1
|
Murray M, Wetmore S. Unlocking precision in aptamer engineering: a case study of the thrombin binding aptamer illustrates why modification size, quantity, and position matter. Nucleic Acids Res 2024; 52:10823-10835. [PMID: 39217472 PMCID: PMC11472061 DOI: 10.1093/nar/gkae729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The thrombin binding aptamer (TBA) is a prototypical platform used to understand the impact of chemically-modified nucleotides on aptamer stability and target affinity. To provide structural insight into the experimentally-observed effects of modification size, location, and number on aptamer performance, long time-scale molecular dynamics (MD) simulations were performed on multiple binding orientations of TBA-thrombin complexes that contain a large, flexible tryptophan thymine derivative (T-W) or a truncated analogue (T-K). Depending on modification position, T-W alters aptamer-target binding orientations, fine-tunes aptamer-target interactions, strengthens networks of nucleic acid-protein contacts, and/or induces target conformational changes to enhance binding. The proximity and 5'-to-3' directionality of nucleic acid structural motifs also play integral roles in the behavior of the modifications. Modification size can differentially influence target binding by promoting more than one aptamer-target binding pose. Multiple modifications can synergistically strengthen aptamer-target binding by generating novel nucleic acid-protein structural motifs that are unobtainable for single modifications. By studying a diverse set of modified aptamers, our work uncovers design principles that must be considered in the future development of aptamers containing chemically-modified nucleotides for applications in medicine and biotechnology, highlighting the value of computational studies in nucleic acids research.
Collapse
Affiliation(s)
- Makay T Murray
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
2
|
Hoogstraten CG, Terrazas M, Aviñó A, White NA, Sumita M. Dynamics-Function Analysis in Catalytic RNA Using NMR Spin Relaxation and Conformationally Restricted Nucleotides. Methods Mol Biol 2021; 2167:183-202. [PMID: 32712921 DOI: 10.1007/978-1-0716-0716-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A full understanding of biomolecular function requires an analysis of both the dynamic properties of the system of interest and the identification of those dynamics that are required for function. We describe NMR methods based on metabolically directed specific isotope labeling for the identification of molecular disorder and/or conformational transitions on the RNA backbone ribose groups. These analyses are complemented by the use of synthetic covalently modified nucleotides constrained to a single sugar pucker, which allow functional assessment of dynamics by selectively removing a minor conformer identified by NMR from the structural ensemble.
Collapse
Affiliation(s)
- Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| | - Montserrat Terrazas
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.,Joint IRB-BSC Program in Computational Biology, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, Spain.,Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Minako Sumita
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
3
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
4
|
De Fenza M, Eremeeva E, Troisi R, Yang H, Esposito A, Sica F, Herdewijn P, D'Alonzo D, Guaragna A. Structure-Activity Relationship Study of a Potent α-Thrombin Binding Aptamer Incorporating Hexitol Nucleotides. Chemistry 2020; 26:9589-9597. [PMID: 32363791 DOI: 10.1002/chem.202001504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/29/2020] [Indexed: 12/13/2022]
Abstract
The replacement of one or more nucleotide residues in the potent α-thrombin-binding aptamer NU172 with hexitol-based nucleotides has been devised to study the effect of these substitutions on the physicochemical and functional properties of the anticoagulant agent. The incorporation of single hexitol nucleotides at the T9 and G18 positions of NU172 substantially retained the physicochemical features of the parent oligonucleotide, as a result of the biomimetic properties of the hexitol backbone. Importantly, the NU172-TH 9 mutant exhibited a higher binding affinity toward human α-thrombin than the native aptamer and an improved stability even after 24 h in 90 % human serum, with a significant increase in the estimated half-life. The anticoagulant activity of the modified oligonucleotide was also found to be slightly preferable to NU172. Overall, these results confirm the potential of hexitol nucleotides as biomimetic agents, while laying the foundations for the development of NU172-inspired α-thrombin-binding aptamers.
