1
|
Nawimanage R, Yuan Z, Casares M, Joshi R, Lohman JR, Gimble FS. Structure-function studies of two yeast homing endonucleases that evolved to cleave identical targets with dissimilar rates and specificities. J Mol Biol 2022; 434:167550. [DOI: 10.1016/j.jmb.2022.167550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
2
|
Bastianello G, Arakawa H. A double-strand break can trigger immunoglobulin gene conversion. Nucleic Acids Res 2016; 45:231-243. [PMID: 27701075 PMCID: PMC5224512 DOI: 10.1093/nar/gkw887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/23/2022] Open
Abstract
All three B cell-specific activities of the immunoglobulin (Ig) gene re-modeling system—gene conversion, somatic hypermutation and class switch recombination—require activation-induced deaminase (AID). AID-induced DNA lesions must be further processed and dissected into different DNA recombination pathways. In order to characterize potential intermediates for Ig gene conversion, we inserted an I-SceI recognition site into the complementarity determining region 1 (CDR1) of the Ig light chain locus of the AID knockout DT40 cell line, and conditionally expressed I-SceI endonuclease. Here, we show that a double-strand break (DSB) in CDR1 is sufficient to trigger Ig gene conversion in the absence of AID. The pattern and pseudogene usage of DSB-induced gene conversion were comparable to those of AID-induced gene conversion; surprisingly, sometimes a single DSB induced multiple gene conversion events. These constitute direct evidence that a DSB in the V region can be an intermediate for gene conversion. The fate of the DNA lesion downstream of a DSB had more flexibility than that of AID, suggesting two alternative models: (i) DSBs during the physiological gene conversion are in the minority compared to single-strand breaks (SSBs), which are frequently generated following DNA deamination, or (ii) the physiological gene conversion is mediated by a tightly regulated DSB that is locally protected from non-homologous end joining (NHEJ) or other non-homologous DNA recombination machineries.
Collapse
Affiliation(s)
- Giulia Bastianello
- IFOM - FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy.,Università degli Studi di Milano, Dipartimento di Bioscienze, Via Celoria 26, 20133 Milan, Italy
| | - Hiroshi Arakawa
- IFOM - FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
3
|
Kravchuk OI, Mikhailov VS, Savitsky MY. A simple and efficient method of inducing targeted deletions in the drosophila genome. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415110101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Molina R, Stella S, Redondo P, Gomez H, Marcaida MJ, Orozco M, Prieto J, Montoya G. Visualizing phosphodiester-bond hydrolysis by an endonuclease. Nat Struct Mol Biol 2014; 22:65-72. [PMID: 25486305 DOI: 10.1038/nsmb.2932] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/12/2014] [Indexed: 01/12/2023]
Abstract
The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two-metal-ion cleavage mechanism. We captured intermediates of the different catalytic steps, and this allowed us to watch the reaction by 'freezing' multiple states. We observed the successive entry of two metals involved in the reaction and the arrival of a third cation in a central position of the active site. This third metal ion has a crucial role, triggering the consecutive hydrolysis of the targeted phosphodiester bonds in the DNA strands and leaving its position once the DSB is generated. The multiple structures show the orchestrated conformational changes in the protein residues, nucleotides and metals during catalysis.
Collapse
Affiliation(s)
- Rafael Molina
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Stefano Stella
- 1] Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. [2] Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pilar Redondo
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Hansel Gomez
- Joint Barcelona Computing Center (BSC)-Centre for Genomic Regulation (CRG)-Institute for Research in Biomedicine (IRB) Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - María José Marcaida
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Modesto Orozco
- 1] Joint Barcelona Computing Center (BSC)-Centre for Genomic Regulation (CRG)-Institute for Research in Biomedicine (IRB) Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain. [2] Departament de Bioquimica, Facultat de Biologia, University of Barcelona, Barcelona, Spain
| | - Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo Montoya
- 1] Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. [2] Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Si T, Xiao H, Zhao H. Rapid prototyping of microbial cell factories via genome-scale engineering. Biotechnol Adv 2014; 33:1420-32. [PMID: 25450192 DOI: 10.1016/j.biotechadv.2014.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories.
