew between the two strands. These results underscore the importance of the single-stranded nature of the attC site that allows such tight control over integron cassette orientation.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - José Antonio Escudero
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| | - Claire Vit
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| | - Didier Mazel
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| | - Céline Loot
- Institut Pasteur, Bacterial Genome Plasticity Unit, 75724 Paris, France CNRS UMR3525, 75724 Paris, France
| |
Collapse
|
25
|
Tohidi F, Rajabnia R, Taravati A, Behdani M, Shokrollahi N, Sadeghnia HR, Jamialahmadi K. Development of a novel in vitro assay for the evaluation of integron DNA integrase activity. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1142832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Fatemeh Tohidi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramazan Rajabnia
- Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ali Taravati
- Faculty of Basic Sciences, Department of Molecular and Cell Biology, University of Mazandaran, Babolsar, Iran
| | - Mahdi Behdani
- Venom & Biotherapeutics Molecules Lab., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Narjes Shokrollahi
- Venom & Biotherapeutics Molecules Lab., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Sadeghnia
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Abstract
The integron is a powerful system which, by capturing, stockpiling, and rearranging new functions carried by gene encoding cassettes, confers upon bacteria a rapid adaptation capability in changing environments. Chromosomally located integrons (CI) have been identified in a large number of environmental Gram-negative bacteria. Integron evolutionary history suggests that these sedentary CIs acquired mobility among bacterial species through their association with transposable elements and conjugative plasmids. As a result of massive antibiotic use, these so-called mobile integrons are now widespread in clinically relevant bacteria and are considered to be the principal agent in the emergence and rise of antibiotic multiresistance in Gram-negative bacteria. Cassette rearrangements are catalyzed by the integron integrase, a site-specific tyrosine recombinase. Central to these reactions is the single-stranded DNA nature of one of the recombination partners, the attC site. This makes the integron a unique recombination system. This review describes the current knowledge on this atypical recombination mechanism, its implications in the reactions involving the different types of sites, attC and attI, and focuses on the tight regulation exerted by the host on integron activity through the control of attC site folding. Furthermore, cassette and integrase expression are also highly controlled by host regulatory networks and the bacterial stress (SOS) response. These intimate connections to the host make the integron a genetically stable and efficient system, granting the bacteria a low cost, highly adaptive evolution potential "on demand".
Collapse
|
27
|
Unmasking the ancestral activity of integron integrases reveals a smooth evolutionary transition during functional innovation. Nat Commun 2016; 7:10937. [PMID: 26961432 PMCID: PMC4792948 DOI: 10.1038/ncomms10937] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/03/2016] [Indexed: 12/28/2022] Open
Abstract
Tyrosine (Y)-recombinases have evolved to deliver mechanistically different reactions on a variety of substrates, but these evolutionary transitions are poorly understood. Among them, integron integrases are hybrid systems recombining single- and double-stranded DNA partners. These reactions are asymmetric and need a replicative resolution pathway, an exception to the canonical second strand exchange model of Y-recombinases. Integron integrases possess a specific domain for this specialized pathway. Here we show that despite this, integrases are still capable of efficiently operating the ancestral second strand exchange in symmetrical reactions between double-stranded substrates. During these reactions, both strands are reactive and Holliday junction resolution can follow either pathway. A novel deep-sequencing approach allows mapping of the crossover point for the second strand exchange. The persistence of the ancestral activity in integrases illustrates their robustness and shows that innovation towards new recombination substrates and resolution pathways was a smooth evolutionary process. The integron integrases have evolved to perform recombination of single and double stranded DNA. Here the authors show that the ancestral pathway is still functional at double stranded sites, revealing the evolution towards the modern resolution pathway.