Collapse
Affiliation(s)
- Maria De Fenza
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Elena Eremeeva
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Romualdo Troisi
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Hui Yang
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Anna Esposito
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Filomena Sica
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Piet Herdewijn
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Daniele D'Alonzo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Annalisa Guaragna
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| |
Collapse
|
5
|
Portella G, Orozco M, Vendruscolo M. Determination of a Structural Ensemble Representing the Dynamics of a G-Quadruplex DNA. Biochemistry 2019; 59:379-388. [PMID: 31815441 DOI: 10.1021/acs.biochem.9b00493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is increasingly recognized that the structures and dynamics of G-quadruplex DNA molecules are dictated by their sequences and greatly affected by environmental factors. The core guanine tetrads (G-tetrads) coordinate cations and display a strong conformational rigidity compared with that of the connecting loops. Although long loops linking the G-tetrads are typically disfavored, when present, they provide a striking illustration of the dynamics of short, single-stranded DNA regions. In addition to their role in determining the stability of the G-quadruplex state, these loops are also interesting as potential drug targets. To characterize accurately the dynamics of this DNA state, we apply here the principles of structural ensemble determination developed in the past two decades for protein molecules to DNA molecules. We thus perform extensive molecular dynamics simulations restrained with nuclear magnetic resonance residual dipolar couplings to determine a structural ensemble of the human CEB25 minisatellite G-quadruplex, which contains a connecting loop of nine nucleotides. This structural ensemble displays a wide set of arrangements for the loop and a compact, well-defined G-quadruplex core. Our results show the importance of stacking interactions in the loop and strengthen the ability of the closing base pairs to confer a large thermodynamic stability to the G-quadruplex structure.
Collapse
Affiliation(s)
- Guillem Portella
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , U.K.,Institute for Research in Biomedicine (IRB Barcelona) , Barcelona Institute for Science and Technology (BIST) , 08028 Barcelona , Spain.,Joint BSC-CRG-IRB Research Program in Computational Biology , 08028 Barcelona , Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona) , Barcelona Institute for Science and Technology (BIST) , 08028 Barcelona , Spain.,Joint BSC-CRG-IRB Research Program in Computational Biology , 08028 Barcelona , Spain.,Department of Biochemistry and Biomedicine , University of Barcelona , 08028 Barcelona , Spain
| | | |
Collapse
|
6
|
Revealing conformational dynamics of 2'-O-methyl-RNA guanine modified G-quadruplex by replica exchange molecular dynamics. Biochem Biophys Res Commun 2019; 520:14-19. [PMID: 31564415 DOI: 10.1016/j.bbrc.2019.09.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
Thrombin-binding DNA aptamer (TBA) can fold into an antiparallel unimolecular G-quadruplex (G4) structure. Different types of modifications lead to various effects on the structure and stability of the G4 structure. Previous study has shown that a modified TBA (mTBA) that 2'-deoxy guanine (dG) at positions 10 and 11 in the TBA sequence were replaced by 2'-O-methyl-RNA guanine (2'OMe-G) can't fold into a well-defined G4 structure. In order to investigate the detailed structural information and probe the instability factors, we successfully employed the replica exchange molecular dynamics (REMD) to characterize the large conformational variations of the mTBA and systemically describe the influences of the 2'OMe-G on the mTBA in terms of conformation variations and the probability distributions of Hoogsteen hydrogen bonds, dihedral, sugar pucker and glycosyl torsion angle. Replacing position 10 with the 2'OMe-G (2'OMe-G10) induced a strong destabilization of the aptamer, while the 2'OMe-G at position 11(2'OMe-G11) was less destabilizing. More importantly, the glycosyl torsion angle and sugar pucker of 2'OMe-G10 were the most critical destabilization factors. These results were in good agreement with the theoretical and experimental results. Moreover, the structure information can be used as guidelines for the further design of modifications on G4 structure.
