1
|
Wojtaszek JL, Williams RS. From the TOP: Formation, recognition and resolution of topoisomerase DNA protein crosslinks. DNA Repair (Amst) 2024; 142:103751. [PMID: 39180935 PMCID: PMC11404304 DOI: 10.1016/j.dnarep.2024.103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Since the report of "DNA untwisting" activity in 1972, ∼50 years of research has revealed seven topoisomerases in humans (TOP1, TOP1mt, TOP2α, TOP2β, TOP3α, TOP3β and Spo11). These conserved regulators of DNA topology catalyze controlled breakage to the DNA backbone to relieve the torsional stress that accumulates during essential DNA transactions including DNA replication, transcription, and DNA repair. Each topoisomerase-catalyzed reaction involves the formation of a topoisomerase cleavage complex (TOPcc), a covalent protein-DNA reaction intermediate formed between the DNA phosphodiester backbone and a topoisomerase catalytic tyrosine residue. A variety of perturbations to topoisomerase reaction cycles can trigger failure of the enzyme to re-ligate the broken DNA strand(s), thereby generating topoisomerase DNA-protein crosslinks (TOP-DPC). TOP-DPCs pose unique threats to genomic integrity. These complex lesions are comprised of structurally diverse protein components covalently linked to genomic DNA, which are bulky DNA adducts that can directly impact progression of the transcription and DNA replication apparatus. A variety of genome maintenance pathways have evolved to recognize and resolve TOP-DPCs. Eukaryotic cells harbor tyrosyl DNA phosphodiesterases (TDPs) that directly reverse 3'-phosphotyrosyl (TDP1) and 5'-phoshotyrosyl (TDP2) protein-DNA linkages. The broad specificity Mre11-Rad50-Nbs1 and APE2 nucleases are also critical for mitigating topoisomerase-generated DNA damage. These DNA-protein crosslink metabolizing enzymes are further enabled by proteolytic degradation, with the proteasome, Spartan, GCNA, Ddi2, and FAM111A proteases implicated thus far. Strategies to target, unfold, and degrade the protein component of TOP-DPCs have evolved as well. Here we survey mechanisms for addressing Topoisomerase 1 (TOP1) and Topoisomerase 2 (TOP2) DPCs, highlighting systems for which molecular structure information has illuminated function of these critical DNA damage response pathways.
Collapse
Affiliation(s)
- Jessica L Wojtaszek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
2
|
Lim RC, Gary RK. Kinetic analysis of T4 polynucleotide kinase via isothermal titration calorimetry. Arch Biochem Biophys 2024; 756:109995. [PMID: 38621448 DOI: 10.1016/j.abb.2024.109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
T4 polynucleotide kinase (T4 PNK) phosphorylates the 5'-terminus of DNA and RNA substrates. It is widely used in molecular biology. Single nucleotides can serve as substrates if a 3'-phosphate group is present. In this study, the T4 PNK-catalyzed conversion of adenosine 3'-monophosphate (3'-AMP) to adenosine-3',5'-bisphosphate was characterized using isothermal titration calorimetry (ITC). Although ITC is typically used to study ligand binding, in this case the instrument was used to evaluate enzyme kinetics by monitoring the heat production due to reaction enthalpy. The reaction was initiated with a single injection of 3'-AMP substrate into the sample cell containing T4 PNK and ATP at pH 7.6 and 30 °C, and Michaelis-Menten analysis was performed on the reaction rates derived from the plot of differential power versus time. The Michaelis-Menten constant, KM, was 13 μM, and the turnover number, kcat, was 8 s-1. The effect of inhibitors was investigated using pyrophosphate (PPi). PPi caused a dose-dependent decrease in the apparent kcat and increase in the apparent KM under the conditions tested. Additionally, the intrinsic reaction enthalpy and the activation energy of the T4 PNK-catalyzed phosphorylation of 3'-AMP were determined to be -25 kJ/mol and 43 kJ/mol, respectively. ITC is seldom used as a tool to study enzyme kinetics, particularly for technically-challenging enzymes such as kinases. This study demonstrates that quantitative analysis of kinase activity can be amenable to the ITC single injection approach.
Collapse
Affiliation(s)
- Rebecca C Lim
- Department of Chemistry & Biochemistry, University of Nevada, Las Vegas, USA
| | - Ronald K Gary
- Department of Chemistry & Biochemistry, University of Nevada, Las Vegas, USA.
| |
Collapse
|
3
|
Liu XW, Liu WJ, Meng Y, Hu J, Zhang CY. Development of a tandem signal amplification strategy for label-free sensing polynucleotide kinase activity in cancer cells. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Zhu J, Chen L. Highly efficient incorporation of dATP in terminal transferase polymerization forming the ploy (A)n-DITO-1 fluorescent probe sensing terminal transferase and T4 polynucleotide kinase activity. Anal Chim Acta 2022; 1221:340080. [DOI: 10.1016/j.aca.2022.340080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
|
5
|
Hammel M, Tainer JA. X-ray scattering reveals disordered linkers and dynamic interfaces in complexes and mechanisms for DNA double-strand break repair impacting cell and cancer biology. Protein Sci 2021; 30:1735-1756. [PMID: 34056803 PMCID: PMC8376411 DOI: 10.1002/pro.4133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Evolutionary selection ensures specificity and efficiency in dynamic metastable macromolecular machines that repair DNA damage without releasing toxic and mutagenic intermediates. Here we examine non‐homologous end joining (NHEJ) as the primary conserved DNA double‐strand break (DSB) repair process in human cells. NHEJ has exemplary key roles in networks determining the development, outcome of cancer treatments by DSB‐inducing agents, generation of antibody and T‐cell receptor diversity, and innate immune response for RNA viruses. We determine mechanistic insights into NHEJ structural biochemistry focusing upon advanced small angle X‐ray scattering (SAXS) results combined with X‐ray crystallography (MX) and cryo‐electron microscopy (cryo‐EM). SAXS coupled to atomic structures enables integrated structural biology for objective quantitative assessment of conformational ensembles and assemblies in solution, intra‐molecular distances, structural similarity, functional disorder, conformational switching, and flexibility. Importantly, NHEJ complexes in solution undergo larger allosteric transitions than seen in their cryo‐EM or MX structures. In the long‐range synaptic complex, X‐ray repair cross‐complementing 4 (XRCC4) plus XRCC4‐like‐factor (XLF) form a flexible bridge and linchpin for DNA ends bound to KU heterodimer (Ku70/80) and DNA‐PKcs (DNA‐dependent protein kinase catalytic subunit). Upon binding two DNA ends, auto‐phosphorylation opens DNA‐PKcs dimer licensing NHEJ via concerted conformational transformations of XLF‐XRCC4, XLF–Ku80, and LigIVBRCT–Ku70 interfaces. Integrated structures reveal multifunctional roles for disordered linkers and modular dynamic interfaces promoting DSB end processing and alignment into the short‐range complex for ligation by LigIV. Integrated findings define dynamic assemblies fundamental to designing separation‐of‐function mutants and allosteric inhibitors targeting conformational transitions in multifunctional complexes.
