1
|
Ling X, Yao Y, Ding L, Ma J. The mechanism of UP1 binding and unfolding of human telomeric DNA G-quadruplex. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194985. [PMID: 37717939 DOI: 10.1016/j.bbagrm.2023.194985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
The human telomere contains multiple copies of the DNA sequence d(TTAGGG) which can fold into higher order intramolecular G-quadruplexes and regulate the maintenance of telomere length and chromosomal integrity. The nucleic acid binding protein heteronuclear ribonucleoprotein A1 (hnRNP A1) and its N-terminus proteolytic product UP1 have been shown to efficiently bind and unfold telomeric DNA G-quadruplex. However, the understanding of the molecular mechanism of the UP1 binding and unfolding telomeric G-quadruplexes is still limited. Here, we performed biochemical and biophysical characterizations of UP1 binding and unfolding of human telomeric DNA G-quadruplex d[AGGG(TTAGGG)3], and in combination of systematic site-direct mutagenesis of two tandem RNA recognition motifs (RRMs) in UP1, revealed that RRM1 is responsible for initial binding and unfolding, whereas RRM2 assists RRM1 to complete the unfolding of G-quadruplex. Isothermal titration calorimetry (ITC) and circular dichroism (CD) studies of the interactions between UP1 and DNA G-quadruplex variants indicate that the "TAG" binding motif in Loop2 of telomeric G-quadruplex is critical for UP1 recognition and G-quadruplex unfolding initiation. Together we depict a model for molecular mechanism of hnRNP A1 (UP1) binding and unfolding of the human telomeric DNA G-quadruplex.
Collapse
Affiliation(s)
- Xiaobin Ling
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuqi Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lei Ding
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
2
|
Caterino M, Paeschke K. Action and function of helicases on RNA G-quadruplexes. Methods 2021; 204:110-125. [PMID: 34509630 PMCID: PMC9236196 DOI: 10.1016/j.ymeth.2021.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Methodological progresses and piling evidence prove the rG4 biology in vivo. rG4s step in virtually every aspect of RNA biology. Helicases unwinding of rG4s is a fine regulatory layer to the downstream processes and general cell homeostasis. The current knowledge is however limited to a few cell lines. The regulation of helicases themselves is delineating as a important question. Non-helicase rG4-processing proteins likely play a role.
The nucleic acid structure called G-quadruplex (G4) is currently discussed to function in nucleic acid-based mechanisms that influence several cellular processes. They can modulate the cellular machinery either positively or negatively, both at the DNA and RNA level. The majority of what we know about G4 biology comes from DNA G4 (dG4) research. RNA G4s (rG4), on the other hand, are gaining interest as researchers become more aware of their role in several aspects of cellular homeostasis. In either case, the correct regulation of G4 structures within cells is essential and demands specialized proteins able to resolve them. Small changes in the formation and unfolding of G4 structures can have severe consequences for the cells that could even stimulate genome instability, apoptosis or proliferation. Helicases are the most relevant negative G4 regulators, which prevent and unfold G4 formation within cells during different pathways. Yet, and despite their importance only a handful of rG4 unwinding helicases have been identified and characterized thus far. This review addresses the current knowledge on rG4s-processing helicases with a focus on methodological approaches. An example of a non-helicase rG4s-unwinding protein is also briefly described.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
3
|
Ghosh M, Singh M. Structure specific recognition of telomeric repeats containing RNA by the RGG-box of hnRNPA1. Nucleic Acids Res 2020; 48:4492-4506. [PMID: 32128583 PMCID: PMC7192615 DOI: 10.1093/nar/gkaa134] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
The telomere repeats containing RNA (TERRA) is transcribed from the C-rich strand of telomere DNA and comprises of UUAGGG nucleotides repeats in humans. The TERRA RNA repeats can exist in single stranded, RNA-DNA hybrid and G-quadruplex forms in the cell. Interaction of TERRA RNA with hnRNPA1 has been proposed to play critical roles in maintenance of telomere DNA. hnRNPA1 contains an N-terminal UP1 domain followed by an RGG-box containing C-terminal region. RGG-motifs are emerging as key protein motifs that recognize the higher order nucleic acid structures as well as are known to promote liquid-liquid phase separation of proteins. In this study, we have shown that the RGG-box of hnRNPA1 specifically recognizes the TERRA RNA G-quadruplexes that have loops in their topology, whereas it does not interact with the single-stranded RNA. Our results show that the N-terminal UP1 domain in the presence of the RGG-box destabilizes the loop containing TERRA RNA G-quadruplex efficiently compared to the RNA G-quadruplex that lacks loops, suggesting that unfolding of G-quadruplex structures by UP1 is structure dependent. Furthermore, we have compared the telomere DNA and TERRA RNA G-quadruplex binding by the RGG-box of hnRNPA1 and discussed its implications in telomere DNA maintenance.