Collapse
|
7
|
Seelam Prabhakar P, A Manderville R, D Wetmore S. Impact of the Position of the Chemically Modified 5-Furyl-2'-Deoxyuridine Nucleoside on the Thrombin DNA Aptamer-Protein Complex: Structural Insights into Aptamer Response from MD Simulations. Molecules 2019; 24:molecules24162908. [PMID: 31405145 PMCID: PMC6720718 DOI: 10.3390/molecules24162908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Aptamers are functional nucleic acids that bind to a range of targets (small molecules, proteins or cells) with a high affinity and specificity. Chemically-modified aptamers are of interest because the incorporation of novel nucleobase components can enhance aptamer binding to target proteins, while fluorescent base analogues permit the design of functional aptasensors that signal target binding. However, since optimally modified nucleoside designs have yet to be identified, information about how to fine tune aptamer stability and target binding affinity is required. The present work uses molecular dynamics (MD) simulations to investigate modifications to the prototypical thrombin-binding aptamer (TBA), which is a 15-mer DNA sequence that folds into a G-quadruplex structure connected by two TT loops and one TGT loop. Specifically, we modeled a previously synthesized thymine (T) analog, namely 5-furyl-2′-deoxyuridine (5FurU), into each of the six aptamer locations occupied by a thymine base in the TT or TGT loops of unbound and thrombin bound TBA. This modification and aptamer combination were chosen as a proof-of-principle because previous experimental studies have shown that TBA displays emissive sensitivity to target binding based on the local environment polarity at different 5FurU modification sites. Our simulations reveal that the chemically-modified base imparts noticeable structural changes to the aptamer without affecting the global conformation. Depending on the modification site, 5FurU performance is altered due to changes in the local environment, including the modification site structural dynamics, degree of solvent exposure, stacking with neighboring bases, and interactions with thrombin. Most importantly, these changes directly correlate with the experimentally-observed differences in the stability, binding affinity and emissive response of the modified aptamers. Therefore, the computational protocols implemented in the present work can be used in subsequent studies in a predictive way to aid the fine tuning of aptamer target recognition for use as biosensors (aptasensors) and/or therapeutics.
Collapse
Affiliation(s)
- Preethi Seelam Prabhakar
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AL T1K 3M4, Canada
| | - Richard A Manderville
- Department of Chemistry and Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AL T1K 3M4, Canada.
| |
Collapse
|
8
|
Chai Z, Guo L, Jin H, Li Y, Du S, Shi Y, Wang C, Shi W, He J. TBA loop mapping with 3'-inverted-deoxythymidine for fine-tuning of the binding affinity for α-thrombin. Org Biomol Chem 2019; 17:2403-2412. [PMID: 30735210 DOI: 10.1039/c9ob00053d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
TBA is a 15-mer DNA aptamer for human α-thrombin, and its three T-rich loops are involved in the binding interactions with thrombin differently. In order to clarify their specific spatial locations in the binding interactions and search for more favourable positions, here a systematic investigation of all the loop residues was conducted with 3'-inverted thymidine (iT), by which both unnatural 3'-3'- and 5'-5'-linkages for each incorporation were introduced in the tertiary structure. The changes in Tm values and CD spectra revealed that motifs T3T12 and T4T13 are structurally distinct. Longer anti-clotting time was obtained for the T3 and T12 modifications, respectively, while T4 and T13 were completely intolerant with such changes, in terms of stability and binding to thrombin. In particular, the increased affinity bindings and longer anti-clotting time were obtained with the replacement on the central loop T7G8T9, which were closely related to the existence of a monovalent ion, K+ or Na+, consistently with the supposed binding site of these ions in TBA. It is worthwhile to note that both the subtle variations of the loop residues induced by iT and the monovalent ions determined the interacting residues of TBA and the binding strength rather than the thermal stability of the TBA structure.