Collapse
Affiliation(s)
- Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Hammel M, Rashid I, Sverzhinsky A, Pourfarjam Y, Tsai MS, Ellenberger T, Pascal JM, Kim IK, Tainer JA, Tomkinson AE. An atypical BRCT-BRCT interaction with the XRCC1 scaffold protein compacts human DNA Ligase IIIα within a flexible DNA repair complex. Nucleic Acids Res 2021; 49:306-321. [PMID: 33330937 PMCID: PMC7797052 DOI: 10.1093/nar/gkaa1188] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/21/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023] Open
Abstract
The XRCC1-DNA ligase IIIα complex (XL) is critical for DNA single-strand break repair, a key target for PARP inhibitors in cancer cells deficient in homologous recombination. Here, we combined biophysical approaches to gain insights into the shape and conformational flexibility of the XL as well as XRCC1 and DNA ligase IIIα (LigIIIα) alone. Structurally-guided mutational analyses based on the crystal structure of the human BRCT-BRCT heterodimer identified the network of salt bridges that together with the N-terminal extension of the XRCC1 C-terminal BRCT domain constitute the XL molecular interface. Coupling size exclusion chromatography with small angle X-ray scattering and multiangle light scattering (SEC-SAXS-MALS), we determined that the XL is more compact than either XRCC1 or LigIIIα, both of which form transient homodimers and are highly disordered. The reduced disorder and flexibility allowed us to build models of XL particles visualized by negative stain electron microscopy that predict close spatial organization between the LigIIIα catalytic core and both BRCT domains of XRCC1. Together our results identify an atypical BRCT-BRCT interaction as the stable nucleating core of the XL that links the flexible nick sensing and catalytic domains of LigIIIα to other protein partners of the flexible XRCC1 scaffold.
Collapse
Affiliation(s)
- Michal Hammel
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ishtiaque Rashid
- Departments of Internal Medicine, Molecular Genetics & Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH 45221, USA
| | - Miaw-Sheue Tsai
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Ellenberger
- Department of Biochemistry, Washington University, St. Louis, MO, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH 45221, USA
| | - John A Tainer
- Departments of Cancer Biology and Molecular & Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics & Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Saito M, Sato A, Nagata S, Tamaki S, Tomita M, Suzuki H, Kanai A. Large-Scale Molecular Evolutionary Analysis Uncovers a Variety of Polynucleotide Kinase Clp1 Family Proteins in the Three Domains of Life. Genome Biol Evol 2020; 11:2713-2726. [PMID: 31513263 PMCID: PMC6777427 DOI: 10.1093/gbe/evz195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 01/13/2023] Open
Abstract
Clp1, a polyribonucleotide 5′-hydroxyl kinase in eukaryotes, is involved in pretRNA splicing and mRNA 3′-end formation. Enzymes similar in amino acid sequence to Clp1, Nol9, and Grc3, are present in some eukaryotes and are involved in prerRNA processing. However, our knowledge of how these Clp1 family proteins evolved and diversified is limited. We conducted a large-scale molecular evolutionary analysis of the Clp1 family proteins in all living organisms for which protein sequences are available in public databases. The phylogenetic distribution and frequencies of the Clp1 family proteins were investigated in complete genomes of Bacteria, Archaea and Eukarya. In total, 3,557 Clp1 family proteins were detected in the three domains of life, Bacteria, Archaea, and Eukarya. Many were from Archaea and Eukarya, but a few were found in restricted, phylogenetically diverse bacterial species. The domain structures of the Clp1 family proteins also differed among the three domains of life. Although the proteins were, on average, 555 amino acids long (range, 196–2,728), 122 large proteins with >1,000 amino acids were detected in eukaryotes. These novel proteins contain the conserved Clp1 polynucleotide kinase domain and various other functional domains. Of these proteins, >80% were from Fungi or Protostomia. The polyribonucleotide kinase activity of Thermus scotoductus Clp1 (Ts-Clp1) was characterized experimentally. Ts-Clp1 preferentially phosphorylates single-stranded RNA oligonucleotides (Km value for ATP, 2.5 µM), or single-stranded DNA at higher enzyme concentrations. We propose a comprehensive assessment of the diversification of the Clp1 family proteins and the molecular evolution of their functional domains.
Collapse
Affiliation(s)
- Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Shohei Nagata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Satoshi Tamaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
8
|
Ma W, Yang L, Liu H, Chen P, Ren H, Ren P. PAXX is a novel target to overcome resistance to doxorubicin and cisplatin in osteosarcoma. Biochem Biophys Res Commun 2019; 521:204-211. [PMID: 31640855 DOI: 10.1016/j.bbrc.2019.10.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 01/15/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor diagnosed in children and adolescents. Unfortunately, OS patients with metastatic or recurrent disease are highly resistant to front line chemotherapy that significantly limits the long-term survival rate. Since majority of chemotherapeutic agents used in OS work by generating DNA damages, enhanced DNA repair pathways are generally associated with chemoresistance in OS treatment. However, the exact mechanisms of chemoresistance in OS are not fully understood. Our study found that paralogue of XRCC4 and XLF (PAXX), which was identified recently as a novel factor of non-homologous end joining (NHEJ), is upregulated in chemoresistant OS cells. Importantly, PAXX deficiency re-sensitizes chemoresistant OS cells to doxorubicin and cisplatin. Mechanistically, chemoresistance to doxorubicin or cisplatin results in enhanced PAXX-Ku70 interaction and elevated NHEJ efficiency. We also identified a small molecule M11 that interrupts PAXX-Ku70 interaction and re-sensitizes chemoresistant OS cells to doxorubicin and cisplatin. Thus, our data provide evidence that PAXX could serve as a novel target to overcome chemoresistance in OS treatment.
Collapse
Affiliation(s)
- Wanli Ma
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong, China.
| | - Lei Yang
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, Shandong, China.
| | - Huan Liu
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong, China.
| | - Peng Chen
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong, China.
| | - Hui Ren
- Department of Thoracic, The Central Hospital, Taian, Shandong, China.
| | - Peng Ren
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Kopa P, Macieja A, Galita G, Witczak ZJ, Poplawski T. DNA Double Strand Breaks Repair Inhibitors: Relevance as Potential New Anticancer Therapeutics. Curr Med Chem 2019; 26:1483-1493. [PMID: 29446719 DOI: 10.2174/0929867325666180214113154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
Abstract
DNA double-strand breaks are considered one of the most lethal forms of DNA damage. Many effective anticancer therapeutic approaches used chemical and physical methods to generate DNA double-strand breaks in the cancer cells. They include: IR and drugs which mimetic its action, topoisomerase poisons, some alkylating agents or drugs which affected DNA replication process. On the other hand, cancer cells are mostly characterized by highly effective systems of DNA damage repair. There are two main DNA repair pathways used to fix double-strand breaks: NHEJ and HRR. Their activity leads to a decreased effect of chemotherapy. Targeting directly or indirectly the DNA double-strand breaks response by inhibitors seems to be an exciting option for anticancer therapy and is a part of novel trends that arise after the clinical success of PARP inhibitors. These trends will provide great opportunities for the development of DNA repair inhibitors as new potential anticancer drugs. The main objective of this article is to address these new promising advances.
Collapse
Affiliation(s)
- Paulina Kopa
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz 90-752, Poland
| | - Anna Macieja
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Grzegorz Galita
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Zbigniew J Witczak
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, United States
| | - Tomasz Poplawski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| |
Collapse
|
10
|
Song W, Yin W, Zhang Z, He P, Yang X, Zhang X. A DNA functionalized porphyrinic metal-organic framework as a peroxidase mimicking catalyst for amperometric determination of the activity of T4 polynucleotide kinase. Mikrochim Acta 2019; 186:149. [PMID: 30712077 DOI: 10.1007/s00604-019-3269-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/18/2019] [Indexed: 11/27/2022]
Abstract
An electrochemical method is described for the sensitive detection of the activity of the enzyme T4 polynucleotide kinase (PNK) by using a DNA functionalized porphyrinic metal-organic framework (L/(Fe-P)n-MOF). In the presence of PNK, the hairpin oligonucleotide (HP1) becomes phosphorylated, and the trigger is released by lambda exonuclease (λ exo). The trigger DNA hybridizes with hairpin probe (immobilized on the gold electrode) to form a nicking endonuclease cleavage site. Thus, a single-strand capture probe is employed to hybridize with L/(Fe-P)n-MOF. The (Fe-P)n-MOF is a peroxidase mimicking material with high catalytic efficiency. By using this amplification strategy, an electrochemical signal is procured that allows for the determination of T4 PNK in the 1.0 mU·mL-1 to 1.0 U·mL-1 with a detection limit of 0.62 mU·mL-1. The method is selective and can be used to screen for enzyme inhibitors. Conceivably, the (Fe-P)n-MOF can also be used to detect other analytes via its peroxidase-mimicking activity. Graphical abstract Schematic presentation of T4 polynucleotide kinase (PNK) detection. Two hairpin DNAs (HP) and a porphyrinic metal-organic framework with peroxidase-mimicking activity are used. The detection limit is 0.62 mU mL-1 with enzyme assisted signal amplification. This method is selective and can be used to screen for enzyme inhibitors.