Collapse
Affiliation(s)
- Meenakshi Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012, India
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012, India.,NMR Research Centre, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
4
|
Ghosh M, Singh M. RGG-box in hnRNPA1 specifically recognizes the telomere G-quadruplex DNA and enhances the G-quadruplex unfolding ability of UP1 domain. Nucleic Acids Res 2019; 46:10246-10261. [PMID: 30247678 PMCID: PMC6212785 DOI: 10.1093/nar/gky854] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
hnRNPA1 is a member of heteronuclear ribonucleoproteins that has been shown to promote telomere elongation apart from its roles in RNA transport and alternative splicing. It is a modular protein with an N-terminal domain called UP1 that consists of two RNA Recognition Motifs (RRM1 and RRM2 domains) and a C-terminal region that harbors functional motifs such as RGG-box, a prion-like domain, and a nuclear shuttling sequence. UP1 has been reported to bind and destabilize telomeric DNA G-quadruplexes and thereby participate in DNA telomere remodeling. An RGG-box motif that consists of four RGG repeats (containing arginine and glycine residues) is located C-terminal to the UP1 domain and constitutes an additional nucleic acid and protein-binding domain. However, the precise role of the RGG-box of hnRNPA1 in telomere DNA recognition and G-quadruplex DNA unfolding remains unexplored. Here, we show that the isolated RGG-box interacts specifically with the structured telomere G-quadruplex DNA but not with the single-stranded DNA. Further the interaction of the RGG-box with the G-quadruplex DNA is dependent on the loop nucleotides of the G-quadruplex. Finally, we show that the RGG-box enhances the G-quadruplex unfolding activity of the adjacent UP1 domain. We propose that UP1 and RGG-box act synergistically to achieve complete telomere G-quadruplex DNA unfolding.
Collapse
Affiliation(s)
- Meenakshi Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India.,NMR Research Centre, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
5
|
Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK. Telomerase and Telomeres in Endometrial Cancer. Front Oncol 2019; 9:344. [PMID: 31157162 PMCID: PMC6533802 DOI: 10.3389/fonc.2019.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Collapse
Affiliation(s)
- Rafah A A Alnafakh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meera Adishesh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Button
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Saretzki
- The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Shishkin SS, Kovalev LI, Pashintseva NV, Kovaleva MA, Lisitskaya K. Heterogeneous Nuclear Ribonucleoproteins Involved in the Functioning of Telomeres in Malignant Cells. Int J Mol Sci 2019; 20:E745. [PMID: 30744200 PMCID: PMC6387250 DOI: 10.3390/ijms20030745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are structurally and functionally distinct proteins containing specific domains and motifs that enable the proteins to bind certain nucleotide sequences, particularly those found in human telomeres. In human malignant cells (HMCs), hnRNP-A1-the most studied hnRNP-is an abundant multifunctional protein that interacts with telomeric DNA and affects telomerase function. In addition, it is believed that other hnRNPs in HMCs may also be involved in the maintenance of telomere length. Accordingly, these proteins are considered possible participants in the processes associated with HMC immortalization. In our review, we discuss the results of studies on different hnRNPs that may be crucial to solving molecular oncological problems and relevant to further investigations of these proteins in HMCs.