Collapse
|
28
|
Abella J, Fahy A, Duran R, Cagnon C. Integron diversity in bacterial communities of freshwater sediments at different contamination levels. FEMS Microbiol Ecol 2015; 91:fiv140. [DOI: 10.1093/femsec/fiv140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/29/2022] Open
|
29
|
Diversity of Class 1 Integron Gene Cassette Rearrangements Selected under Antibiotic Pressure. J Bacteriol 2015; 197:2171-2178. [PMID: 25897031 DOI: 10.1128/jb.02455-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/15/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Integrons are bacterial genetic elements able to capture and express genes contained within mobile gene cassettes. Gene cassettes are expressed via a Pc promoter and can be excised from or integrated into the integron by integrase IntI. Although the mechanisms of gene cassette integration and excision are well known, the kinetics and modes of gene cassette shuffling leading to new gene cassette arrays remain puzzling. It has been proposed that under antibiotic selective pressure, IntI-mediated rearrangements can generate integron variants in which a weakly expressed gene cassette moves closer to Pc, thus leading to higher-level resistance. To test this hypothesis, we used an integron with four gene cassettes, intI1-aac(6')-Ib-dfrA15-aadA1-catB9, and applied selective pressure with chloramphenicol, resistance to which is encoded by catB9. Experiments were performed with three different Pc variants corresponding to three IntI1 variants. All three integrases, even when not overexpressed, were able to bring catB9 closer to Pc via excision of the dfrA15 and aadA1 gene cassettes, allowing their host bacteria to adapt to antibiotic pressure and to grow at high chloramphenicol concentrations. Integrase IntI1(R32_H39), reported to have the highest recombination activity, was able, when overexpressed, to trigger multiple gene cassette rearrangements. Although we observed a wide variety of rearrangements with catB9 moving closer to Pc and leading to higher chloramphenicol resistance, "cut-and-paste" relocalization of catB9 to the first position was not detected. Our results suggest that gene cassette rearrangements via excision are probably less cost-effective than excision and integration of a distal gene cassette closer to Pc. IMPORTANCE Integrons are bacterial genetic elements able to capture and express gene cassettes. Gene cassettes are expressed via a Pc promoter; the closer they are to Pc, the more strongly they are expressed. Gene cassettes can be excised from or integrated into the integron by integrase IntI. The kinetics and modes of gene cassette shuffling, leading to new gene cassette arrays remain puzzling. We used an integron with 4 antibiotic resistance gene cassettes and applied selective pressure with the antibiotic for which resistance was encoded by cassette 4. All IntI variants were able to bring cassette 4 closer to Pc. Rearrangements occur via excision of the previous gene cassettes instead of cut-and-paste relocalization of the fourth gene cassette.
Collapse
|
30
|
The integron integrase efficiently prevents the melting effect of Escherichia coli single-stranded DNA-binding protein on folded attC sites. J Bacteriol 2013; 196:762-71. [PMID: 24296671 DOI: 10.1128/jb.01109-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrons play a major role in the dissemination of antibiotic resistance genes among bacteria. Rearrangement of gene cassettes occurs by recombination between attI and attC sites, catalyzed by the integron integrase. Integron recombination uses an unconventional mechanism involving a folded single-stranded attC site. This site could be a target for several host factors and more precisely for proteins able to bind single-stranded DNA. One of these, Escherichia coli single-stranded DNA-binding protein (SSB), regulates many DNA processes. We studied the influence of this protein on integron recombination. Our results show the ability of SSB to strongly bind folded attC sites and to destabilize them. This effect was observed only in the absence of the integrase. Indeed, we provided evidence that the integrase is able to counterbalance the observed effect of SSB on attC site folding. We showed that IntI1 possesses an intrinsic property to capture attC sites at the moment of their extrusion, stabilizing them and recombining them efficiently. The stability of DNA secondary structures in the chromosome must be restrained to avoid genetic instability (mutations or deletions) and/or toxicity (replication arrest). SSB, which hampers attC site folding in the absence of the integrase, likely plays an important role in maintaining the integrity and thus the recombinogenic functionality of the integron attC sites. We also tested the RecA host factor and excluded any role of this protein in integron recombination.
Collapse
|
31
|
Abstract
The complexity of even small gene networks makes them hardly amenable to rational design. Testing random combinations of genetic elements in a directed evolution procedure is thus of interest for many applications including metabolic engineering. Here we describe how the recombination machinery of class 1 integrons can be used to deliver and shuffle genetic elements at a chromosomal locus in E. coli.
