1
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Vorobyeva M, Vorobjev P, Venyaminova A. Multivalent Aptamers: Versatile Tools for Diagnostic and Therapeutic Applications. Molecules 2016; 21:molecules21121613. [PMID: 27898020 PMCID: PMC6274531 DOI: 10.3390/molecules21121613] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 11/24/2022] Open
Abstract
Nucleic acid aptamers generated through an in vitro selection are currently extensively applied as very valuable biomolecular tools thanks to their prominent advantages. Diversity of spatial structures, ease of production through chemical synthesis and a large variety of chemical modifications make aptamers convenient building blocks for the generation of multifunctional constructs. An opportunity to combine different aptamer functionalities with other molecules of interest such as reporter groups, nanoparticles, chemotherapeutic agents, siRNA or antisense oligonucleotides provides a widest range of applications of multivalent aptamers. The present review summarizes approaches to the design of multivalent aptamers, various examples of multifunctional constructs and the prospects of employing them as components of biosensors, probes for affinity capture, tools for cell research and potential therapeutic candidates.
Collapse
Affiliation(s)
- Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia.
| | - Pavel Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia.
| | - Alya Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia.
| |
Collapse
|
3
|
Redden H, Morse N, Alper HS. The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res 2014; 15:1-10. [DOI: 10.1111/1567-1364.12188] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/28/2014] [Accepted: 07/15/2014] [Indexed: 02/04/2023] Open
Affiliation(s)
- Heidi Redden
- Department for Molecular Biosciences; The University of Texas at Austin; Austin TX USA
| | - Nicholas Morse
- McKetta Department of Chemical Engineering; The University of Texas at Austin; Austin TX USA
| | - Hal S. Alper
- Department for Molecular Biosciences; The University of Texas at Austin; Austin TX USA
- McKetta Department of Chemical Engineering; The University of Texas at Austin; Austin TX USA
| |
Collapse
|
4
|
Klauser B, Hartig JS. An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res 2013; 41:5542-52. [PMID: 23585277 PMCID: PMC3664830 DOI: 10.1093/nar/gkt253] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An important requirement for achieving many goals of synthetic biology is the availability of a large repertoire of reprogrammable genetic switches and appropriate transmitter molecules. In addition to engineering genetic switches, the interconnection of individual switches becomes increasingly important for the construction of more complex genetic networks. In particular, RNA-based switches of gene expression have become a powerful tool to post-transcriptionally program genetic circuits. RNAs used for regulatory purposes have the advantage to transmit, sense, process and execute information. We have recently used the hammerhead ribozyme to control translation initiation in a small molecule-dependent fashion. In addition, riboregulators have been constructed in which a small RNA acts as transmitter molecule to control translation of a target mRNA. In this study, we combine both concepts and redesign the hammerhead ribozyme to sense small trans-acting RNAs (taRNAs) as input molecules resulting in repression of translation initiation in Escherichia coli. Importantly, our ribozyme-based expression platform is compatible with previously reported artificial taRNAs, which were reported to act as inducers of gene expression. In addition, we provide several insights into key requirements of riboregulatory systems, including the influences of varying transcriptional induction of the taRNA and mRNA transcripts, 5'-processing of taRNAs, as well as altering the secondary structure of the taRNA. In conclusion, we introduce an RNA-responsive ribozyme-based expression system to the field of artificial riboregulators that can serve as reprogrammable platform for engineering higher-order genetic circuits.
