1
|
Sharma AK, Giri AK. Engineering CRISPR/Cas9 therapeutics for cancer precision medicine. Front Genet 2024; 15:1309175. [PMID: 38725484 PMCID: PMC11079134 DOI: 10.3389/fgene.2024.1309175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) technology has revolutionized field of cancer treatment. This review explores usage of CRISPR/Cas9 for editing and investigating genes involved in human carcinogenesis. It provides insights into the development of CRISPR as a genetic tool. Also, it explores recent developments and tools available in designing CRISPR/Cas9 systems for targeting oncogenic genes for cancer treatment. Further, we delve into an overview of cancer biology, highlighting key genetic alterations and signaling pathways whose deletion prevents malignancies. This fundamental knowledge enables a deeper understanding of how CRISPR/Cas9 can be tailored to address specific genetic aberrations and offer personalized therapeutic approaches. In this review, we showcase studies and preclinical trials that show the utility of CRISPR/Cas9 in disrupting oncogenic targets, modulating tumor microenvironment and increasing the efficiency of available anti treatments. It also provides insight into the use of CRISPR high throughput screens for cancer biomarker identifications and CRISPR based screening for drug discovery. In conclusion, this review offers an overview of exciting developments in engineering CRISPR/Cas9 therapeutics for cancer treatment and highlights the transformative potential of CRISPR for innovation and effective cancer treatments.
Collapse
Affiliation(s)
- Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Anil K. Giri
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| |
Collapse
|
2
|
Preclinical Therapeutic Assessment of a New Chemotherapeutics [Dichloro(4,4’-Bis(2,2,3,3-Tetrafluoropropoxy) Methyl)-2,2’-Bipryridine) Platinum] in an Orthotopic Patient-Derived Xenograft Model of Triple-Negative Breast Cancers. Pharmaceutics 2022; 14:pharmaceutics14040839. [PMID: 35456673 PMCID: PMC9031226 DOI: 10.3390/pharmaceutics14040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cisplatin is one of the most common therapeutics used in treatments of several types of cancers. To enhance cisplatin lipophilicity and reduce resistance and side effects, a polyfluorinated bipyridine-modified cisplatin analogue, dichloro[4,4’-bis(2,2,3,3-tetrafluoropropoxy)methyl)-2,2’-bipryridine] platinum (TFBPC), was synthesized and therapeutic assessments were performed. TFBPC displayed superior effects in inhibiting the proliferation of several cisplatin-resistant human cancer cell lines, including MDA-MB-231 breast cancers, COLO205 colon cancers and SK-OV-3 ovarian cancers. TFBPC bound to DNA and formed DNA crosslinks that resulted in DNA degradation, triggering the cell death program through the PARP/Bax/Bcl-2 apoptosis and LC3-related autophagy pathway. Moreover, TFBPC significantly inhibited tumor growth in both animal models which include a cell line-derived xenograft model (CDX) of cisplatin-resistant MDA-MB-231, and a patient-derived xenograft (PDX) model of triple-negative breast cancers (TNBCs). Furthermore, the biopsy specimen from TFBPC-treated xenografts revealed decreased expressions of P53, Ki-67 and PD-L1 coupled with higher expression of cleaved caspase 3, suggesting TFBPC treatment was effective and resulted in good prognostic indications. No significant pathological changes were observed in hematological and biochemistry tests in blood and histological examinations from the specimen of major organs. Therefore, TFBPC is a potential candidate for treatments of patients suffering from TNBCs as well as other cisplatin-resistant cancers.