Collapse
|
32
|
Aubert D, Naas T, Nordmann P. Integrase-mediated recombination of the veb1 gene cassette encoding an extended-spectrum β-lactamase. PLoS One 2012; 7:e51602. [PMID: 23251590 PMCID: PMC3518468 DOI: 10.1371/journal.pone.0051602] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
The veb1 gene cassette encodes the extended spectrum β-lactamase, VEB-1 that is increasingly isolated from worldwide Gram-negative rods. Veb1 is commonly inserted into the variable region of different class 1 integrons in which it is always associated with a downstream-located aadB gene cassette encoding an aminoglycoside adenylyltransferase. In Pseudomonas aeruginosa, the majority of veb1-containing integrons also carry an insertion sequence, IS1999 that is inserted upstream of the veb1 gene cassette and disrupts the integron specific recombination site, attI1. Investigation of the recombination properties of the sites surrounding veb1 revealed that insertion of IS1999 reduces significantly the recombination frequency of attI1 and that veb1 attC is not efficient for recombination in contrast to aadB attC. Subsequent sequence optimisation of veb1 attC by mutagenesis, into a more consensual attC site resembling aadB attC, successfully improved recombination efficiency. Overall, this work gives some insights into the organisation of veb1-containing integrons. We propose that IS1999 and the nature of veb1 attC stabilize the veb1 gene cassette environment likely by impairing recombination events upstream or downstream of veb1, respectively.
Collapse
Affiliation(s)
- Daniel Aubert
- Service de Bactériologie-Virologie, INSERM U914 "Emerging Resistance to Antibiotics," LabEx LERMIT, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Université Paris-Sud, Paris, France
| | | | | |
Collapse
|
33
|
Loot C, Ducos-Galand M, Escudero JA, Bouvier M, Mazel D. Replicative resolution of integron cassette insertion. Nucleic Acids Res 2012; 40:8361-70. [PMID: 22740653 PMCID: PMC3458562 DOI: 10.1093/nar/gks620] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Site-specific recombination catalyzed by tyrosine recombinases follows a common pathway consisting of two consecutive strand exchanges. The first strand exchange generates a Holliday junction (HJ), which is resolved by a second strand exchange. In integrons, attC sites recombine as folded single-stranded substrates. Only one of the two attC site strands, the bottom one, is efficiently bound and cleaved by the integrase during the insertion of gene cassettes at the double-stranded attI site. Due to the asymmetry of this complex, a second strand exchange on the attC bottom strand (bs) would form linearized abortive recombination products. We had proposed that HJ resolution would rely on an uncharacterized mechanism, probably replication. Using an attC site carried on a plasmid with each strand specifically tagged, we followed the destiny of each strand after recombination. We demonstrated that only one strand, the one carrying the attC bs, is exchanged. Furthermore, we show that the recombination products contain the attC site bs and its entire de novo synthesized complementary strand. Therefore, we demonstrate the replicative resolution of single-strand recombination in integrons and rule out the involvement of a second strand exchange of any kind in the attC × attI reaction.
Collapse
Affiliation(s)
- Céline Loot
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS UMR3525, Paris 75724, France
| | | | | | | | | |
Collapse
|
34
|
Gestal AM, Liew EF, Coleman NV. Natural transformation with synthetic gene cassettes: new tools for integron research and biotechnology. Microbiology (Reading) 2011; 157:3349-3360. [DOI: 10.1099/mic.0.051623-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Integrons are genetic elements that can capture and express genes packaged as gene cassettes. Here we report new methods that allow integrons to be studied and manipulated in their native bacterial hosts. Synthetic gene cassettes encoding gentamicin resistance (aadB) and green fluorescence (gfp), or lactose metabolism (lacZY), were made by PCR and self-ligation, converted to large tandem arrays by multiple displacement amplification, and introduced into Escherichia coli or Pseudomonas stutzeri strains via electroporation or natural transformation. Recombinants (GmR or Lac+) were obtained at frequencies ranging from 101 to 106 c.f.u. (µg DNA)−1. Cassettes were integrated by site-specific recombination at the integron attI site in nearly all cases examined (370/384), including both promoterless and promoter-containing cassettes. Fluorometric analysis of gfp-containing recombinants revealed that expression levels from the integron-associated promoter PC were five- to 10-fold higher in the plasmid-borne integron In3 compared with the P. stutzeri chromosomal integrons. Integration of lacZY cassettes into P. stutzeri integrons allowed the bacteria to grow on lactose, and the lacZY gene cassette was stably maintained in the absence of selection. This study is believed to be the first to show natural transformation by gene cassettes, and integron-mediated capture of catabolic gene cassettes.