Collapse
Affiliation(s)
- Tong Si
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Han Xiao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
6
|
Thyme SB, Boissel SJS, Arshiya Quadri S, Nolan T, Baker DA, Park RU, Kusak L, Ashworth J, Baker D. Reprogramming homing endonuclease specificity through computational design and directed evolution. Nucleic Acids Res 2013; 42:2564-76. [PMID: 24270794 PMCID: PMC3936771 DOI: 10.1093/nar/gkt1212] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Homing endonucleases (HEs) can be used to induce targeted genome modification to reduce the fitness of pathogen vectors such as the malaria-transmitting Anopheles gambiae and to correct deleterious mutations in genetic diseases. We describe the creation of an extensive set of HE variants with novel DNA cleavage specificities using an integrated experimental and computational approach. Using computational modeling and an improved selection strategy, which optimizes specificity in addition to activity, we engineered an endonuclease to cleave in a gene associated with Anopheles sterility and another to cleave near a mutation that causes pyruvate kinase deficiency. In the course of this work we observed unanticipated context-dependence between bases which will need to be mechanistically understood for reprogramming of specificity to succeed more generally.
Collapse
Affiliation(s)
- Summer B Thyme
- Department of Biochemistry, University of Washington, UW Box 357350, 1705 NE Pacific St., Seattle, WA 98195, USA, Graduate Program in Biomolecular Structure and Design, University of Washington, UW Box 357350, 1705 NE Pacific St., Seattle, WA 98195, USA, Graduate Program in Molecular and Cellular Biology, University of Washington, UW Box 357275, 1959 NE Pacific St., Seattle, WA 98195, USA, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, London SW7 2AZ, UK, Department of Genetics, University of Cambridge, Downing Street, Cambridge CB1 3QA, UK, Institute for Systems Biology, 401 Terry Avenue N, Seattle, WA 98109, USA and Howard Hughes Medical Institute, University of Washington, UW Box 357350, 1705 NE Pacific St., Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pfeifer A, Martin B, Kämper J, Basse CW. The mitochondrial LSU rRNA group II intron of Ustilago maydis encodes an active homing endonuclease likely involved in intron mobility. PLoS One 2012; 7:e49551. [PMID: 23166709 PMCID: PMC3498182 DOI: 10.1371/journal.pone.0049551] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/10/2012] [Indexed: 12/27/2022] Open
Abstract
Background The a2 mating type locus gene lga2 is critical for uniparental mitochondrial DNA inheritance during sexual development of Ustilago maydis. Specifically, the absence of lga2 results in biparental inheritance, along with efficient transfer of intronic regions in the large subunit rRNA gene between parental molecules. However, the underlying role of the predicted LAGLIDADG homing endonuclease gene I-UmaI located within the group II intron LRII1 has remained unresolved. Methodology/Principal Findings We have investigated the enzymatic activity of I-UmaI in vitro based on expression of a tagged full-length and a naturally occurring mutant derivative, which harbors only the N-terminal LAGLIDADG domain. This confirmed Mg2+-dependent endonuclease activity and cleavage at the LRII1 insertion site to generate four base pair extensions with 3′ overhangs. Specifically, I-UmaI recognizes an asymmetric DNA sequence with a minimum length of 14 base pairs (5′-GACGGGAAGACCCT-3′) and tolerates subtle base pair substitutions within the homing site. Enzymatic analysis of the mutant variant indicated a correlation between the activity in vitro and intron homing. Bioinformatic analyses revealed that putatively functional or former functional I-UmaI homologs are confined to a few members within the Ustilaginales and Agaricales, including the phylogenetically distant species Lentinula edodes, and are linked to group II introns inserted into homologous positions in the LSU rDNA. Conclusions/Significance The present data provide strong evidence that intron homing efficiently operates under conditions of biparental inheritance in U. maydis. Conversely, uniparental inheritance may be critical to restrict the transmission of mobile introns. Bioinformatic analyses suggest that I-UmaI-associated introns have been acquired independently in distant taxa and are more widespread than anticipated from available genomic data.
Collapse
Affiliation(s)
- Anja Pfeifer
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Bettina Martin
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jörg Kämper
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Christoph W. Basse
- Department of Genetics, Institute for Applied Biosciences of the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
8
|
Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 2011; 3:1935-66. [DOI: 10.4155/fmc.11.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The process of DNA targeting or repair of mutated genes within the cell, induced by specifically positioned double-strand cleavage of DNA near the mutated sequence, can be applied for gene therapy of monogenic diseases. For this purpose, highly specific artificial metallonucleases are developed. They are expected to be important future tools of modern genetics. The present state of art and strategies of research are summarized, including protein engineering and artificial ‘chemical’ nucleases. From the results, we learn about the basic role of the metal ions and the various ligands, and about the DNA binding and cleavage mechanism. The results collected provide useful guidance for engineering highly controlled enzymes for use in gene therapy.