Collapse
Affiliation(s)
- Benedikt Klauser
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | | |
Collapse
|
5
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
6
|
Synthetic signaling networks for therapeutic applications. Curr Opin Biotechnol 2012; 23:773-9. [DOI: 10.1016/j.copbio.2012.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/03/2012] [Accepted: 01/08/2012] [Indexed: 01/02/2023]
|
7
|
Goodson MS, Lynch JA, Lamkin T, Kramer R. Elucidation of small RNAs that activate transcription in bacteria. ACS Synth Biol 2012; 1:181-9. [PMID: 23651156 DOI: 10.1021/sb2000275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small non-coding RNA (sRNA) control of gene expression has been shown to play a prominent role in genetic regulation. While the majority of identified bacterial sRNAs exert their control at the translational level, a few examples of bacterial sRNAs that inhibit transcription have also been identified. Using an engineered combinatorial RNA library, we have elucidated bacterial sRNAs that activate transcription of a target gene in E. coli to varying degrees. Mutation of the strongest activator modified its activation potential. Our results suggest that transcriptional activation of our target gene results from recruitment of the bacterial RNA polymerase complex to the promoter region. These data, coupled with the malleability of RNA, provide a context to define synthetic control of genes in bacteria at the transcriptional level.
Collapse
Affiliation(s)
- Michael S. Goodson
- 711th Human Performance Wing, Air
Force Research Laboratory, 2510 Fifth Street, Building 840, Wright-Patterson
Air Force Base, Ohio 45433, United States
| | - John A. Lynch
- Department of Chemistry, University of Cincinnati,
Cincinnati, Ohio 45267, United States
| | - Thomas Lamkin
- 711th Human Performance Wing, Air Force Research Laboratory, University
of Cincinnati, 231 Albert Sabin Way, Medical Sciences Building, Cincinnati,
Ohio 45221, United States
| | - Ryan Kramer
- 711th Human Performance Wing, Air Force Research Laboratory, University
of Cincinnati, 231 Albert Sabin Way, Medical Sciences Building, Cincinnati,
Ohio 45221, United States
| |
Collapse
|
8
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
9
|
Walling MA, Shi H, Shepard JRE. Abrupt and dynamic changes in gene expression revealed by live cell arrays. Anal Chem 2012; 84:2737-44. [PMID: 22324657 DOI: 10.1021/ac300344n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A description of the noise associated with gene expression is presented, based on a simplified form of the combined multistep processes of transcription and translation. These processes are influenced by numerous factors, including the accessibility of promoter regions to the transcriptional machinery, the kinetics of assembly of the transcription complexes, and the synthesis and degradation of both mRNA and proteins, among others. Ultimately, stochasticity in cellular processes results in variation in protein levels. Here we constructed a rationally designed RNA-based transcriptional activator to reduce these variables and provide a cleaner, more detailed portrayal of cellular noise. Functioning at a level comparable to natural transcription activation, this activator is isolated to a lacZ reporter gene in yeast cells to quantitatively describe the efficiency of the combined processes of transcription and translation. By employing single-cell array techniques to monitor individual cells simultaneously and in real time, a statistical approach to investigate noise inherent in gene expression is possible. Live cell arrays enabled cell populations to be characterized temporally at the individual cell level. The array platform allowed for a relative measure of protein production in real time and could characterize protein bursts with variable size and random timing, such that bursts occurred in a temporally indiscriminate fashion. The inherent variability and randomness of these processes is characterized, with almost half (47%) of cells experiencing bursting behavior at least once over the course of the experiment. We demonstrate that cells identified on the upper periphery of activity exhibit behaviors that are substantially different from the majority of the population, and such variable activities within a population will provide a more accurate characterization of the population.
Collapse
Affiliation(s)
- Maureen A Walling
- Department of Chemistry, University at Albany, Albany, New York 12222, United States
| | | | | |
Collapse
|
10
|
Ausländer D, Wieland M, Ausländer S, Tigges M, Fussenegger M. Rational design of a small molecule-responsive intramer controlling transgene expression in mammalian cells. Nucleic Acids Res 2011; 39:e155. [PMID: 21984476 PMCID: PMC3239198 DOI: 10.1093/nar/gkr829] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aptamers binding proteins or small molecules have been shown to be versatile and powerful building blocks for the construction of artificial genetic switches. In this study, we present a novel aptamer-based construct regulating the Tet Off system in a tetracycline-independent manner thus achieving control of transgene expression. For this purpose, a TetR protein-inhibiting aptamer was engineered for use in mammalian cells, enabling the RNA-responsive control of the tetracycline-dependent transactivator (tTA). By rationally attaching the theophylline aptamer as a sensor, the inhibitory TetR aptamer and thus tTA activity became dependent on the ligand of the sensor aptamer. Addition of the small molecule theophylline resulted in enhanced binding to the corresponding protein in vitro and in inhibition of reporter gene expression in mammalian cell lines. By using aptamers as adaptors in order to control protein activity by a predetermined small molecule, we present a simple and straightforward approach for future applications in the field of Chemical Biology. Moreover, aptamer-based control of the widely used Tet system introduces a new layer of regulation thereby facilitating the construction of more complex gene networks.