Collapse
Affiliation(s)
- Sergey S Shishkin
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Leonid I Kovalev
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Natalya V Pashintseva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Marina A Kovaleva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Ksenia Lisitskaya
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| |
Collapse
|
7
|
Calvo E, Wasserman L. M. PfGBP: una proteína de unión al telómero de Plasmodium falciparum. REVISTA COLOMBIANA DE QUÍMICA 2016. [DOI: 10.15446/rev.colomb.quim.v44n1.53977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los telómeros son estructuras complejas de ADN y proteína localizadas en el extremo de los cromosomas eucariotes. Su principal función es proteger el extremo cromosomal de ser reconocido y procesado como ADNs fracturado, evitando así eventos de recombinación y fusión que conducen a inestabilidad cromosomal. El ADN telomérico consta de secuencias cortas, repetidas una tras otra, ricas en guanina; la cadena rica en guanina se extiende formando una región de cadena sencilla denominada extremo 3´ protuberante. Las proteínas por su parte, se pueden clasificar en: dsBPs, o proteínas de unión a la cadena doble, GBPs aquellas que reconocen específicamente el extremo protuberante y, proteínas que las interconectan mediante interacciones proteína-proteína. El gen PF3D7_1006800 de <em>Plasmodium falciparum</em> codifica para una proteína putativa similar a una GBP de <em>Criptosporidium parvum</em>, con el fin de establecer si esta proteína de <em>P. falciparum</em> presenta la capacidad de unión al ADN telomérico del parásito, se produjo una proteína recombinante a partir de la región codificante del gen, se purificó y se utilizó en ensayos de unión a ADN, y en la generación de anticuerpos policlonales específicos contra PfGBP. Nuestros resultados indican que la proteína de <em>P. falciparum</em> es una proteína nuclear con capacidad de unión al ADN telomérico <em>in vitro, </em>por lo<em> </em>que podría ser<em> </em>parte del complejo proteico encargado de proteger y/o mantener el telómero <em>in vivo</em>.
Collapse
|
8
|
Guan JZ, Guan WP, Maeda T, Makino N. Changes in telomere length distribution in low-dose X-ray-irradiated human umbilical vein endothelial cells. Mol Cell Biochem 2014; 396:129-35. [PMID: 25060906 DOI: 10.1007/s11010-014-2149-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/11/2014] [Indexed: 01/04/2023]
Abstract
Ionizing radiation (IR) is known to be a cause of telomere dysfunction in tumor cells; however, very few studies have investigated X-ray-related changes in telomere length and the telomerase activity in normal human cells, such as umbilical vein endothelial cells (HUVECs). The loss of a few hundred base pairs from a shortened telomere has been shown to be important with respect to cellular senescence, although it may not be detected according to traditional mean telomere length [assessed as the terminal restriction fragment (TRF)] analyses. In the present study, a continuous time window from irradiation was selected to examine changes in the telomere length, including the mean TRF length, percentage of the telomere length, telomerase activity, apoptotic rate, and survival rate in HUVECs from the first day to the fourth day after the administration of a 0.5-Gy dose of irradiation. The mean TRF length in the irradiated HUVECs showed shorter telomere length in first 3 days, but they were not statistically significant. On the other hand, according to the percentage analysis of the telomere length, a decreasing tendency was noted in the longer telomere lengths (9.4-4.4 kb), with a significant increase in the shortest telomeres (4.4-2.3 kb) among the irradiated cells versus the controls from the first day to the third after irradiation; no significant differences were noted on the fourth day. These results suggest that the shortest telomeres are sensitive to the late stage of radiation damage. The proliferation of irradiated cells was suppressed after IR in contrast to the non-irradiated cells. The apoptotic rate was elevated initially both in IR- and non-IR-cells, but that of IR-cells was maintained at an elevated level thereafter in contrast to that of non-IR-cells decreasing promptly. Therefore, a 0.5-Gy dose of IR induces persistent apoptosis leading to an apparent growth arrest of the normal HUVECs.