Collapse
Affiliation(s)
- Alicia M. Gestal
- School of Molecular Bioscience, Building G08, The University of Sydney, NSW 2006, Australia
| | - Elissa F. Liew
- School of Molecular Bioscience, Building G08, The University of Sydney, NSW 2006, Australia
| | - Nicholas V. Coleman
- School of Molecular Bioscience, Building G08, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
35
|
|
36
|
Ke X, Gu B, Pan S, Tong M. Epidemiology and molecular mechanism of integron-mediated antibiotic resistance in Shigella. Arch Microbiol 2011; 193:767-74. [PMID: 21842348 DOI: 10.1007/s00203-011-0744-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/27/2011] [Accepted: 08/02/2011] [Indexed: 01/15/2023]
Abstract
Integrons are gene capture and expression systems that are characterized by the presence of an integrase gene. This encodes an integrase, a recombined site, and a promoter. They are able to capture gene cassettes from the environment and incorporate them using site-specific recombination. The role of integrons and gene cassettes in the dissemination of multidrug resistance in Gram-negative bacteria is significant. In Shigella species, antimicrobial resistance is often associated with the presence of class 1 and class 2 integrons that contain resistance gene cassettes. Multiple and complex expression regulation mechanisms involving mobile genetic elements in integrons have been developed in the evolution of Shigella strains. Knowledge of the epidemiology and molecular mechanisms of antimicrobial resistance in this important pathogen is essential for the implementation of intervention strategies. This review was conducted to introduce the structures and functions of integrons in Shigella species and mechanisms that control integron-mediated events linked to antibiotic resistance.
Collapse
Affiliation(s)
- Xing Ke
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | |
Collapse
|
37
|
Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 2011; 35:790-819. [PMID: 21517914 DOI: 10.1111/j.1574-6976.2011.00273.x] [Citation(s) in RCA: 376] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antibiotics were one of the great discoveries of the 20th century. However, resistance appeared even in the earliest years of the antibiotic era. Antibiotic resistance continues to become worse, despite the ever-increasing resources devoted to combat the problem. One of the most important factors in the development of resistance to antibiotics is the remarkable ability of bacteria to share genetic resources via Lateral Gene Transfer (LGT). LGT occurs on a global scale, such that in theory, any gene in any organism anywhere in the microbial biosphere might be mobilized and spread. With sufficiently strong selection, any gene may spread to a point where it establishes a global presence. From an antibiotic resistance perspective, this means that a resistance phenotype can appear in a diverse range of infections around the globe nearly simultaneously. We discuss the forces and agents that make this LGT possible and argue that the problem of resistance can ultimately only be managed by understanding the problem from a broad ecological and evolutionary perspective. We also argue that human activities are exacerbating the problem by increasing the tempo of LGT and bacterial evolution for many traits that are important to humans.
Collapse
Affiliation(s)
- Hatch W Stokes
- The i3 Institute, University of Technology, Broadway 2007, Sydney, NSW, Australia.
| | | |
Collapse
|
38
|
Cambray G, Sanchez-Alberola N, Campoy S, Guerin É, Da Re S, González-Zorn B, Ploy MC, Barbé J, Mazel D, Erill I. Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mob DNA 2011; 2:6. [PMID: 21529368 PMCID: PMC3108266 DOI: 10.1186/1759-8753-2-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 04/30/2011] [Indexed: 11/26/2022] Open
Abstract
Background Integrons are found in hundreds of environmental bacterial species, but are mainly known as the agents responsible for the capture and spread of antibiotic-resistance determinants between Gram-negative pathogens. The SOS response is a regulatory network under control of the repressor protein LexA targeted at addressing DNA damage, thus promoting genetic variation in times of stress. We recently reported a direct link between the SOS response and the expression of integron integrases in Vibrio cholerae and a plasmid-borne class 1 mobile integron. SOS regulation enhances cassette swapping and capture in stressful conditions, while freezing the integron in steady environments. We conducted a systematic study of available integron integrase promoter sequences to analyze the extent of this relationship across the Bacteria domain. Results Our results showed that LexA controls the expression of a large fraction of integron integrases by binding to Escherichia coli-like LexA binding sites. In addition, the results provide experimental validation of LexA control of the integrase gene for another Vibrio chromosomal integron and for a multiresistance plasmid harboring two integrons. There was a significant correlation between lack of LexA control and predicted inactivation of integrase genes, even though experimental evidence also indicates that LexA regulation may be lost to enhance expression of integron cassettes. Conclusions Ancestral-state reconstruction on an integron integrase phylogeny led us to conclude that the ancestral integron was already regulated by LexA. The data also indicated that SOS regulation has been actively preserved in mobile integrons and large chromosomal integrons, suggesting that unregulated integrase activity is selected against. Nonetheless, additional adaptations have probably arisen to cope with unregulated integrase activity. Identifying them may be fundamental in deciphering the uneven distribution of integrons in the Bacteria domain.