Collapse
Affiliation(s)
- Weiling Song
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Wenshuo Yin
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Zhonghui Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Peng He
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoyan Yang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoru Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
11
|
Pillon MC, Sobhany M, Stanley RE. Characterization of the molecular crosstalk within the essential Grc3/Las1 pre-rRNA processing complex. RNA (NEW YORK, N.Y.) 2018; 24:721-738. [PMID: 29440475 PMCID: PMC5900568 DOI: 10.1261/rna.065037.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Grc3 is an essential well-conserved eukaryotic polynucleotide kinase (PNK) that cooperates with the endoribonuclease Las1 to process the preribosomal RNA (rRNA). Aside from being dependent upon Las1 for coordinated kinase and nuclease function, little is known about Grc3 substrate specificity and the molecular mechanisms governing kinase activity. Here we characterize the kinase activity of Grc3 and identify key similarities and differences between Grc3 and other polynucleotide kinase family members. In contrast to other PNK family members, Grc3 has distinct substrate preference for RNA substrates in vitro. By disrupting conserved residues found at the Grc3 kinase active site, we identified specific residues required to support Grc3-directed Las1-mediated pre-rRNA cleavage in vitro and in vivo. The crosstalk between Grc3 and Las1 ensures the direct coupling of cleavage and phosphorylation during pre-rRNA processing. Taken together, our studies provide key insight into the polynucleotide kinase activity of the essential enzyme Grc3 and its molecular crosstalk with the endoribonuclease Las1.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | - Mack Sobhany
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
12
|
Li XY, Du YC, Pan YN, Su LL, Shi S, Wang SY, Tang AN, Kim K, Kong DM. Dual enzyme-assisted one-step isothermal real-time amplification assay for ultrasensitive detection of polynucleotide kinase activity. Chem Commun (Camb) 2018; 54:13841-13844. [DOI: 10.1039/c8cc08616h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel, simple, one-step and one-tube detection method for polynucleotide kinase (PNK) activity based on isothermal real-time amplification assay was proposed.
Collapse
Affiliation(s)
- Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Yan-Nian Pan
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Li-Li Su
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Shuo Shi
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Si-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Kwangil Kim
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| |
Collapse
|
13
|
Aceytuno RD, Piett CG, Havali-Shahriari Z, Edwards RA, Rey M, Ye R, Javed F, Fang S, Mani R, Weinfeld M, Hammel M, Tainer JA, Schriemer DC, Lees-Miller SP, Glover JNM. Structural and functional characterization of the PNKP-XRCC4-LigIV DNA repair complex. Nucleic Acids Res 2017; 45:6238-6251. [PMID: 28453785 PMCID: PMC5449630 DOI: 10.1093/nar/gkx275] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/25/2017] [Indexed: 01/14/2023] Open
Abstract
Non-homologous end joining (NHEJ) repairs DNA double strand breaks in non-cycling eukaryotic cells. NHEJ relies on polynucleotide kinase/phosphatase (PNKP), which generates 5΄-phosphate/3΄-hydroxyl DNA termini that are critical for ligation by the NHEJ DNA ligase, LigIV. PNKP and LigIV require the NHEJ scaffolding protein, XRCC4. The PNKP FHA domain binds to the CK2-phosphorylated XRCC4 C-terminal tail, while LigIV uses its tandem BRCT repeats to bind the XRCC4 coiled-coil. Yet, the assembled PNKP-XRCC4–LigIV complex remains uncharacterized. Here, we report purification and characterization of a recombinant PNKP–XRCC4–LigIV complex. We show that the stable binding of PNKP in this complex requires XRCC4 phosphorylation and that only one PNKP protomer binds per XRCC4 dimer. Small angle X-ray scattering (SAXS) reveals a flexible multi-state complex that suggests that both the PNKP FHA and catalytic domains contact the XRCC4 coiled-coil and LigIV BRCT repeats. Hydrogen-deuterium exchange indicates protection of a surface on the PNKP phosphatase domain that may contact XRCC4–LigIV. A mutation on this surface (E326K) causes the hereditary neuro-developmental disorder, MCSZ. This mutation impairs PNKP recruitment to damaged DNA in human cells and provides a possible disease mechanism. Together, this work unveils multipoint contacts between PNKP and XRCC4–LigIV that regulate PNKP recruitment and activity within NHEJ.
Collapse
Affiliation(s)
- R Daniel Aceytuno
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G-2H7, Canada
| | - Cortt G Piett
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G-2H7, Canada
| | - Martial Rey
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ruiqiong Ye
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Fatima Javed
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G-2H7, Canada
| | - Shujuan Fang
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rajam Mani
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Michal Hammel
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John A Tainer
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - David C Schriemer
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Susan P Lees-Miller
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G-2H7, Canada
| |
Collapse
|
14
|
Brosey CA, Ahmed Z, Lees-Miller SP, Tainer JA. What Combined Measurements From Structures and Imaging Tell Us About DNA Damage Responses. Methods Enzymol 2017; 592:417-455. [PMID: 28668129 DOI: 10.1016/bs.mie.2017.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage outcomes depend upon the efficiency and fidelity of DNA damage responses (DDRs) for different cells and damage. As such, DDRs represent tightly regulated prototypical systems for linking nanoscale biomolecular structure and assembly to the biology of genomic regulation and cell signaling. However, the dynamic and multifunctional nature of DDR assemblies can render elusive the correlation between the structures of DDR factors and specific biological disruptions to the DDR when these structures are altered. In this chapter, we discuss concepts and strategies for combining structural, biophysical, and imaging techniques to investigate DDR recognition and regulation, and thus bridge sequence-level structural biochemistry to quantitative biological outcomes visualized in cells. We focus on representative DDR responses from PARP/PARG/AIF damage signaling in DNA single-strand break repair and nonhomologous end joining complexes in double-strand break repair. Methods with exemplary experimental results are considered with a focus on strategies for probing flexibility, conformational changes, and assembly processes that shape a predictive understanding of DDR mechanisms in a cellular context. Integration of structural and imaging measurements promises to provide foundational knowledge to rationally control and optimize DNA damage outcomes for synthetic lethality and for immune activation with resulting insights for biology and cancer interventions.