Collapse
|
9
|
Abstract
Nucleases cleave the phosphodiester bonds of nucleic acids and may be endo or exo, DNase or RNase, topoisomerases, recombinases, ribozymes, or RNA splicing enzymes. In this review, I survey nuclease activities with known structures and catalytic machinery and classify them by reaction mechanism and metal-ion dependence and by their biological function ranging from DNA replication, recombination, repair, RNA maturation, processing, interference, to defense, nutrient regeneration or cell death. Several general principles emerge from this analysis. There is little correlation between catalytic mechanism and biological function. A single catalytic mechanism can be adapted in a variety of reactions and biological pathways. Conversely, a single biological process can often be accomplished by multiple tertiary and quaternary folds and by more than one catalytic mechanism. Two-metal-ion-dependent nucleases comprise the largest number of different tertiary folds and mediate the most diverse set of biological functions. Metal-ion-dependent cleavage is exclusively associated with exonucleases producing mononucleotides and endonucleases that cleave double- or single-stranded substrates in helical and base-stacked conformations. All metal-ion-independent RNases generate 2',3'-cyclic phosphate products, and all metal-ion-independent DNases form phospho-protein intermediates. I also find several previously unnoted relationships between different nucleases and shared catalytic configurations.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bldg. 5, Rm B1-03, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Stoddard BL. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 2011; 19:7-15. [PMID: 21220111 PMCID: PMC3038549 DOI: 10.1016/j.str.2010.12.003] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 12/23/2022]
Abstract
Homing endonucleases are microbial DNA-cleaving enzymes that mobilize their own reading frames by generating double strand breaks at specific genomic invasion sites. These proteins display an economy of size, and yet recognize long DNA sequences (typically 20 to 30 base pairs). They exhibit a wide range of fidelity at individual nucleotide positions in a manner that is strongly influenced by host constraints on the coding sequence of the targeted gene. The activity of these proteins leads to site-specific recombination events that can result in the insertion, deletion, mutation, or correction of DNA sequences. Over the past fifteen years, the crystal structures of representatives from several homing endonuclease families have been solved, and methods have been described to create variants of these enzymes that cleave novel DNA targets. Engineered homing endonucleases proteins are now being used to generate targeted genomic modifications for a variety of biotech and medical applications.
Collapse
Affiliation(s)
- Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., A3-025, Seattle, WA 98109, USA.
| |
Collapse
|
11
|
Joshi R, Ho KK, Tenney K, Chen JH, Golden BL, Gimble FS. Evolution of I-SceI homing endonucleases with increased DNA recognition site specificity. J Mol Biol 2011; 405:185-200. [PMID: 21029741 PMCID: PMC3019082 DOI: 10.1016/j.jmb.2010.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 12/22/2022]
Abstract
Elucidating how homing endonucleases undergo changes in recognition site specificity will facilitate efforts to engineer proteins for gene therapy applications. I-SceI is a monomeric homing endonuclease that recognizes and cleaves within an 18-bp target. It tolerates limited degeneracy in its target sequence, including substitution of a C:G(+4) base pair for the wild-type A:T(+4) base pair. Libraries encoding randomized amino acids at I-SceI residue positions that contact or are proximal to A:T(+4) were used in conjunction with a bacterial one-hybrid system to select I-SceI derivatives that bind to recognition sites containing either the A:T(+4) or the C:G(+4) base pairs. As expected, isolates encoding wild-type residues at the randomized positions were selected using either target sequence. All I-SceI proteins isolated using the C:G(+4) recognition site included small side-chain substitutions at G100 and either contained (K86R/G100T, K86R/G100S and K86R/G100C) or lacked (G100A, G100T) a K86R substitution. Interestingly, the binding affinities of the selected variants for the wild-type A:T(+4) target are 4- to 11-fold lower than that of wild-type I-SceI, whereas those for the C:G(+4) target are similar. The increased specificity of the mutant proteins is also evident in binding experiments in vivo. These differences in binding affinities account for the observed ∼36-fold difference in target preference between the K86R/G100T and wild-type proteins in DNA cleavage assays. An X-ray crystal structure of the K86R/G100T mutant protein bound to a DNA duplex containing the C:G(+4) substitution suggests how sequence specificity of a homing enzyme can increase. This biochemical and structural analysis defines one pathway by which site specificity is augmented for a homing endonuclease.