Collapse
Affiliation(s)
- Guillaume Cambray
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, 75015 Paris, France
| | - Neus Sanchez-Alberola
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Émilie Guerin
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Sandra Da Re
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Bruno González-Zorn
- Departamento de Sanidad Animal, Facultad de Veterinaria, and VISAVET, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marie-Cécile Ploy
- Université de Limoges, Faculté de Médecine, EA3175, INSERM, Equipe Avenir, Limoges 87000, France
| | - Jordi Barbé
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, 75015 Paris, France
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore 21228, USA
| |
Collapse
|
39
|
Larouche A, Roy PH. Effect of attC structure on cassette excision by integron integrases. Mob DNA 2011; 2:3. [PMID: 21332975 PMCID: PMC3053210 DOI: 10.1186/1759-8753-2-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 02/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background Integrons are genetic elements able to integrate and disseminate genes as cassettes by a site-specific recombination mechanism. These elements contain a gene coding for an integrase that carries out recombination by interacting with two different target sites; the attI site in cis with the integrase and the palindromic attC site of a gene cassette. Integron integrases (IntIs) bind specifically to the bottom strand of attC sites. The extrahelical bases resulting from folding of attC bottom strands are important for the recognition by integrases. These enzymes are directly involved in the accumulation and formation of new cassette arrangements in the variable region of integrons. Thus, it is important to better understand interactions between IntIs and their substrates. Results We compared the ability of five IntIs to carry out excision of several cassettes flanked by different attC sites. The results showed that for most cassettes, IntI1 was the most active integrase. However, IntI2*179E and SonIntIA could easily excise cassettes containing the attCdfrA1 site located upstream, whereas IntI1 and IntI3 had only a weak excision activity for these cassettes. Analysis of the secondary structure adopted by the bottom strand of attCdfrA1 has shown that the identity of the extrahelical bases and the distance between them (A-N7-8-C) differ from those of attCs contained in the cassettes most easily excisable by IntI1 (T-N6-G). We used the attCdfrA1 site upstream of the sat2 gene cassette as a template and varied the identity and spacing between the extrahelical bases in order to determine how these modifications influence the ability of IntI1, IntI2*179E, IntI3 and SonIntIA to excise cassettes. Our results show that IntI1 is more efficient in cassette excision using T-N6-G or T-N6-C attCs while IntI3 recognizes only a limited range of attCs. IntI2*179E and SonIntIA are more tolerant of changes to the identity and spacing of extrahelical bases. Conclusions This study provides new insights into the factors that influence the efficiency of cassette excision by integron integrases. It also suggests that IntI2 and SonIntIA have an evolutionary path that is different from IntI1 and IntI3, in their ability to recognize and excise cassettes.
Collapse
Affiliation(s)
- André Larouche
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Québec, Canada.
| | | |
Collapse
|
40
|
Affiliation(s)
- Guillaume Cambray,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Anne-Marie Guerout,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| |
Collapse
|
41
|
Johansson C, Boukharta L, Eriksson J, Aqvist J, Sundström L. Mutagenesis and homology modeling of the Tn21 integron integrase IntI1. Biochemistry 2010; 48:1743-53. [PMID: 19199791 DOI: 10.1021/bi8020235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Horizontal DNA transfer between bacteria is widespread and a major cause of antibiotic resistance. For logistic reasons, single or combined genes are shuttled between vectors such as plasmids and bacterial chromosomes. Special elements termed integrons operate in such shuttling and are therefore vital for horizontal gene transfer. Shorter elements carrying genes, cassettes, are integrated in the integrons, or excised from them, by virtue of a recombination site, attC, positioned in the 3' end of each unit. It is a remarkable and possibly restricting elementary feature of attC that it must be single-stranded while the partner target site, attI, may be double-stranded. The integron integrases belong to the tyrosine recombinase family, and this work reports mutations of the integrase IntI1 from transposon Tn21, chosen within a well-conserved region characteristic of the integron integrases. The mutated proteins were tested for binding to a bottom strand of an attC substrate, by using an electrophoresis mobility shift assay. To aid in interpreting the results, a homology model was constructed on the basis of the crystal structure of integron integrase VchIntIA from Vibrio cholerae bound to its cognate attC substrate VCRbs. The local stability and hydrogen bonding network of key domains of the modeled structure were further examined using molecular dynamics simulations. The homology model allowed us to interpret the roles of several amino acid residues, four of which were clearly binding assay responsive upon mutagenesis. Notably, we also observed features indicating that IntI1 may be more prone to base-specific contacts with VCRbs than VchIntIA.