Collapse
Affiliation(s)
- Chris A Brosey
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Zamal Ahmed
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Susan P Lees-Miller
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
| | - John A Tainer
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
15
|
Havali-Shahriari Z, Weinfeld M, Glover JNM. Characterization of DNA Substrate Binding to the Phosphatase Domain of the DNA Repair Enzyme Polynucleotide Kinase/Phosphatase. Biochemistry 2017; 56:1737-1745. [PMID: 28276686 DOI: 10.1021/acs.biochem.6b01236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polynucleotide kinase/phosphatase (PNKP) is a DNA strand break repair enzyme that uses separate 5' kinase and 3' phosphatase active sites to convert damaged 5'-hydroxyl/3'-phosphate strand termini to ligatable 5'-phosphate/3'-hydroxyl ends. The phosphatase active site has received particular attention as a target of inhibition in cancer therapy development. The phosphatase domain dephosphorylates a range of single- and double-stranded substrates; however, structural studies have shown that the phosphatase catalytic cleft can bind only single-stranded substrates. Here we use a catalytically inactive but structurally intact phosphatase mutant to probe interactions between PNKP and a variety of single- and double-stranded DNA substrates using an electrophoretic mobility shift assay. This work indicates that the phosphatase domain binds 3'-phosphorylated single-stranded DNAs in a manner that is highly dependent on the presence of the 3'-phosphate. Double-stranded substrate binding, in contrast, is not as dependent on the 3'-phosphate. Experiments comparing blunt-end, 3'-overhanging, and frayed-end substrates indicate that the predicted loss of energy due to base pair disruption upon binding of the phosphatase active site is likely balanced by favorable interactions between the liberated complementary strand and PNKP. Comparison of the effects on substrate binding of mutations within the phosphatase active site cleft with mutations in surrounding positively charged surfaces suggests that the surrounding surfaces are important for binding to double-stranded substrates. We further show that while fluorescence polarization methods can detect specific binding of single-stranded DNAs with the phosphatase domain, this method does not detect specific interactions between the PNKP phosphatase and double-stranded substrates.
Collapse
Affiliation(s)
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute , 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta , Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
16
|
Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A. FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res 2016; 44:W424-9. [PMID: 27151198 PMCID: PMC4987932 DOI: 10.1093/nar/gkw389] [Citation(s) in RCA: 387] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/27/2016] [Indexed: 11/14/2022] Open
Abstract
Small Angle X-ray Scattering (SAXS) is an increasingly common and useful technique for structural characterization of molecules in solution. A SAXS experiment determines the scattering intensity of a molecule as a function of spatial frequency, termed SAXS profile. Here, we describe three web servers for modeling atomic structures based on SAXS profiles. FoXS (Fast X-Ray Scattering) rapidly computes a SAXS profile of a given atomistic model and fits it to an experimental profile. FoXSDock docks two rigid protein structures based on a SAXS profile of their complex. MultiFoXS computes a population-weighted ensemble starting from a single input structure by fitting to a SAXS profile of the protein in solution. We describe the interfaces and capabilities of the servers (salilab.org/foxs), followed by demonstrating their application on Interleukin-33 (IL-33) and its primary receptor ST2.
Collapse
Affiliation(s)
- Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, CA 94143, USA
| | - Michal Hammel
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John A Tainer
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, CA 94143, USA
| |
Collapse
|
17
|
Kamariah N, Manimekalai MSS, Nartey W, Eisenhaber F, Eisenhaber B, Grüber G. Crystallographic and solution studies of NAD(+)- and NADH-bound alkylhydroperoxide reductase subunit F (AhpF) from Escherichia coli provide insight into sequential enzymatic steps. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1139-52. [PMID: 26092085 DOI: 10.1016/j.bbabio.2015.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/03/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Redox homeostasis is significant for the survival of pro- and eukaryotic cells and is crucial for defense against reactive oxygen species like superoxide and hydrogen peroxide. In Escherichia coli, the reduction of peroxides occurs via the redox active disulfide center of the alkyl hydroperoxide reductase C subunit (AhpC), whose reduced state becomes restored by AhpF. The 57kDa EcAhpF contains an N-terminal domain (NTD), which catalyzes the electron transfer from NADH via an FAD of the C-terminal domain into EcAhpC. The NTD is connected to the C-terminal domain via a linker. Here, the first crystal structure of E. coli AhpF bound with NADH and NAD(+) has been determined at 2.5Å and 2.4Å resolution, respectively. The NADH-bound form of EcAhpF reveals that the NADH-binding domain is required to alter its conformation to bring a bound NADH to the re-face of the isoalloxazine ring of the flavin, and thereby render the NADH-domain dithiol center accessible to the NTD disulfide center for electron transfer. The NAD(+)-bound form of EcAhpF shows conformational differences for the nicotinamide end moieties and its interacting residue M467, which is proposed to represent an intermediate product-release conformation. In addition, the structural alterations in EcAhpF due to NADH- and NAD(+)-binding in solution are shown by small angle X-ray scattering studies. The EcAhpF is revealed to adopt many intermediate conformations in solution to facilitate the electron transfer from the substrate NADH to the C-terminal domain, and subsequently to the NTD of EcAhpF for the final step of AhpC reduction.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | | | - Wilson Nartey
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; School of Computer Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Republic of Singapore; Department of Biological Sciences, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Gerhard Grüber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
18
|
Lian S, Liu C, Zhang X, Wang H, Li Z. Detection of T4 polynucleotide kinase activity based on cationic conjugated polymer-mediated fluorescence resonance energy transfer. Biosens Bioelectron 2015; 66:316-20. [DOI: 10.1016/j.bios.2014.11.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
|
19
|
Involvement of the insulin-like growth factor binding proteins in the cancer cell response to DNA damage. J Cell Commun Signal 2015; 9:167-76. [PMID: 25617051 DOI: 10.1007/s12079-015-0262-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022] Open
Abstract
The complex mechanisms that cells have evolved to meet the challenge of constant exposure to DNA-damaging stimuli, also serve to protect cancer cells from the cytotoxic effects of chemo- and radiotherapy. IGFBPs appear to be involved, directly or indirectly, in some of these protective mechanisms. Activation of p53 is an early response to genotoxic stress, and all six human IGFBP genes have predicted p53 response elements in their promoter and/or intronic regions, at least some of which are functional. IGFBP3 has been extensively characterized as a p53-inducible gene, but in some cases it is suppressed by mutant p53 forms. DNA double-strand breaks (DSBs), induced by radiotherapy and some chemotherapies, potentially lead to apoptotic cell death, senescence, or repair and recovery. DSB damage can be repaired by homologous recombination or non-homologous end-joining (NHEJ), depending on the cell cycle stage, availability of key repair proteins, and other factors. The epidermal growth factor receptor (EGFR) has been implicated in the NHEJ pathway, and EGFR inhibition may inhibit repair, promoting apoptosis and thus improving sensitivity to chemotherapy or radiotherapy. Both IGFBP-3 and IGFBP-6 interact with components of the NHEJ pathway, and IGFBP-3 can facilitate this process through direct interaction with both EGFR and the catalytic subunit of DNA-PK. Cell fate after DNA damage may in part be regulated by the balance between the sphingolipids ceramide and sphingosine-1-phosphate, and IGFBPs can influence the production of both lipids. A better understanding of the involvement of IGFBPs in the DNA damage response in cancer cells may lead to improved methods of sensitizing cancers to DNA-damaging therapies.
Collapse
|
20
|
Andres SN, Schellenberg MJ, Wallace BD, Tumbale P, Williams RS. Recognition and repair of chemically heterogeneous structures at DNA ends. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:1-21. [PMID: 25111769 PMCID: PMC4303525 DOI: 10.1002/em.21892] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/28/2014] [Indexed: 05/13/2023]
Abstract
Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not "clean." Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase β (POLβ). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini.