Collapse
|
3
|
|
4
|
Kawamoto Y, Bando T, Sugiyama H. Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications. Bioorg Med Chem 2018; 26:1393-1411. [PMID: 29439914 DOI: 10.1016/j.bmc.2018.01.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/25/2022]
Abstract
Pyrrole-imidazole polyamides (Py-Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py-Im polyamides.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Yu Z, Cowan JA. Catalytic Metallodrugs: Substrate-Selective Metal Catalysts as Therapeutics. Chemistry 2017; 23:14113-14127. [PMID: 28688119 DOI: 10.1002/chem.201701714] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Zhen Yu
- Department of Chemistry and Biochemistry; The Ohio State University; 100 West 18th Avenue Columbus OH 43210 USA
| | - James A. Cowan
- Department of Chemistry and Biochemistry; The Ohio State University; 100 West 18th Avenue Columbus OH 43210 USA
| |
Collapse
|
6
|
Wirth-Hamdoune D, Ullrich S, Scheffer U, Radanović T, Dürner G, Göbel MW. A Bis(guanidinium)alcohol Attached to a Hairpin Polyamide: Synthesis, DNA Binding, and Plasmid Cleavage. Chembiochem 2016; 17:506-14. [DOI: 10.1002/cbic.201500566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Daniela Wirth-Hamdoune
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Stefan Ullrich
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Ute Scheffer
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Toni Radanović
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Gerd Dürner
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Michael W. Göbel
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
7
|
Wende C, Lüdtke C, Kulak N. Copper Complexes of N-Donor Ligands as Artificial Nucleases. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201400032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Silanskas A, Zaremba M, Sasnauskas G, Siksnys V. Catalytic activity control of restriction endonuclease--triplex forming oligonucleotide conjugates. Bioconjug Chem 2012; 23:203-11. [PMID: 22236287 DOI: 10.1021/bc200480m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeting of individual genes in complex genomes requires endonucleases of extremely high specificity. To direct cleavage at the unique site(s) in the genome, both naturally occurring and artificial enzymes have been developed. These include homing endonucleases, zinc-finger nucleases, transcription activator-like effector nucleases, and restriction or chemical nucleases coupled to a triple-helix forming oligonucleotide (TFO). The desired cleavage has been demonstrated both in vivo and in vitro for several model systems. However, to limit cleavage strictly to unique sites and avoid undesired reactions, endonucleases with controlled activity are highly desirable. In this study we present a proof-of-concept demonstration of two strategies to generate restriction endonuclease-TFO conjugates with controllable activity. First, we combined the restriction endonuclease caging and TFO coupling procedures to produce a caged MunI-TFO conjugate, which can be activated by UV-light upon formation of a triple helix. Second, we coupled TFO to a subunit interface mutant of restriction endonuclease Bse634I which shows no activity due to impaired dimerization but is assembled into an active dimer when two Bse634I monomers are brought into close proximity by triple helix formation at the targeted site. Our results push the restriction endonuclease-TFO conjugate technology one step closer to potential in vivo applications.
Collapse
Affiliation(s)
- Arunas Silanskas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|
9
|
Aiba Y, Sumaoka J, Komiyama M. Artificial DNA cutters for DNA manipulation and genome engineering. Chem Soc Rev 2011; 40:5657-68. [PMID: 21566825 DOI: 10.1039/c1cs15039a] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This tutorial review provides recent developments in artificial cutters for site-selective scission of DNA with the focus on chemistry-based DNA cutters. They are useful tools for molecular biology and biotechnology, since their site-selectivity of scission is much higher than that of naturally occurring restriction enzymes and also their scission site is freely chosen. In order to prepare these cutters, a DNA-cutting molecule is combined with a sequence-recognizing molecule in a covalent or non-covalent way. At targeted sites in single-stranded and double-stranded DNAs, the scission occurs via either oxidative cleavage of nucleotides or hydrolysis of phosphodiester linkages. Among many successful examples, an artificial restriction DNA cutter, prepared from Ce(iv)/EDTA and pseudo-complementary peptide nucleic acid, hydrolyzed double-stranded DNA at the target site. The scission site and scission specificity are determined simply in terms of the Watson-Crick rule so that even the whole genome of human beings was selectively cut at one predetermined site. Consistently, homologous recombination in human cells was successfully promoted by this tool. For the purpose of comparison, protein-based DNA cutters (e.g., zinc finger nucleases) are also briefly described. The potential applications of these cutters and their future aspects are discussed.
Collapse
Affiliation(s)
- Yuichiro Aiba
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | | | | |
Collapse
|
10
|
Lo ATS, Salam NK, Hibbs DE, Rutledge PJ, Todd MH. Polyamide-scorpion cyclam lexitropsins selectively bind AT-rich DNA independently of the nature of the coordinated metal. PLoS One 2011; 6:e17446. [PMID: 21573061 PMCID: PMC3090394 DOI: 10.1371/journal.pone.0017446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 02/03/2011] [Indexed: 01/17/2023] Open
Abstract
Cyclam was attached to 1-, 2- and 3-pyrrole lexitropsins for the first time through a synthetically facile copper-catalyzed "click" reaction. The corresponding copper and zinc complexes were synthesized and characterized. The ligand and its complexes bound AT-rich DNA selectively over GC-rich DNA, and the thermodynamic profile of the binding was evaluated by isothermal titration calorimetry. The metal, encapsulated in a scorpion azamacrocyclic complex, did not affect the binding, which was dominated by the organic tail.