Collapse
Affiliation(s)
- Carolina Johansson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
42
|
Barraud O, Baclet MC, Denis F, Ploy MC. Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons. J Antimicrob Chemother 2010; 65:1642-5. [PMID: 20542899 DOI: 10.1093/jac/dkq167] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Integrons are bacterial genetic elements that can capture and express genes contained in mobile cassettes. Integrons have been described worldwide in Gram-negative bacteria and are a marker of antibiotic resistance. We developed a specific and sensitive Taqman probe-based real-time PCR method with three different primer-probe pairs for simultaneous detection of the three main classes of integron. METHODS Sensitivity was assessed by testing mixtures of the three targets (intI integrase genes of each integron class) ranging from 10 to 10(8) copies. Specificity was determined with a panel of integron-containing and integron-free control strains. The method was then applied to clinical samples. RESULTS The PCR method was specific and had a sensitivity of 10(2) copies for all three genes, regardless of their respective quantities. The method was quantitative from 10(3) to 10(7) copies, and was able to detect integrons directly in biological samples. CONCLUSIONS We have developed a rapid, quantitative, specific and sensitive method that could prove useful for initial screening of Gram-negative isolates, or clinical samples, for likely multidrug resistance.
Collapse
Affiliation(s)
- O Barraud
- EA3175, Univ Limoges, Faculté de Médecine, 2 rue du Dr Marcland, 87025 Limoges, France
| | | | | | | |
Collapse
|
43
|
Inverse correlation between promoter strength and excision activity in class 1 integrons. PLoS Genet 2010; 6:e1000793. [PMID: 20066027 PMCID: PMC2791841 DOI: 10.1371/journal.pgen.1000793] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 11/27/2009] [Indexed: 01/24/2023] Open
Abstract
Class 1 integrons are widespread genetic elements that allow bacteria to capture and express gene cassettes that are usually promoterless. These integrons play a major role in the dissemination of antibiotic resistance among Gram-negative bacteria. They typically consist of a gene (intI) encoding an integrase (that catalyzes the gene cassette movement by site-specific recombination), a recombination site (attI1), and a promoter (Pc) responsible for the expression of inserted gene cassettes. The Pc promoter can occasionally be combined with a second promoter designated P2, and several Pc variants with different strengths have been described, although their relative distribution is not known. The Pc promoter in class 1 integrons is located within the intI1 coding sequence. The Pc polymorphism affects the amino acid sequence of IntI1 and the effect of this feature on the integrase recombination activity has not previously been investigated. We therefore conducted an extensive in silico study of class 1 integron sequences in order to assess the distribution of Pc variants. We also measured these promoters' strength by means of transcriptional reporter gene fusion experiments and estimated the excision and integration activities of the different IntI1 variants. We found that there are currently 13 Pc variants, leading to 10 IntI1 variants, that have a highly uneven distribution. There are five main Pc-P2 combinations, corresponding to five promoter strengths, and three main integrases displaying similar integration activity but very different excision efficiency. Promoter strength correlates with integrase excision activity: the weaker the promoter, the stronger the integrase. The tight relationship between the aptitude of class 1 integrons to recombine cassettes and express gene cassettes may be a key to understanding the short-term evolution of integrons. Dissemination of integron-driven drug resistance is therefore more complex than previously thought.