Collapse
Affiliation(s)
- Sara N Andres
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, North Carolina
| | | | | | | | | |
Collapse
|
21
|
Kakarougkas A, Jeggo PA. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol 2014; 87:20130685. [PMID: 24363387 DOI: 10.1259/bjr.20130685] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA double strand breaks (DSBs) are potential lethal lesions but can also lead to chromosome rearrangements, a step promoting carcinogenesis. DNA non-homologous end-joining (NHEJ) is the major DSB rejoining process and occurs in all cell cycle stages. Homologous recombination (HR) can additionally function to repair irradiation-induced two-ended DSBs in G2 phase. In mammalian cells, HR predominantly uses a sister chromatid as a template for DSB repair; thus HR functions only in late S/G2 phase. Here, we review current insight into the interplay between HR and NHEJ in G2 phase. We argue that NHEJ represents the first choice pathway, repairing approximately 80% of X-ray-induced DSBs with rapid kinetics. However, a subset of DSBs undergoes end resection and repair by HR. 53BP1 restricts resection, thereby promoting NHEJ. During the switch from NHEJ to HR, 53BP1 is repositioned to the periphery of enlarged irradiation-induced foci (IRIF) via a BRCA1-dependent process. K63-linked ubiquitin chains, which also form at IRIF, are also repositioned as well as receptor-associated protein 80 (RAP80), a ubiquitin binding protein. RAP80 repositioning requires POH1, a proteasome component. Thus, the interfacing barriers to HR, 53BP1 and RAP80 are relieved by POH1 and BRCA1, respectively. Removal of RAP80 from the IRIF core is required for loss of the ubiquitin chains and 53BP1, and for efficient replication protein A foci formation. We propose that NHEJ is used preferentially to HR because it is a compact process that does not necessitate extensive chromatin changes in the DSB vicinity.
Collapse
Affiliation(s)
- A Kakarougkas
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | | |
Collapse
|
22
|
Williams GJ, Hammel M, Radhakrishnan SK, Ramsden D, Lees-Miller SP, Tainer JA. Structural insights into NHEJ: building up an integrated picture of the dynamic DSB repair super complex, one component and interaction at a time. DNA Repair (Amst) 2014; 17:110-20. [PMID: 24656613 PMCID: PMC4102006 DOI: 10.1016/j.dnarep.2014.02.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
Non-homologous end joining (NHEJ) is the major pathway for repair of DNA double-strand breaks (DSBs) in human cells. NHEJ is also needed for V(D)J recombination and the development of T and B cells in vertebrate immune systems, and acts in both the generation and prevention of non-homologous chromosomal translocations, a hallmark of genomic instability and many human cancers. X-ray crystal structures, cryo-electron microscopy envelopes, and small angle X-ray scattering (SAXS) solution conformations and assemblies are defining most of the core protein components for NHEJ: Ku70/Ku80 heterodimer; the DNA dependent protein kinase catalytic subunit (DNA-PKcs); the structure-specific endonuclease Artemis along with polynucleotide kinase/phosphatase (PNKP), aprataxin and PNKP related protein (APLF); the scaffolding proteins XRCC4 and XLF (XRCC4-like factor); DNA polymerases, and DNA ligase IV (Lig IV). The dynamic assembly of multi-protein NHEJ complexes at DSBs is regulated in part by protein phosphorylation. The basic steps of NHEJ have been biochemically defined to require: (1) DSB detection by the Ku heterodimer with subsequent DNA-PKcs tethering to form the DNA-PKcs-Ku-DNA complex (termed DNA-PK), (2) lesion processing, and (3) DNA end ligation by Lig IV, which functions in complex with XRCC4 and XLF. The current integration of structures by combined methods is resolving puzzles regarding the mechanisms, coordination and regulation of these three basic steps. Overall, structural results suggest the NHEJ system forms a flexing scaffold with the DNA-PKcs HEAT repeats acting as compressible macromolecular springs suitable to store and release conformational energy to apply forces to regulate NHEJ complexes and the DNA substrate for DNA end protection, processing, and ligation.
Collapse
Affiliation(s)
- Gareth J Williams
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Sarvan Kumar Radhakrishnan
- Department of Biochemistry & Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, T2 N 4N1 Canada
| | - Dale Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 2759, United States
| | - Susan P Lees-Miller
- Department of Biochemistry & Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, T2 N 4N1 Canada; Department of Oncology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, T2 N 4N1 Canada.
| | - John A Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
23
|
Waters CA, Strande NT, Wyatt DW, Pryor JM, Ramsden DA. Nonhomologous end joining: a good solution for bad ends. DNA Repair (Amst) 2014; 17:39-51. [PMID: 24630899 DOI: 10.1016/j.dnarep.2014.02.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 12/27/2022]
Abstract
Double strand breaks pose unique problems for DNA repair, especially when broken ends possess complex structures that interfere with standard DNA transactions. Nonhomologous end joining can use multiple strategies to solve these problems. It further uses sophisticated means to ensure the strategy chosen provides the ideal balance of flexibility and accuracy.
Collapse
Affiliation(s)
- Crystal A Waters
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Natasha T Strande
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - David W Wyatt
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - John M Pryor
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Dale A Ramsden
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Shibata A, Jeggo PA. DNA double-strand break repair in a cellular context. Clin Oncol (R Coll Radiol) 2014; 26:243-9. [PMID: 24630811 DOI: 10.1016/j.clon.2014.02.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 12/20/2022]
Abstract
Substantial insight into the mechanisms responding to DNA double-strand breaks has been gained from molecular, biochemical and structural approaches. Attention is now focusing on understanding the interplay between the pathways, how they interface through the cell cycle and the communication with other DNA transactions, such as replication and transcription. Understanding these aspects will facilitate an assessment of how cancer cells have modified these processes to achieve unlimited proliferative capacity and adaptability, and pave the way to identify targets suitable for therapy. Here, we briefly overview the processes responding to double-strand breaks and discuss our current understanding of their interplay in a cellular context.
Collapse
Affiliation(s)
- A Shibata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan
| | - P A Jeggo
- Genome Damage and Stability Centre, Life Sciences at University of Sussex, Brighton, UK.
| |
Collapse
|
25
|
Kim ES, Lee N, Park JW, Choi KY. Kinetic characterization of on-chip DNA ligation on dendron-coated surfaces with nanoscaled lateral spacings. NANOTECHNOLOGY 2013; 24:405703. [PMID: 24029158 DOI: 10.1088/0957-4484/24/40/405703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We analyzed the enzymatic profiles of on-chip DNA ligation as we controlled the lateral spacing of surface-immobilized DNA substrates using dendron molecules with different sizes at the nanoscale. Enzymatic on-chip DNA ligation was performed on the dendron-coated surface within 20 min with no need for post-ligation gel electrophoresis. The enzymatic DNA repair was assessed by the fluorescence intensity at the repaired DNA duplex after thermally dissociating the unligated Cy3-labeled DNA from the DNA duplex, in which the Cy3-labeled DNA was hybridized prior to the on-chip DNA ligation. The rate of the nick-sealing reaction on the 27-acid dendron surface was 3-fold higher than that on the 9-acid dendron surface, suggesting that the wider lateral spacing determined by the larger dendron molecule could facilitate the access of DNA ligase to the nick site. The performance of on-chip DNA ligation was dropped to 10% and 3% when the nick was replaced by one- and two-nucleotide-long gaps, respectively. The 5' terminal phosphorylation of DNA strands by polynucleotide kinase and the on-chip DNA cleavage by endonucleases were also quantitatively monitored throughout the on-chip DNA ligation on the dendron-coated surface. A better understanding of the enzymatic kinetics of on-chip DNA ligation will contribute to a more reliable performance of various on-chip DNA ligation-based assays.