Collapse
Affiliation(s)
- Jing-Zhi Guan
- The 309th Hospital of Chinese People's Liberation Army, Beijing, 100091, China
| | | | | | | |
Collapse
|
9
|
Maeda T, Guan JZ, Koyanagi M, Makino N. Telomerase activity and telomere length distribution in vascular endothelial cells in a short-term culture under the presence of hydrogen peroxide. Geriatr Gerontol Int 2012; 13:774-82. [PMID: 22985061 DOI: 10.1111/j.1447-0594.2012.00936.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIM The aim of this study was to assess the biological effects of oxidative stress on human vascular endothelial cells. METHODS The telomeric changes and the alterations of the expression of telomere-associated proteins in human umbilical venous endothelial cells (HUVEC) cultured in the presence of hydrogen peroxide (H2 O2 ) were analyzed. RESULTS During the culture, the cell growth rate decreased, whereas the telomerase activity of the surviving cells increased. As the H2 O2 level increased, long telomeres decreased proportionally, thus resulting in a telomere length distribution that was rich in short telomeres. These observations suggested that H2 O2 -affected endothelial cells bear telomeric features similar to those of aged cells. In contrast, the expression of telomere-associated proteins, TRF1 and TRF2, showed different changes. TRF1 increased in relation to H2 O2 concentration, whereas TRF2 showed no significant change. The surviving cells exposed to H2 O2 showed a H2 O2 -dose dependent increase in telomerase activity, whereas the telomere protein and RNA components were only elevated in low concentrations of H2 O2 . CONCLUSIONS The increase in telomerase activity and TRF1 protein expression of vascular endothelial cell might show an aspect of cellular protective reaction against oxygen stress.
Collapse
Affiliation(s)
- Toyoki Maeda
- Department of Cardiovascular, Respiratory, and Geriatric Medicine, Kyushu University Beppu Hospital, Beppu, Oita, Japan.
| | | | | | | |
Collapse
|
10
|
Choi YH, Lim JK, Jeong MW, Kim KT. HnRNP A1 phosphorylated by VRK1 stimulates telomerase and its binding to telomeric DNA sequence. Nucleic Acids Res 2012; 40:8499-518. [PMID: 22740652 PMCID: PMC3458570 DOI: 10.1093/nar/gks634] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The telomere integrity is maintained via replication machinery, telomere associated proteins and telomerase. Many telomere associated proteins are regulated in a cell cycle-dependent manner. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a single-stranded oligonucleotide binding protein, is thought to play a pivotal role in telomere maintenance. Here, we identified hnRNP A1 as a novel substrate for vaccinia-related kinase 1 (VRK1), a cell cycle regulating kinase. Phosphorylation by VRK1 potentiates the binding of hnRNP A1 to telomeric ssDNA and telomerase RNA in vitro and enhances its function for telomerase reaction. VRK1 deficiency induces a shortening of telomeres with an abnormal telomere arrangement and activation of DNA-damage signaling in mouse male germ cells. Together, our data suggest that VRK1 is required for telomere maintenance via phosphorylation of hnRNP A1, which regulates proteins associated with the telomere and telomerase RNA.