Collapse
|
44
|
Frumerie C, Ducos-Galand M, Gopaul DN, Mazel D. The relaxed requirements of the integron cleavage site allow predictable changes in integron target specificity. Nucleic Acids Res 2009; 38:559-69. [PMID: 19914932 PMCID: PMC2811028 DOI: 10.1093/nar/gkp990] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Integrons are able to incorporate exogenous genes embedded in mobile cassettes, by a site-specific recombination mechanism. Gene cassettes are collected at the attI site, via an integrase mediated recombination between the cassette recombination site, attC, and the attI site. Interestingly, only three nucleotides are conserved between attC and attI. Here, we have determined the requirements of these in recombination, using the recombination machinery from the paradigmatic class 1 integron. We found that, strikingly, the only requirement is to have identical first nucleotide in the two partner sites, but not the nature of this nucleotide. Furthermore, we showed that the reaction is close to wild-type efficiency when one of the nucleotides in the second or third position is mutated in either the attC or the attI1 site, while identical mutations can have drastic effects when both sites are mutated, resulting in a dramatic decrease of recombination frequency compared to that of the wild-type sites. Finally, we tested the functional role of the amino acids predicted from structural data to interact with the cleavage site. We found that, if the recombination site triplets are tolerant to mutation, the amino acids interacting with them are extremely constrained.
Collapse
Affiliation(s)
- Clara Frumerie
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, 25 rue du Dr Roux, 75724 Paris, France
| | | | | | | |
Collapse
|
45
|
Bouvier M, Ducos-Galand M, Loot C, Bikard D, Mazel D. Structural features of single-stranded integron cassette attC sites and their role in strand selection. PLoS Genet 2009; 5:e1000632. [PMID: 19730680 PMCID: PMC2727003 DOI: 10.1371/journal.pgen.1000632] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 08/05/2009] [Indexed: 11/19/2022] Open
Abstract
We recently showed that cassette integration and deletion in integron platforms were occurring through unconventional site-specific recombination reactions involving only the bottom strand of attC sites. The lack of sequence conservation among attC sites led us to hypothesize that sequence-independent structural recognition determinants must exist within attC sites. The structural data obtained from a synaptic complex of the Vibrio cholerae integrase with the bottom strand of an attC site has shown the importance of extra helical bases (EHB) inside the stem-loop structure formed from the bottom strand. Here, we systematically determined the contribution of three structural elements common to all known single-stranded attC site recombination substrates (the EHBs, the unpaired central spacer (UCS), and the variable terminal structure (VTS)) to strand choice and recombination. Their roles have been evaluated in vivo in the attI×attC reaction context using the suicide conjugation assay we previously developed, but also in an attC×attC reaction using a deletion assay. Conjugation was used to deliver the attC sites in single-stranded form. Our results show that strand choice is primarily directed by the first EHB, but the presence of the two other EHBs also serves to increase this strand selection. We found that the structure of the central spacer is essential to achieve high level recombination of the bottom strand, suggesting a dual role for this structure in active site exclusion and for hindering the reverse reaction after the first strand exchange. Moreover, we have shown that the VTS has apparently no role in strand selectivity. Integrons play a preponderant role in the development of multiple antibiotic resistances among Gram-negative bacteria. Their success is rooted in their unique aptitude to assemble genes through a site-specific recombination process. They have recently been shown to use an unconventional recombination pathway, which involves recombination between a canonical double stranded attI site and a uniquely folded single stranded attC substrate. Due to its complex and variable structure, which includes several unpaired regions and extrahelical nucleotides, recognition of the attC site was elusive. Here, we determined the contribution of each of the different structural elements common to many folded single stranded attC substrates, in the recognition and recombination efficiency by the integron recombinase. We found that a single specific extrahelical nucleotide is responsible for the choice between the two anti-parallel complementary strands of each attC site, an essential discrimination for guaranteeing the expression of the acquired gene by the integron platform. These studies open the way to the design of synthetic sites and the use of this powerful loose-specificity recombination system for various gene transfer applications.