Collapse
Affiliation(s)
- Eung-Sam Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, 790-784, Korea
| | | | | | | |
Collapse
|
26
|
Goodarzi AA, Jeggo PA. The repair and signaling responses to DNA double-strand breaks. ADVANCES IN GENETICS 2013; 82:1-45. [PMID: 23721719 DOI: 10.1016/b978-0-12-407676-1.00001-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A DNA double-strand break (DSB) has long been recognized as a severe cellular lesion, potentially representing an initiating event for carcinogenesis or cell death. The evolution of DSB repair pathways as well as additional processes, such as cell cycle checkpoint arrest, to minimize the cellular impact of DSB formation was, therefore, not surprising. However, the depth and complexity of the DNA damage responses being revealed by current studies were unexpected. Perhaps the most surprising finding to emerge is the dramatic changes to chromatin architecture that arise in the DSB vicinity. In this review, we overview the cellular response to DSBs focusing on DNA repair pathways and the interface between them. We consider additional events which impact upon these DSB repair pathways, including regulated arrest of cell cycle progression and chromatin architecture alterations. Finally, we discuss the impact of defects in these processes to human disease.
Collapse
Affiliation(s)
- Aaron A Goodarzi
- Department of Biochemistry & Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
27
|
Perry JJP, Tainer JA. Developing advanced X-ray scattering methods combined with crystallography and computation. Methods 2013; 59:363-71. [PMID: 23376408 PMCID: PMC3684416 DOI: 10.1016/j.ymeth.2013.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 01/09/2023] Open
Abstract
The extensive use of small angle X-ray scattering (SAXS) over the last few years is rapidly providing new insights into protein interactions, complex formation and conformational states in solution. This SAXS methodology allows for detailed biophysical quantification of samples of interest. Initial analyses provide a judgment of sample quality, revealing the potential presence of aggregation, the overall extent of folding or disorder, the radius of gyration, maximum particle dimensions and oligomerization state. Structural characterizations include ab initio approaches from SAXS data alone, and when combined with previously determined crystal/NMR, atomistic modeling can further enhance structural solutions and assess validity. This combination can provide definitions of architectures, spatial organizations of protein domains within a complex, including those not determined by crystallography or NMR, as well as defining key conformational states of a protein interaction. SAXS is not generally constrained by macromolecule size, and the rapid collection of data in a 96-well plate format provides methods to screen sample conditions. This includes screening for co-factors, substrates, differing protein or nucleotide partners or small molecule inhibitors, to more fully characterize the variations within assembly states and key conformational changes. Such analyses may be useful for screening constructs and conditions to determine those most likely to promote crystal growth of a complex under study. Moreover, these high throughput structural determinations can be leveraged to define how polymorphisms affect assembly formations and activities. This is in addition to potentially providing architectural characterizations of complexes and interactions for systems biology-based research, and distinctions in assemblies and interactions in comparative genomics. Thus, SAXS combined with crystallography/NMR and computation provides a unique set of tools that should be considered as being part of one's repertoire of biophysical analyses, when conducting characterizations of protein and other macromolecular interactions.
Collapse
Affiliation(s)
- J. Jefferson P. Perry
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA USA
- School of Biotechnology, Amrita University at Amritapuri, Kollam, Kerala, India
| | - John A. Tainer
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
28
|
Peng Y, Jiang J, Yu R. An electrochemical assay of polynucleotide kinase activity based on streptavidin–gold nanoparticles and enzymatic amplification. RSC Adv 2013. [DOI: 10.1039/c3ra43315c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Jiang C, Yan C, Jiang J, Yu R. Colorimetric assay for T4 polynucleotide kinase activity based on the horseradish peroxidase-mimicking DNAzyme combined with λ exonuclease cleavage. Anal Chim Acta 2012; 766:88-93. [PMID: 23427805 DOI: 10.1016/j.aca.2012.12.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/12/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
T4 polynucleotide kinase (PNK) plays a critical role in various cellular events. Here, we describe a novel colorimetric strategy for estimating the activity of PNK and screening its inhibitors taking advantage of the efficient cleavage of λ exonuclease and the horseradish peroxidase-mimicking DNAzyme (HRPzyme) signal amplification. A label-free hairpin DNA with the sequence of HRPzyme was utilized in the assay. The 5'-hydroxyl terminal of the hairpin DNA was firstly phosphorylated in the presence of PNK and then digested by λ exonuclease. As a result, the blocked 'HRPzyme' sequence of the hairpin DNA was released due to the removal of its completely complementary sequence. Using this strategy, the assay for PNK activity was successfully translated into the detection of HRPzyme. Because of the completely blocking and efficiently releasing of HRPzyme, the colorimetric method exhibited an excellent performance in PNK analysis with a low detection limit of 0.06 U mL(-1) and a wide detection range from 0.06 to 100 U mL(-1). Additionally, the effects of different inhibitors on PNK activity were also evaluated. The proposed strategy holds great potential in the development of high-throughput phosphorylation investigation as well as in the screening of the related drugs.
Collapse
Affiliation(s)
- Cheng Jiang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | | | | | | |
Collapse
|
30
|
Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:789-99. [PMID: 22639100 PMCID: PMC3462898 DOI: 10.1007/s00249-012-0820-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 04/22/2012] [Accepted: 05/05/2012] [Indexed: 01/25/2023]
Abstract
The dynamics of macromolecular conformations are critical to the action of cellular networks. Solution X-ray scattering studies, in combination with macromolecular X-ray crystallography (MX) and nuclear magnetic resonance (NMR), strive to determine complete and accurate states of macromolecules, providing novel insights describing allosteric mechanisms, supramolecular complexes, and dynamic molecular machines. This review addresses theoretical and practical concepts, concerns, and considerations for using these techniques in conjunction with computational methods to productively combine solution-scattering data with high-resolution structures. I discuss the principal means of direct identification of macromolecular flexibility from SAXS data followed by critical concerns about the methods used to calculate theoretical SAXS profiles from high-resolution structures. The SAXS profile is a direct interrogation of the thermodynamic ensemble and techniques such as, for example, minimal ensemble search (MES), enhance interpretation of SAXS experiments by describing the SAXS profiles as population-weighted thermodynamic ensembles. I discuss recent developments in computational techniques used for conformational sampling, and how these techniques provide a basis for assessing the level of the flexibility within a sample. Although these approaches sacrifice atomic detail, the knowledge gained from ensemble analysis is often appropriate for developing hypotheses and guiding biochemical experiments. Examples of the use of SAXS and combined approaches with X-ray crystallography, NMR, and computational methods to characterize dynamic assemblies are presented.
Collapse
|
31
|
Garces F, Pearl LH, Oliver AW. The structural basis for substrate recognition by mammalian polynucleotide kinase 3' phosphatase. Mol Cell 2011; 44:385-96. [PMID: 22055185 DOI: 10.1016/j.molcel.2011.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/26/2011] [Accepted: 08/18/2011] [Indexed: 11/16/2022]
Abstract
Mammalian polynucleotide kinase 3' phosphatase (PNK) plays a key role in the repair of DNA damage, functioning as part of both the nonhomologous end-joining (NHEJ) and base excision repair (BER) pathways. Through its two catalytic activities, PNK ensures that DNA termini are compatible with extension and ligation by either removing 3'-phosphates from, or by phosphorylating 5'-hydroxyl groups on, the ribose sugar of the DNA backbone. We have now determined crystal structures of murine PNK with DNA molecules bound to both of its active sites. The structure of ssDNA engaged with the 3'-phosphatase domain suggests a mechanism of substrate interaction that assists DNA end seeking. The structure of dsDNA bound to the 5'-kinase domain reveals a mechanism of DNA bending that facilitates recognition of DNA ends in the context of single-strand and double-strand breaks and suggests a close functional cooperation in substrate recognition between the kinase and phosphatase active sites.
