1
|
Ryan BJ, Yang H, Bacurio JHT, Smith MR, Basu AK, Greenberg MM, Freudenthal BD. Structural Dynamics of a Common Mutagenic Oxidative DNA Lesion in Duplex DNA and during DNA Replication. J Am Chem Soc 2022; 144:8054-8065. [PMID: 35499923 PMCID: PMC9097547 DOI: 10.1021/jacs.2c00193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
N6-(2-Deoxy-α,β-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido pyrimidine (Fapy•dG) is a prevalent form of genomic DNA damage. Fapy•dG is formed in greater amounts under anoxic conditions than the well-studied, chemically related 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo). Fapy•dG is more mutagenic in mammalian cells than 8-oxodGuo. A distinctive property of Fapy•dG is facile epimerization, but prior works with Fapy•dG analogues have precluded determining its effect on chemistry. We present crystallographic characterization of natural Fapy•dG in duplex DNA and as the template base for DNA polymerase β (Pol β). Fapy•dG adopts the β-anomer when base paired with cytosine but exists as a mixture of α- and β-anomers when promutagenically base paired with adenine. Rotation about the bond between the glycosidic nitrogen atom and the pyrimidine ring is also affected by the opposing nucleotide. Sodium cyanoborohydride soaking experiments trap the ring-opened Fapy•dG, demonstrating that ring opening and epimerization occur in the crystalline state. Ring opening and epimerization are facilitated by propitious water molecules that are observed in the structures. Determination of Fapy•dG mutagenicity in wild type and Pol β knockdown HEK 293T cells indicates that Pol β contributes to G → T transversions but also suppresses G → A transitions. Complementary kinetic studies have determined that Fapy•dG promotes mutagenesis by decreasing the catalytic efficiency of dCMP insertion opposite Fapy•dG, thus reducing polymerase fidelity. Kinetic studies have determined that dCMP incorporation opposite the β-anomer is ∼90 times faster than the α-anomer. This research identifies the importance of anomer dynamics, a feature unique to formamidopyrimidines, when considering the incorporation of nucleotides opposite Fapy•dG and potentially the repair of this structurally unusual lesion.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Henric T Bacurio
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
2
|
Pottenger LH, Andrews LS, Bachman AN, Boogaard PJ, Cadet J, Embry MR, Farmer PB, Himmelstein MW, Jarabek AM, Martin EA, Mauthe RJ, Persaud R, Preston RJ, Schoeny R, Skare J, Swenberg JA, Williams GM, Zeiger E, Zhang F, Kim JH. An organizational approach for the assessment of DNA adduct data in risk assessment: case studies for aflatoxin B1, tamoxifen and vinyl chloride. Crit Rev Toxicol 2014; 44:348-91. [DOI: 10.3109/10408444.2013.873768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
3
|
Williams-Brown MY, Salih SM, Xu X, Veenstra TD, Saeed M, Theiler SK, Diaz-Arrastia CR, Salama SA. The effect of tamoxifen and raloxifene on estrogen metabolism and endometrial cancer risk. J Steroid Biochem Mol Biol 2011; 126:78-86. [PMID: 21600284 PMCID: PMC3421458 DOI: 10.1016/j.jsbmb.2011.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/22/2011] [Accepted: 05/03/2011] [Indexed: 11/18/2022]
Abstract
Selective estrogen receptor modulators (SERMs) demonstrate differential endometrial cancer (EC) risk. While tamoxifen (TAM) use increases the risk of endometrial hyperplasia and malignancy, raloxifene (RAL) has neutral effects on the uterus. How TAM increases the risk of EC and why TAM and RAL differentially modulate the risk for EC, however, remain elusive. Here, we tested the hypothesis that TAM increases the risk for EC, at least in part, by enhancing the local estrogen biosynthesis and directing estrogen metabolism towards the formation of genotoxic and hormonally active estrogen metabolites. In addition, the differential effects of TAM and RAL in EC risk are attributed to their differential effect on estrogen metabolism/metabolites. The endometrial cancer cell line (Ishikawa cells) and the nonmalignant immortalized human endometrial glandular cell line (EM1) were used for the study. The profile of estrogen/estrogen metabolites (EM), depurinating estrogen-DNA adducts, and the expression of estrogen-metabolizing enzymes in cells treated with 17β-estradiol (E2) alone or in combination with TAM or RAL were investigated using high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS(2)), ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), and Western blot analysis, respectively. TAM significantly increased the total EM and enhanced the formation of hormonally active and carcinogenic estrogen metabolites, 4-hydroxestrone (4-OHE1) and 16α-hydroxyestrone, with concomitant reduction in the formation of antiestrogenic and anticarcinogenic 2-hydroxyestradiol and 2-methoxyestradiol. Furthermore, TAM increased the formation of depurinating estrogen-DNA adducts 4-OHE1 [2]-1-N7Guanine and 4-OHE1 [2]-1-N3 Adenine. TAM-induced alteration in EM and depurinating DNA adduct formation is associated with altered expression of estrogen metabolizing enzymes CYP1A1, CYP1B1, COMT, NQO1, and SF-1 as revealed by Western blot analysis. In contrast to TAM, RAL has minimal effect on EM, estrogen-DNA adduct formation, or estrogen-metabolizing enzymes expression. These data show that TAM perturbs the balance of estrogen-metabolizing enzymes and alters the disposition of estrogen metabolites, which can explain, at least in part, the mechanism for TAM-induced EC. These results also implicate the differential effect of TAM and RAL on estrogen metabolism/metabolites as a potential mechanism for their disparate effects on the endometrium.