Collapse
Affiliation(s)
- Rakesh Joshi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Kwok Ki Ho
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Kristen Tenney
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Jui-Hui Chen
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois, 61801
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Frederick S. Gimble
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907
| |
Collapse
|
12
|
Chan SH, Stoddard BL, Xu SY. Natural and engineered nicking endonucleases--from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 2010; 39:1-18. [PMID: 20805246 PMCID: PMC3017599 DOI: 10.1093/nar/gkq742] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Restriction endonucleases (REases) are highly specific DNA scissors that have facilitated the development of modern molecular biology. Intensive studies of double strand (ds) cleavage activity of Type IIP REases, which recognize 4–8 bp palindromic sequences, have revealed a variety of mechanisms of molecular recognition and catalysis. Less well-studied are REases which cleave only one of the strands of dsDNA, creating a nick instead of a ds break. Naturally occurring nicking endonucleases (NEases) range from frequent cutters such as Nt.CviPII (^CCD; ^ denotes the cleavage site) to rare-cutting homing endonucleases (HEases) such as I-HmuI. In addition to these bona fida NEases, individual subunits of some heterodimeric Type IIS REases have recently been shown to be natural NEases. The discovery and characterization of more REases that recognize asymmetric sequences, particularly Types IIS and IIA REases, has revealed recognition and cleavage mechanisms drastically different from the canonical Type IIP mechanisms, and has allowed researchers to engineer highly strand-specific NEases. Monomeric LAGLIDADG HEases use two separate catalytic sites for cleavage. Exploitation of this characteristic has also resulted in useful nicking HEases. This review aims at providing an overview of the cleavage mechanisms of Types IIS and IIA REases and LAGLIDADG HEases, the engineering of their nicking variants, and the applications of NEases and nicking HEases.
Collapse
|
13
|
Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G. Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 2010; 67:727-48. [PMID: 19915993 PMCID: PMC11115532 DOI: 10.1007/s00018-009-0188-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.
Collapse
Affiliation(s)
- Maria J. Marcaida
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Inés G. Muñoz
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Francisco J. Blanco
- Ikerbasque Professor Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
14
|
Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, Jantz D, Lyznik LA. Heritable targeted mutagenesis in maize using a designed endonuclease. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:176-87. [PMID: 19811621 DOI: 10.1111/j.1365-313x.2009.04041.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The liguleless locus (liguleless1) was chosen for demonstration of targeted mutagenesis in maize using an engineered endonuclease derived from the I-CreI homing endonuclease. A single-chain endonuclease, comprising a pair of I-CreI monomers fused into a single polypeptide, was designed to recognize a target sequence adjacent to the LIGULELESS1 (LG1) gene promoter. The endonuclease gene was delivered to maize cells by Agrobacterium-mediated transformation of immature embryos, and transgenic T(0) plants were screened for mutations introduced at the liguleless1 locus. We found mutations at the target locus in 3% of the T(0) plants, each of which was regenerated from independently selected callus. Plants that were monoallelic, biallelic and chimeric for mutations at the liguleless1 locus were found. Relatively short deletions (shortest 2 bp, longest 220 bp) were most frequently identified at the expected cut site, although short insertions were also detected at this site. We show that rational re-design of an endonuclease can produce a functional enzyme capable of introducing double-strand breaks at selected chromosomal loci. In combination with DNA repair mechanisms, the system produces targeted mutations with sufficient frequency that dedicated selection for such mutations is not required. Re-designed homing endonucleases are a useful molecular tool for introducing targeted mutations in a living organism, specifically a maize plant.