Collapse
Affiliation(s)
- Fernando Garces
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9QG, UK
| | | | | |
Collapse
|
32
|
|
33
|
Structural basis for the phosphatase activity of polynucleotide kinase/phosphatase on single- and double-stranded DNA substrates. Proc Natl Acad Sci U S A 2011; 108:21022-7. [PMID: 22171004 DOI: 10.1073/pnas.1112036108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polynucleotide kinase/phosphatase (PNKP) is a critical mammalian DNA repair enzyme that generates 5'-phosphate and 3'-hydroxyl groups at damaged DNA termini that are required for subsequent processing by DNA ligases and polymerases. The PNKP phosphatase domain recognizes 3'-phosphate termini within DNA nicks, gaps, or at double- or single-strand breaks. Here we present a mechanistic rationale for the recognition of damaged DNA termini by the PNKP phosphatase domain. The crystal structures of PNKP bound to single-stranded DNA substrates reveals a narrow active site cleft that accommodates a single-stranded substrate in a sequence-independent manner. Biochemical studies suggest that the terminal base pairs of double-stranded substrates near the 3'-phosphate are destabilized by PNKP to allow substrate access to the active site. A positively charged surface distinct from the active site specifically facilitates interactions with double-stranded substrates, providing a complex DNA binding surface that enables the recognition of diverse substrates.
Collapse
|
34
|
Zolner AE, Abdou I, Ye R, Mani RS, Fanta M, Yu Y, Douglas P, Tahbaz N, Fang S, Dobbs T, Wang C, Morrice N, Hendzel MJ, Weinfeld M, Lees-Miller SP. Phosphorylation of polynucleotide kinase/ phosphatase by DNA-dependent protein kinase and ataxia-telangiectasia mutated regulates its association with sites of DNA damage. Nucleic Acids Res 2011; 39:9224-37. [PMID: 21824916 PMCID: PMC3241656 DOI: 10.1093/nar/gkr647] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human polynucleotide kinase/phosphatase (PNKP) is a dual specificity 5'-DNA kinase/3'-DNA phosphatase, with roles in base excision repair, DNA single-strand break repair and non-homologous end joining (NHEJ); yet precisely how PNKP functions in the repair of DNA double strand breaks (DSBs) remains unclear. We demonstrate that PNKP is phosphorylated by the DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) in vitro. The major phosphorylation site for both kinases was serine 114, with serine 126 being a minor site. Ionizing radiation (IR)-induced phosphorylation of cellular PNKP on S114 was ATM dependent, whereas phosphorylation of PNKP on S126 required both ATM and DNA-PK. Inactivation of DNA-PK and/or ATM led to reduced PNKP at DNA damage sites in vivo. Cells expressing PNKP with alanine or aspartic acid at serines 114 and 126 were modestly radiosensitive and IR enhanced the association of PNKP with XRCC4 and DNA ligase IV; however, this interaction was not affected by mutation of PNKP phosphorylation sites. Purified PNKP protein with mutation of serines 114 and 126 had decreased DNA kinase and DNA phosphatase activities and reduced affinity for DNA in vitro. Together, our results reveal that IR-induced phosphorylation of PNKP by ATM and DNA-PK regulates PNKP function at DSBs.
Collapse
Affiliation(s)
- Angela E Zolner
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem Sci 2011; 36:262-71. [PMID: 21353781 DOI: 10.1016/j.tibs.2011.01.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 01/09/2023]
Abstract
The termini of DNA strand breaks induced by internal and external factors often require processing before missing nucleotides can be replaced by DNA polymerases and the strands rejoined by DNA ligases. Polynucleotide kinase/phosphatase (PNKP) serves a crucial role in the repair of DNA strand breaks by catalyzing the restoration of 5'-phosphate and 3'-hydroxyl termini. It participates in several DNA repair pathways through interactions with other DNA repair proteins, notably XRCC1 and XRCC4. Recent studies have highlighted the physiological importance of PNKP in maintaining the genomic stability of normal tissues, particularly developing neural cells, as well as enhancing the resistance of cancer cells to genotoxic therapeutic agents.
Collapse
|
36
|
Classen S, Rodic I, Holton J, Hura GL, Hammel M, Tainer JA. Software for the high-throughput collection of SAXS data using an enhanced Blu-Ice/DCS control system. JOURNAL OF SYNCHROTRON RADIATION 2010; 17:774-81. [PMID: 20975223 PMCID: PMC2964114 DOI: 10.1107/s0909049510028566] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 08/04/2010] [Indexed: 05/24/2023]
Abstract
Biological small-angle X-ray scattering (SAXS) provides powerful complementary data for macromolecular crystallography (MX) by defining shape, conformation and assembly in solution. Although SAXS is in principle the highest throughput technique for structural biology, data collection is limited in practice by current data collection software. Here the adaption of beamline control software, historically developed for MX beamlines, for the efficient operation and high-throughput data collection at synchrotron SAXS beamlines is reported. The Blu-Ice GUI and Distributed Control System (DCS) developed in the Macromolecular Crystallography Group at the Stanford Synchrotron Radiation Laboratory has been optimized, extended and enhanced to suit the specific needs of the biological SAXS endstation at the SIBYLS beamline at the Advanced Light Source. The customizations reported here provide a potential route for other SAXS beamlines in need of robust and efficient beamline control software. As a great deal of effort and optimization has gone into crystallographic software, the adaption and extension of crystallographic software may prove to be a general strategy to provide advanced SAXS software for the synchrotron community. In this way effort can be put into optimizing features for SAXS rather than reproducing those that have already been successfully implemented for the crystallographic community.
Collapse
Affiliation(s)
- Scott Classen
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Allinson SL. DNA end-processing enzyme polynucleotide kinase as a potential target in the treatment of cancer. Future Oncol 2010; 6:1031-42. [PMID: 20528239 DOI: 10.2217/fon.10.40] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pharmacological inhibition of DNA-repair pathways as an approach for the potentiation of chemo- and radio-therapeutic cancer treatments has attracted increasing levels of interest in recent years. Inhibitors of several enzymes involved in the repair of DNA strand breaks are currently at various stages of the drug development process. Polynucleotide kinase (PNK), a bifunctional DNA-repair enzyme that possesses both 3'-phosphatase and 5'-kinase activities, plays an important role in the repair of both single strand and double strand breaks and as a result, RNAi-mediated knockdown of PNK sensitizes cells to a range of DNA-damaging agents. Recently, a small molecule inhibitor of PNK has been developed that is able to sensitize cells to ionizing radiation and the topoisomerase I poison, camptothecin. Although still in the early stages of development, PNK inhibition represents a promising means of enhancing the efficacy of existing cancer treatments.
Collapse
Affiliation(s)
- Sarah L Allinson
- School of Health & Medicine, Division of Biomedical & Life Sciences, Lancaster University, Lancaster LA14YQ, UK.
| |
Collapse
|
38
|
Perry JJP, Cotner-Gohara E, Ellenberger T, Tainer JA. Structural dynamics in DNA damage signaling and repair. Curr Opin Struct Biol 2010; 20:283-94. [PMID: 20439160 PMCID: PMC2916978 DOI: 10.1016/j.sbi.2010.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Changing macromolecular conformations and complexes are critical features of cellular networks, typified by DNA damage response pathways that are essential to life. These fluctuations enhance the specificity of macromolecular recognition and catalysis, and enable an integrated functioning of pathway components, ensuring efficiency while reducing off pathway reactions. Such dynamic complexes challenge classical detailed structural analyses, so their characterizations demand combining methods that provide detail with those that inform dynamics in solution. Small-angle X-ray scattering, electron microscopy, hydrogen-deuterium exchange and computation are complementing detailed structures from crystallography and NMR to provide comprehensive models for DNA damage searching, specificity, signaling, and repair. Here, we review new approaches and results on DNA damage responses that advance structural biology in the fourth dimension, connecting proteins to pathways.