Collapse
Affiliation(s)
- Zhilong Chai
- School of Pharmaceutical Sciences, Guizhou University, Guizhou 550025, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Eritja R. Meet Our Editorial Board Member. Curr Med Chem 2019. [DOI: 10.2174/092986732541190131151240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC) Spanish National Research Council (CSIC) Barcelona, Spain
| |
Collapse
|
10
|
White NA, Sumita M, Marquez VE, Hoogstraten CG. Coupling between conformational dynamics and catalytic function at the active site of the lead-dependent ribozyme. RNA (NEW YORK, N.Y.) 2018; 24:1542-1554. [PMID: 30111534 PMCID: PMC6191710 DOI: 10.1261/rna.067579.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
In common with other self-cleaving RNAs, the lead-dependent ribozyme (leadzyme) undergoes dynamic fluctuations to a chemically activated conformation. We explored the connection between conformational dynamics and self-cleavage function in the leadzyme using a combination of NMR spin-relaxation analysis of ribose groups and conformational restriction via chemical modification. The functional studies were performed with a North-methanocarbacytidine modification that prevents fluctuations to C2'-endo conformations while maintaining an intact 2'-hydroxyl nucleophile. Spin-relaxation data demonstrate that the active-site Cyt-6 undergoes conformational exchange attributed to sampling of a minor C2'-endo state with an exchange lifetime on the order of microseconds to tens of microseconds. A conformationally restricted species in which the fluctuations to the minor species are interrupted shows a drastic decrease in self-cleavage activity. Taken together, these data indicate that dynamic sampling of a minor species at the active site of this ribozyme, and likely of related naturally occurring motifs, is strongly coupled to catalytic function. The combination of NMR dynamics analysis with functional probing via conformational restriction is a general methodology for dissecting dynamics-function relationships in RNA.
Collapse
Affiliation(s)
- Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Minako Sumita
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Victor E Marquez
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
11
|
Zhou Y, Yu Y, Gao L, Fei Y, Ye T, Li Q, Zhou X, Gan N, Shao Y. Structuring polarity-inverted TBA to G-quadruplex for selective recognition of planarity of natural isoquinoline alkaloids. Analyst 2018; 143:4907-4914. [PMID: 30238092 DOI: 10.1039/c8an01561a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Efficient structuring of DNA by small molecules is very crucial in developing DNA-based novel switches with an ideal performance. In this work, we found that inverting only the polarity of the 3' terminal guanine of the thrombin-binding aptamer (3iTBA) totally eradicates the original TBA G-quadruplex (G4) structure in K+. The unstructured 3iTBA can be further refolded upon specifically interacting with small molecules of natural isoquinoline alkaloids (IAs) due to their fruitful binding patterns with variant nucleic acid structures. We identified that 3iTBA can serve as a topology selector for planar IAs. Nitidine (NIT), owing to the planar aromatic ring and coplanar substituents, is the most efficient to restructure the 3iTBA random coil toward the anti-parallel G4 conformation. However, common metal ions can't realize this structuring. The topology selector competency of 3iTBA toward IAs' planarity can be visualized using gold nanoparticles (AuNPs) as the chromogenic readout. Our work expands the G4 repertoire by exploring the polarity inversion regulation and provides a new approach to switch nucleic acid structures toward a small molecule structure-sensitive sensor.
Collapse
Affiliation(s)
- Yufeng Zhou
- Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
13
|
Aaldering LJ, Poongavanam V, Langkjaer N, Murugan NA, Jørgensen PT, Wengel J, Veedu RN. Development of an Efficient G-Quadruplex-Stabilised Thrombin-Binding Aptamer Containing a Three-Carbon Spacer Molecule. Chembiochem 2017; 18:755-763. [PMID: 28150905 PMCID: PMC5413854 DOI: 10.1002/cbic.201600654] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 01/29/2023]
Abstract
The thrombin‐binding aptamer (TBA), which shows anticoagulant properties, is one of the most studied G‐quadruplex‐forming aptamers. In this study, we investigated the impact of different chemical modifications such as a three‐carbon spacer (spacer‐C3), unlocked nucleic acid (UNA) and 3′‐amino‐modified UNA (amino‐UNA) on the structural dynamics and stability of TBA. All three modifications were incorporated at three different loop positions (T3, T7, T12) of the TBA G‐quadruplex structure to result in a series of TBA variants and their stability was studied by thermal denaturation; folding was studied by circular dichroism spectroscopy and thrombin clotting time. The results showed that spacer‐C3 introduction at the T7 loop position (TBA‐SP7) significantly improved stability and thrombin clotting time while maintaining a similar binding affinity as TBA to thrombin. Detailed molecular modelling experiments provided novel insights into the experimental observations, further supporting the efficacy of TBA‐SP7. The results of this study could provide valuable information for future designs of TBA analogues with superior thrombin inhibition properties.