Collapse
Affiliation(s)
- Marian Y Williams-Brown
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, United States.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Paini A, Scholz G, Marin-Kuan M, Schilter B, O'Brien J, van Bladeren PJ, Rietjens IMCM. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays. Mutagenesis 2011; 26:605-18. [PMID: 21642616 DOI: 10.1093/mutage/ger022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD(10) values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD(10) were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicity.
Collapse
Affiliation(s)
- Alicia Paini
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
5
|
Guo XX, Song ZJ, Sun JJ, Song JF. Interaction of calf thymus dsDNA with anti-tumor drug tamoxifen studied by zero current potentiometry. Biosens Bioelectron 2011; 26:4001-5. [DOI: 10.1016/j.bios.2011.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 02/01/2023]
|
6
|
Zhou Q, Qu Y, Mangrum JB, Wang X. DNA Alkylation with N-Methylquinolinium Quinone Methide to N2-dG Adducts Resulting in Extensive Stops in Primer Extension with DNA Polymerases and Subsequent Suppression of GFP Expression in A549 Cells. Chem Res Toxicol 2011; 24:402-11. [PMID: 21306116 DOI: 10.1021/tx100351c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Qibing Zhou
- Institute of Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Department of medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Yun Qu
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - John B. Mangrum
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Xing Wang
- Institute of Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
7
|
Abstract
The anti-oestrogen tamoxifen, which is widely used in the treatment of breast cancer and is also approved for the prevention of this disease, causes an increased incidence of endometrial cancer in women. The ability of tamoxifen to induce endometrial tumours and the underlying carcinogenic mechanisms have been a subject of intense interest over the last approximately 20 years. They are central to the assessment of risks versus benefits for the drug, especially in a chemopreventive context. This review outlines the clinical justification for using tamoxifen as a chemopreventive agent and describes the genotoxic mechanisms considered responsible for tamoxifen-induced tumours in rat liver and how these might relate to women. In rat hepatic tissue, tamoxifen is metabolically activated via alpha-hydroxylation and sulphate conjugation to give a reactive species that binds to DNA predominantly at the N(2)-position of guanine, producing pro-mutagenic lesions. Whether tamoxifen-DNA adducts contribute similarly to the development of cancers in women depends on whether they can be formed in human tissues and the type of specific molecular and cellular responses they induce, if present. This review discusses the current data relating to these issues and highlights areas where further research is needed.
Collapse
Affiliation(s)
- Karen Brown
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK.
| |
Collapse
|
8
|
Tompkins EM, McLuckie KIE, Jones DJL, Farmer PB, Brown K. Mutagenicity of DNA adducts derived from ethylene oxide exposure in the pSP189 shuttle vector replicated in human Ad293 cells. Mutat Res 2009; 678:129-37. [PMID: 19477295 DOI: 10.1016/j.mrgentox.2009.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 12/26/2022]
Abstract
Ethylene oxide (EO) is a widely used chemical intermediate also formed endogenously from ethylene metabolism. Despite conflicting epidemiological evidence, EO is classified by the IARC as a human carcinogen. The mutagenicity and carcinogenicity of EO is attributed to direct reaction with DNA and formation of multiple 2-hydroxyethyl (HE) DNA adducts. However, the actual lesions responsible for the reported mutagenicity of EO have not been established. This study used the supF mutation assay to investigate the biological relevance of low levels of EO-induced DNA adducts in human Ad293 cells, with respect to the type and level of each HE adduct present. Initial experiments were conducted using pSP189 plasmid containing up to 290 N7-HEGuanine (N7-HEG) adducts/10(6) nucleotides, which far exceeds that typically detected in human DNA. No other HE-lesions were detectable using our validated LC-MS/MS assay. Replication in cells failed to produce a statistically significant increase in relative mutation frequency, above background rates in the solvent control. Furthermore, the mutation spectrum compiled for EO-treated plasmid (10-2000muM) did not differ significantly from the spontaneous distribution, suggesting EO is not strongly mutagenic in this system. Under refined reaction conditions using higher EO concentrations capable of inducing detectable levels of N1-HEdA, O(6)-HEdG and N3-HEdU along with N7-HEG, there was a significant dose-related increase in relative mutation frequency above background (3.76- and 5.30-fold at 10 and 30mM, respectively). EO treatment appeared associated with an elevated frequency of GC-->CG mutations and the occurrence of substitutions at AT base pairs. Additionally, there was a distinct GC-->TA mutational hotspot in the 10mM EO spectrum. Overall, the results suggest a certain level of promutagenic adducts must be attained before mutations become detectable above background, indicating that N7-HEG is not a promutagenic lesion, and support a role for the minor products of DNA hydroxyethylation in the generation of base substitutions by EO.
Collapse
Affiliation(s)
- Elaine M Tompkins
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, LE2 7LX, UK
| | | | | | | | | |
Collapse
|