Collapse
Affiliation(s)
- Yoon Ha Choi
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology (POSTECH), San-31, Hyoja-Dong, Pohang 790-784, Republic of Korea
| | | | | | | |
Collapse
|
11
|
Sissi C, Gatto B, Palumbo M. The evolving world of protein-G-quadruplex recognition: a medicinal chemist's perspective. Biochimie 2011; 93:1219-30. [PMID: 21549174 PMCID: PMC7126356 DOI: 10.1016/j.biochi.2011.04.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 04/20/2011] [Indexed: 01/02/2023]
Abstract
The physiological and pharmacological role of nucleic acids structures folded into the non canonical G-quadruplex conformation have recently emerged. Their activities are targeted at vital cellular processes including telomere maintenance, regulation of transcription and processing of the pre-messenger or telomeric RNA. In addition, severe conditions like cancer, fragile X syndrome, Bloom syndrome, Werner syndrome and Fanconi anemia J are related to genomic defects that involve G-quadruplex forming sequences. In this connection G-quadruplex recognition and processing by nucleic acid directed proteins and enzymes represents a key event to activate or deactivate physiological or pathological pathways. In this review we examine protein-G-quadruplex recognition in physiologically significant conditions and discuss how to possibly exploit the interactions' selectivity for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Claudia Sissi
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, Padua, Italy
| | | | | |
Collapse
|
12
|
Huang PR, Hung SC, Wang TCV. Telomeric DNA-binding activities of heterogeneous nuclear ribonucleoprotein A3 in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1164-74. [PMID: 20600361 DOI: 10.1016/j.bbamcr.2010.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/07/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
Abstract
Telomeres are dynamic DNA-protein complexes that protect the ends of linear chromosome. Telomere-binding proteins play crucial role in the maintenance of telomeres. HnRNP A3 has been shown recently to bind specifically to single-stranded telomeric DNA in vitro, although its in vivo telomere function remains unknown. In this study, the DNA-binding properties of hnRNP A3 in vitro as well as its putative role of telomere maintenance in vivo were investigated. The minimal sequence for hnRNP A3 binding to DNA was determined as an undecamer with the following consensus sequence 5'-[T/C]AG[G/T]NN[T/C]AG[G/T]N-3'. Confocal microscopy and chromatin-immunoprecipitation (ChIP) analyses showed that hnRNP A3 is associated with telomere in vivo. Knocking-down the expression of hnRNP A3 had no effect on telomere length maintenance and did not affect cell proliferation. In contrast, overexpression of hnRNP A3 resulted in the production of steady-state short telomeres in OECM1 cells. These results suggest that hnRNP A3 is associated with telomere in vivo and acts as a negative regulator of telomere length maintenance.
Collapse
Affiliation(s)
- Pei-Rong Huang
- Department of Molecular and Cellular Biology, Chang Gung University, Tao-Yuan. Taiwan
| | | | | |
Collapse
|
13
|
Makino N, Maeda T, Oyama JI, Higuchi Y, Mimori K. Improving insulin sensitivity via activation of PPAR-gamma increases telomerase activity in the heart of OLETF rats. Am J Physiol Heart Circ Physiol 2009; 297:H2188-95. [PMID: 19855065 DOI: 10.1152/ajpheart.00421.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study was conducted to examine telomere biology in terms of improving insulin sensitivity in a type 2 diabetic animal model: Otsuka Long-Evans Tokushima fatty (OLETF) rats. To improve insulin sensitivity, pioglitazone (PG; 10 mg.kg(-1).day(-1)) was administrated to OLETF rats from 20 to 40 wk of age, and the effects of treatment were compared with those in untreated OLETF or control Long-Evans Tokushima Otsuka fatty rats. At the end of the study, the homeostasis model assessment of insulin resistance significantly increased in OLETF rats but decreased in OLETF rats treated with PG. No shortening of telomere length was observed in the heart tissue of OLETF rats, whereas telomerase activity was decreased in OLETF heart tissue. The mRNA expression of both telomerase reverse transcriptase and telomere repeat binding factor 2 was downregulated in the hearts of OLETF rats. The protein expression of phospho-Akt, insulin-like growth factor, and endothelial nitric oxide synthase was reduced in OLETF rats. On the other hand, myocardial matrix metalloproteinase-9 expression was elevated in OLETF rats. The changes observed in OLETF rats were inhibited by PG treatment. However, protein and mRNA expression of Sirt1, a lifespan modulator, were attenuated in OLETF rat hearts, although they were enhanced in OLETF rats with PG treatment. Myocardial fibrosis was less extensive and diastolic dysfunction more greatly ameliorated in PG-treated OLETF rats than in OLETF rats. These findings suggest that improving insulin sensitivity via the activation of peroxisom proliferator-activated receptor-gamma may exert regulatory effects on cardiac telomere biology and may have desirable morphological and functional effects on the diabetic heart.
Collapse
Affiliation(s)
- Naoki Makino
- Division of Molecular and Clinical Gerontology, Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumihara, Beppu 874-0838, Japan.
| | | | | | | | | |
Collapse
|