Collapse
Affiliation(s)
- Huirong Gao
- Pioneer Hi-Bred International, Research Center, 7300 NW 62nd Avenue, Johnston, IA 50131-1004, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Buchholz F. Engineering DNA processing enzymes for the postgenomic era. Curr Opin Biotechnol 2009; 20:383-9. [DOI: 10.1016/j.copbio.2009.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/07/2009] [Accepted: 07/25/2009] [Indexed: 12/15/2022]
|
16
|
McConnell Smith A, Takeuchi R, Pellenz S, Davis L, Maizels N, Monnat RJ, Stoddard BL. Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc Natl Acad Sci U S A 2009; 106:5099-104. [PMID: 19276110 PMCID: PMC2664052 DOI: 10.1073/pnas.0810588106] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Indexed: 11/18/2022] Open
Abstract
Homing endonucleases stimulate gene conversion by generating site-specific DNA double-strand breaks that are repaired by homologous recombination. These enzymes are potentially valuable tools for targeted gene correction and genome engineering. We have engineered a variant of the I-AniI homing endonuclease that nicks its cognate target site. This variant contains a mutation of a basic residue essential for proton transfer and solvent activation in one active site. The cleavage mechanism, DNA-binding affinity, and substrate specificity profile of the nickase are similar to the wild-type enzyme. I-AniI nickase stimulates targeted gene correction in human cells, in cis and in trans, at approximately 1/4 the efficiency of the wild-type enzyme. The development of sequence-specific nicking enzymes like the I-AniI nickase will facilitate comparative analyses of DNA repair and mutagenesis induced by single- or double-strand breaks.
Collapse
Affiliation(s)
- Audrey McConnell Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, North Seattle, WA 98109
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
| | - Ryo Takeuchi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, North Seattle, WA 98109
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
| | - Stefan Pellenz
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Departments of Pathology and Genome Sciences, and
| | - Luther Davis
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Immunology and Biochemisty, University of Washington Medical School, Seattle, WA 98195
| | - Nancy Maizels
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Immunology and Biochemisty, University of Washington Medical School, Seattle, WA 98195
| | - Raymond J. Monnat
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Departments of Pathology and Genome Sciences, and
| | - Barry L. Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, North Seattle, WA 98109
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
| |
Collapse
|
17
|
Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering. Proc Natl Acad Sci U S A 2008; 105:16888-93. [PMID: 18974222 DOI: 10.1073/pnas.0804795105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homing endonucleases, also known as meganucleases, are sequence-specific enzymes with large DNA recognition sites. These enzymes can be used to induce efficient homologous gene targeting in cells and plants, opening perspectives for genome engineering with applications in a wide series of fields, ranging from biotechnology to gene therapy. Here, we report the crystal structures at 2.0 and 2.1 A resolution of the I-DmoI meganuclease in complex with its substrate DNA before and after cleavage, providing snapshots of the catalytic process. Our study suggests that I-DmoI requires only 2 cations instead of 3 for DNA cleavage. The structure sheds light onto the basis of DNA binding, indicating key residues responsible for nonpalindromic target DNA recognition. In silico and in vivo analysis of the I-DmoI DNA cleavage specificity suggests that despite the relatively few protein-base contacts, I-DmoI is highly specific when compared with other meganucleases. Our data open the door toward the generation of custom endonucleases for targeted genome engineering using the monomeric I-DmoI scaffold.
Collapse
|
18
|
Niu Y, Tenney K, Li H, Gimble FS. Engineering variants of the I-SceI homing endonuclease with strand-specific and site-specific DNA-nicking activity. J Mol Biol 2008; 382:188-202. [PMID: 18644379 PMCID: PMC2700736 DOI: 10.1016/j.jmb.2008.07.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
The number of strand-specific nicking endonucleases that are currently available for laboratory procedures and applications in vivo is limited, and none is sufficiently specific to nick single target sites within complex genomes. The extreme target specificity of homing endonucleases makes them attractive candidates for engineering high-specificity nicking endonucleases. I-SceI is a monomeric homing enzyme that recognizes an 18 bp asymmetric target sequence, and cleaves both DNA strands to leave 3'-overhangs of 4 bp. In single turnover experiments using plasmid substrates, I-SceI generates transient open circle intermediates during the conversion of supercoiled to linear DNA, indicating that the enzyme cleaves the two DNA strands sequentially. A novel hairpin substrate was used to demonstrate that although wild-type I-SceI cleaves either the top or bottom DNA strand first to generate two nicked DNA intermediates, the enzyme has a preference for cleaving the bottom strand. The kinetics data are consistent with a parallel sequential reaction mechanism. Substitution of two pseudo-symmetric residues, Lys122 and Lys223, markedly reduces top and bottom-strand cleavage, respectively, to generate enzymes with significant strand- and sequence-specific nicking activity. The two active sites are partially interdependent, since alterations to one site affect the second. The kinetics analysis is consistent with X-ray crystal structures of I-SceI/DNA complexes that reveal a role for the lysines in establishing important solvent networks that include nucleophilic water molecules thought to attack the scissile phosphodiester bonds.
Collapse
Affiliation(s)
- Yan Niu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|