Collapse
Affiliation(s)
- Anthony T. S. Lo
- School of Chemistry, University of Sydney, Sydney, New South Wales,
Australia
| | - Noeris K. Salam
- Schrödinger, Inc., New York, New York, United States of
America
| | - David E. Hibbs
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales,
Australia
| | - Peter J. Rutledge
- School of Chemistry, University of Sydney, Sydney, New South Wales,
Australia
| | - Matthew H. Todd
- School of Chemistry, University of Sydney, Sydney, New South Wales,
Australia
| |
Collapse
|
11
|
Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 2011; 11:11-27. [PMID: 21182466 PMCID: PMC3267165 DOI: 10.2174/156652311794520111] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 12/17/2022]
Abstract
The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus-based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% of engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential.
Collapse
Affiliation(s)
- George Silva
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Laurent Poirot
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Roman Galetto
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Julianne Smith
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Centre (CNIO), Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | | | - Frédéric Pâques
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| |
Collapse
|
12
|
Wetzler M, Wemmer DE. Facile Dimer Synthesis for DNA-Binding Polyamide Ligands. Org Lett 2010; 12:3488-90. [DOI: 10.1021/ol1013262] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Modi Wetzler
- Chemimstry Department, University of California, Berkeley, California 94720
| | - David E. Wemmer
- Chemimstry Department, University of California, Berkeley, California 94720
| |
Collapse
|
13
|
Galetto R, Duchateau P, Pâques F. Targeted approaches for gene therapy and the emergence of engineered meganucleases. Expert Opin Biol Ther 2009; 9:1289-303. [PMID: 19689185 DOI: 10.1517/14712590903213669] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND In spite of significant advances in gene transfer strategies in the field of gene therapy, there is a strong emphasis on the development of alternative methods, providing better control of transgene expression and insertion patterns. OBJECTIVE Several new approaches consist of targeting a desired transgene or gene modification in a well defined locus, and we collectively refer to them as 'targeted approaches'. The use of redesigned meganucleases is one of these emerging technologies. Here we try to define the potential of this method, in the larger scope of targeted strategies. METHODS We survey the different types of targeted strategies, presenting the achievements and the potential applications, with a special emphasis on the use of redesigned endonucleases. CONCLUSION redesigned endonucleases represent one of the most promising tools for targeted approaches, and the opening of a clinical trial for AIDS patients has recently shown the maturity of these strategies. However, there is still a 'quest' for the best reagents, that is the endonucleases providing the best efficacy:toxicity ratio. New advances in protein design have allowed the engineering of new scaffolds, such as meganucleases, and the landscape of existing methods is likely to change over the next few years.
Collapse
Affiliation(s)
- Roman Galetto
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 340 Romainville Cedex, France
| | | | | |
Collapse
|
14
|
Simon P, Cannata F, Concordet JP, Giovannangeli C. Targeting DNA with triplex-forming oligonucleotides to modify gene sequence. Biochimie 2008; 90:1109-16. [PMID: 18460344 DOI: 10.1016/j.biochi.2008.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 04/14/2008] [Indexed: 12/19/2022]
Abstract
Molecules that interact with DNA in a sequence-specific manner are attractive tools for manipulating gene sequence and expression. For example, triplex-forming oligonucleotides (TFOs), which bind to oligopyrimidine.oligopurine sequences via Hoogsteen hydrogen bonds, have been used to inhibit gene expression at the DNA level as well as to induce targeted mutagenesis in model systems. Recent advances in using oligonucleotides and analogs to target DNA in a sequence-specific manner will be discussed. In particular, chemical modification of TFOs has been used to improve binding to chromosomal target sequences in living cells. Various oligonucleotide analogs have also been found to expand the range of sequences amenable to manipulation, including so-called "Zorro" locked nucleic acids (LNAs) and pseudo-complementary peptide nucleic acids (pcPNAs). Finally, we will examine the potential of TFOs for directing targeted gene sequence modification and propose that synthetic nucleases, based on conjugation of sequence-specific DNA ligands to DNA damaging molecules, are a promising alternative to protein-based endonucleases for targeted gene sequence modification.
Collapse
Affiliation(s)
- Philippe Simon
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, USM 503, 43 rue Cuvier, 75005 Paris, France
| | | | | | | |
Collapse
|