Collapse
Affiliation(s)
- J Jefferson P Perry
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
39
|
Pretto DI, Tsutakawa S, Brosey CA, Castillo A, Chagot ME, Smith JA, Tainer JA, Chazin WJ. Structural dynamics and single-stranded DNA binding activity of the three N-terminal domains of the large subunit of replication protein A from small angle X-ray scattering. Biochemistry 2010; 49:2880-9. [PMID: 20184389 PMCID: PMC2847624 DOI: 10.1021/bi9019934] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Replication protein A (RPA) is the primary eukaryotic single-stranded DNA (ssDNA) binding protein utilized in diverse DNA transactions in the cell. RPA is a heterotrimeric protein with seven globular domains connected by flexible linkers, which enable substantial interdomain motion that is essential to its function. Small angle X-ray scattering (SAXS) experiments with two multidomain constructs from the N-terminus of the large subunit (RPA70) were used to examine the structural dynamics of these domains and their response to the binding of ssDNA. The SAXS data combined with molecular dynamics simulations reveal substantial interdomain flexibility for both RPA70AB (the tandem high-affinity ssDNA binding domains A and B connected by a 10-residue linker) and RPA70NAB (RPA70AB extended by a 70-residue linker to the RPA70N protein interaction domain). Binding of ssDNA to RPA70NAB reduces the interdomain flexibility between the A and B domains but has no effect on RPA70N. These studies provide the first direct measurements of changes in orientation of these three RPA domains upon binding ssDNA. The results support a model in which RPA70N remains structurally independent of RPA70AB in the DNA-bound state and therefore freely available to serve as a protein recruitment module.
Collapse
Affiliation(s)
- Dalyir I. Pretto
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232–8725, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232–8725, USA
| | - Susan Tsutakawa
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chris A. Brosey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232–8725, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232–8725, USA
| | - Amalchi Castillo
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232–8725, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232–8725, USA
| | - Marie-Eve Chagot
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232–8725, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232–8725, USA
| | - Jarrod A. Smith
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232–8725, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232–8725, USA
| | - John A. Tainer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Walter J. Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232–8725, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232–8725, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232–8725, USA
| |
Collapse
|
40
|
Rambo RP, Tainer JA. Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Curr Opin Struct Biol 2010; 20:128-37. [PMID: 20097063 DOI: 10.1016/j.sbi.2009.12.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/24/2009] [Accepted: 12/24/2009] [Indexed: 11/28/2022]
Abstract
Small-angle X-ray scattering (SAXS) is changing how we perceive biological structures, because it reveals dynamic macromolecular conformations and assemblies in solution. SAXS information captures thermodynamic ensembles, enhances static structures detailed by high-resolution methods, uncovers commonalities among diverse macromolecules, and helps define biological mechanisms. SAXS-based experiments on RNA riboswitches and ribozymes and on DNA-protein complexes including DNA-PK and p53 discover flexibilities that better define structure-function relationships. Furthermore, SAXS results suggest conformational variation is a general functional feature of macromolecules. Thus, accurate structural analyses will require a comprehensive approach that assesses both flexibility, as seen by SAXS, and detail, as determined by X-ray crystallography and NMR. Here, we review recent SAXS computational tools, technologies, and applications to nucleic acids and related structures.
Collapse
Affiliation(s)
- Robert P Rambo
- Life Science Division, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
41
|
Wang LK, Shuman S. Mutational analysis of the 5'-OH oligonucleotide phosphate acceptor site of T4 polynucleotide kinase. Nucleic Acids Res 2009; 38:1304-11. [PMID: 19966275 PMCID: PMC2831316 DOI: 10.1093/nar/gkp1096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
T4 polynucleotide kinase/phosphatase (Pnkp) exemplifies a family of bifunctional enzymes with 5′-kinase and 3′-phosphatase activities that function in nucleic acid repair. The N-terminal kinase domain belongs to the P-loop phosphotransferase superfamily. The kinase is distinguished by a tunnel-like active site with separate entrances on opposite sides of the protein for the NTP phosphate donor and a 5′-OH single-stranded oligonucleotide phosphate acceptor. Here, we probed by mutagenesis the roles of individual amino acids that comprise the acceptor binding site. We thereby identified Glu57 as an important residue, by virtue of its participation in a salt bridge network with two catalytic residues identified previously: Arg38, which binds the 3′-phosphate of the terminal 5′-OH nucleotide, and the putative general base Asp35 that contacts the nucleophilic 5′-OH group. The 5′-OH nucleoside fits into a pocket lined by aliphatic amino acids (Val131, Pro132 and Val135) that make van der Waals contacts to the nucleobase. Whereas subtraction of these contacts by single alanine substitutions for Val131 or Val135 and glycine for Pro132 had modest effects on kinase activity, the introduction of bulkier phenylalanines for Val131 and Val135 were deleterious, especially V131F, which severely impeded both substrate binding (increasing Km by 15-fold) and catalysis (decreasing kcat by 300-fold).
Collapse
Affiliation(s)
- Li Kai Wang
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | |
Collapse
|
42
|
Lu M, Mani RS, Karimi-Busheri F, Fanta M, Wang H, Litchfeld DW, Weinfeld M. Independent mechanisms of stimulation of polynucleotide kinase/phosphatase by phosphorylated and non-phosphorylated XRCC1. Nucleic Acids Res 2009; 38:510-21. [PMID: 19910369 PMCID: PMC2811000 DOI: 10.1093/nar/gkp1023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
XRCC1 plays a central role in mammalian single-strand break repair. Although it has no enzymatic activity of its own, it stimulates the activities of polynucleotide kinase/phosphatase (PNKP), and this function is enhanced by protein kinase CK2 mediated phosphorylation of XRCC1. We have previously shown that non-phosphorylated XRCC1 stimulates the kinase activity of PNKP by increasing the turnover of PNKP. Here we extend our analysis of the XRCC1-PNKP interaction taking into account the phosphorylation of XRCC1. We demonstrate that phosphorylated and non-phosphorylated XRCC1 interact with different regions of PNKP. Phosphorylated XRCC1 binds with high affinity (Kd = 3.5 nM and 1 : 1 stoichiometry) to the forkhead associated (FHA) domain, while non-phosphorylated XRCC1 binds to the catalytic domain of PNKP with lower affinity (Kd = 43.0 nM and 1 : 1 stoichiometry). Under conditions of limited enzyme concentration both forms of XRCC1 enhance the activities of PNKP, but the effect is more pronounced with phosphorylated XRCC1, particularly for the kinase activity of PNKP. The stimulatory effect of phosphorylated XRCC1 on PNKP can be totally inhibited by the presence of excess FHA domain polypeptide, but non-phosphorylated XRCC1 is not susceptible to competition by the FHA domain. Thus, XRCC1 can stimulate PNKP by two independent mechanisms.
Collapse
Affiliation(s)
- Meiling Lu
- Department of Oncology, University of Alberta and Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Hammel M, Yu Y, Mahaney BL, Cai B, Ye R, Phipps BM, Rambo RP, Hura GL, Pelikan M, So S, Abolfath RM, Chen DJ, Lees-Miller SP, Tainer JA. Ku and DNA-dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non-homologous end joining complex. J Biol Chem 2009; 285:1414-23. [PMID: 19893054 PMCID: PMC2801267 DOI: 10.1074/jbc.m109.065615] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.
Collapse
Affiliation(s)
- Michal Hammel
- Physical Biosciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|