Collapse
Affiliation(s)
- David Ausländer
- ETH Zurich, Department of Biosystems Science and Bioengineering (D-BSSE), Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Shukla GC, Haque F, Tor Y, Wilhelmsson LM, Toulmé JJ, Isambert H, Guo P, Rossi JJ, Tenenbaum SA, Shapiro BA. A boost for the emerging field of RNA nanotechnology. ACS NANO 2011; 5:3405-18. [PMID: 21604810 PMCID: PMC3102291 DOI: 10.1021/nn200989r] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This Nano Focus article highlights recent advances in RNA nanotechnology as presented at the First International Conference of RNA Nanotechnology and Therapeutics, which took place in Cleveland, OH, USA (October 23-25, 2010) ( http://www.eng.uc.edu/nanomedicine/RNA2010/ ), chaired by Peixuan Guo and co-chaired by David Rueda and Scott Tenenbaum. The conference was the first of its kind to bring together more than 30 invited speakers in the frontier of RNA nanotechnology from France, Sweden, South Korea, China, and throughout the United States to discuss RNA nanotechnology and its applications. It provided a platform for researchers from academia, government, and the pharmaceutical industry to share existing knowledge, vision, technology, and challenges in the field and promoted collaborations among researchers interested in advancing this emerging scientific discipline. The meeting covered a range of topics, including biophysical and single-molecule approaches for characterization of RNA nanostructures; structure studies on RNA nanoparticles by chemical or biochemical approaches, computation, prediction, and modeling of RNA nanoparticle structures; methods for the assembly of RNA nanoparticles; chemistry for RNA synthesis, conjugation, and labeling; and application of RNA nanoparticles in therapeutics. A special invited talk on the well-established principles of DNA nanotechnology was arranged to provide models for RNA nanotechnology. An Administrator from National Institutes of Health (NIH) National Cancer Institute (NCI) Alliance for Nanotechnology in Cancer discussed the current nanocancer research directions and future funding opportunities at NCI. As indicated by the feedback received from the invited speakers and the meeting participants, this meeting was extremely successful, exciting, and informative, covering many groundbreaking findings, pioneering ideas, and novel discoveries.
Collapse
Affiliation(s)
- Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Farzin Haque
- Nanobiomedical Center, College of Engineering and Applied Science, and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Yitzhak Tor
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - L. Marcus Wilhelmsson
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Jean-Jacques Toulmé
- Université Bordeaux Segalen, INSERM U869, Bâtiment 3A 1er étage, 33076 Bordeaux Cedex, France
| | - Hervé Isambert
- Institut Curie, Research Division, CNRS UMR 168, 11 rue P. & M. Curie, 75005 Paris, France
| | - Peixuan Guo
- Nanobiomedical Center, College of Engineering and Applied Science, and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Scott A. Tenenbaum
- College of Nanoscale Science & Engineering, University at Albany-SUNY, Albany, New York 12203, United States
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| |
Collapse
|
12
|
Ligand-dependent regulatory RNA parts for Synthetic Biology in eukaryotes. Curr Opin Biotechnol 2010; 21:760-5. [DOI: 10.1016/j.copbio.2010.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 01/30/2023]
|
13
|
Walling MA, Wang S, Shi H, Shepard JRE. Quantum dots for positional registration in live cell-based arrays. Anal Bioanal Chem 2010; 398:1263-71. [DOI: 10.1007/s00216-010-4053-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/14/2010] [Accepted: 07/20/2010] [Indexed: 11/29/2022]
|