Collapse
Affiliation(s)
- Marie Bouvier
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, Paris, France
| | - Magaly Ducos-Galand
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, Paris, France
| | - Céline Loot
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, Paris, France
| | - David Bikard
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, CNRS URA 2171, Paris, France
- * E-mail:
| |
Collapse
|
46
|
Pinilla G, Muñoz L, Ruiz AI, Chavarro B, Cifuentes Y. Aislamiento de Staphylococcus epidermidis portador de integrón clase 1 en un paciente con sepsis neonatal. INFECTIO 2009. [DOI: 10.1016/s0123-9392(09)70150-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Dubois V, Debreyer C, Quentin C, Parissi V. In vitro recombination catalyzed by bacterial class 1 integron integrase IntI1 involves cooperative binding and specific oligomeric intermediates. PLoS One 2009; 4:e5228. [PMID: 19381299 PMCID: PMC2668188 DOI: 10.1371/journal.pone.0005228] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/19/2009] [Indexed: 12/02/2022] Open
Abstract
Gene transfer via bacterial integrons is a major pathway for facilitating the spread of antibiotic resistance genes across bacteria. Recently the mechanism underlying the recombination catalyzed by class 1 integron recombinase (IntI1) between attC and attI1 was highlighted demonstrating the involvement of a single-stranded intermediary on the attC site. However, the process allowing the generation of this single-stranded substrate has not been determined, nor have the active IntI1•DNA complexes been identified. Using the in vitro strand transfer assay and a crosslink strategy we previously described we demonstrated that the single-stranded attC sequences could be generated in the absence of other bacterial proteins in addition to IntI. This suggests a possible role for this protein in stabilizing and/or generating this structure. The mechanism of folding of the active IntI•DNA complexes was further analyzed and we show here that it involves a cooperative binding of the protein to each recombination site and the emergence of different oligomeric species specific for each DNA substrate. These findings provide further insight into the recombination reaction catalyzed by IntI1.
Collapse
Affiliation(s)
- Véronique Dubois
- Laboratory of Cellular and Molecular Microbiology and Pathogenicity (MCMP), UMR 5097-CNRS, University Victor Segalen Bordeaux 2, Bordeaux, France
| | - Carole Debreyer
- Laboratory of Cellular and Molecular Microbiology and Pathogenicity (MCMP), UMR 5097-CNRS, University Victor Segalen Bordeaux 2, Bordeaux, France
| | - Claudine Quentin
- Laboratory of Cellular and Molecular Microbiology and Pathogenicity (MCMP), UMR 5097-CNRS, University Victor Segalen Bordeaux 2, Bordeaux, France
| | - Vincent Parissi
- Laboratory of Cellular and Molecular Microbiology and Pathogenicity (MCMP), UMR 5097-CNRS, University Victor Segalen Bordeaux 2, Bordeaux, France
- * E-mail:
| |
Collapse
|
48
|
Partridge SR, Tsafnat G, Coiera E, Iredell JR. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 2009; 33:757-84. [PMID: 19416365 DOI: 10.1111/j.1574-6976.2009.00175.x] [Citation(s) in RCA: 467] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Gene cassettes are small mobile elements, consisting of little more than a single gene and recombination site, which are captured by larger elements called integrons. Several cassettes may be inserted into the same integron forming a tandem array. The discovery of integrons in the chromosome of many species has led to the identification of thousands of gene cassettes, mostly of unknown function, while integrons associated with transposons and plasmids carry mainly antibiotic resistance genes and constitute an important means of spreading resistance. An updated compilation of gene cassettes found in sequences of such 'mobile resistance integrons' in GenBank was facilitated by a specially developed automated annotation system. At least 130 different (<98% identical) cassettes that carry known or predicted antibiotic resistance genes were identified, along with many cassettes of unknown function. We list exemplar GenBank accession numbers for each and address some nomenclature issues. Various modifications to cassettes, some of which may be useful in tracking cassette epidemiology, are also described. Despite potential biases in the GenBank dataset, preliminary analysis of cassette distribution suggests interesting differences between cassettes and may provide useful information to direct more systematic studies.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
49
|
First gene cassettes of integrons as targets in finding adaptive genes in metagenomes. Appl Environ Microbiol 2009; 75:3823-5. [PMID: 19363073 DOI: 10.1128/aem.02394-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first gene cassettes of integrons are involved in the last adaptation response to changing conditions and are also the most expressed. We propose a rapid method for the selection of clones carrying an integron first gene cassette that is useful for finding adaptive genes in environmental metagenomic libraries.
Collapse
|
50
|
Shearer JE, Summers AO. Intracellular Steady-State Concentration of Integron Recombination Products Varies with Integrase Level and Growth Phase. J Mol Biol 2009; 386:316-31. [DOI: 10.1016/j.jmb.2008.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 12/04/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
|