Collapse
Affiliation(s)
- Lukas J Aaldering
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.,Institute for Plant Biology and Biotechnology, Westphalian Wilhelms University Münster, Schlossgarten 3, 48149, Münster, Germany
| | - Vasanthanathan Poongavanam
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Niels Langkjaer
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - N Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH), 10691, Stockholm, Sweden
| | - Per Trolle Jørgensen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Rakesh N Veedu
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.,Centre for Comparative Genomics, Murdoch University, Murdoch, Perth, 6150, Australia.,Western Australian Neuroscience Research Institute, Murdoch, Perth, 6150, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| |
Collapse
|
14
|
The effect of l-thymidine, acyclic thymine and 8-bromoguanine on the stability of model G-quadruplex structures. Biochim Biophys Acta Gen Subj 2016; 1861:1205-1212. [PMID: 27705754 DOI: 10.1016/j.bbagen.2016.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Guanine-rich oligonucleotides are capable of forming tetrahelical structures known as G-quadruplexes with interesting biological properties. We have investigated the effects of site-specific substitution in the loops and in the tetrads model G-quadruplexes using thymine glycol nucleic acid (GNA) units, l-thymidine and 8-Br-2'-deoxyguanosine. METHODS Modified oligonucleotides were chemically synthesized and spectroscopic techniques were used to determine the relative stability of the modified G-quadruplex. The double 8-BrdG-modified quadruplexes were further characterized by Nuclear Magnetic Resonance. Binding to thrombin of selected quadruplex was analyzed by gel electrophoresis retention assay. RESULTS The most interesting results were found with a 8-bromoG substitution that had the larger stabilization of the quadruplex. NMR studies indicate a tight relationship between the loops and the tetrads to accommodate 8-bromoG modifications within the TBA. CONCLUSIONS The substitutions of loop positions with GNA T affect the TBA stability except for single modification in T7 position. Single l-thymidine substitutions produced destabilization of TBA. Larger changes on quadruplex stability are observed with the use of 8-bromoG finding a single substitution with the highest thermal stabilization found in thrombin binding aptamers modified at the guanine residues and having good affinity for thrombin. Double 8-BrdG modification in anti positions of different tetrads produce a conformational flip from syn to anti conformation of 8-Br-dG to favor loop-tetrad interaction and preserve the overall TBA stability. GENERAL SIGNIFICANCE Modified guanine-rich oligonucleotides are valuable tools for the search for G-quadruplex structures with higher thermal stability and may provide compounds with interesting protein-nucleic acid binding properties. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
|
15
|
Kolganova NA, Varizhuk AM, Novikov RA, Florentiev VL, Pozmogova GE, Borisova OF, Shchyolkina AK, Smirnov IP, Kaluzhny DN, Timofeev EN. Anomeric DNA quadruplexes. ARTIFICIAL DNA, PNA & XNA 2015; 5:e28422. [PMID: 25483931 DOI: 10.4161/adna.28422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thrombin-binding aptamer (TBA) is a 15-nt DNA oligomer that efficiently inhibits thrombin. It has been shown that TBA folds into an anti-parallel unimolecular G-quadruplex. Its three-dimensional chair-like structure consists of two G-tetrads connected by TT and TGT loops. TBA undergoes fast degradation by nucleases in vivo. To improve the nuclease resistance of TBA, a number of modified analogs have been proposed. Here, we describe anomeric modifications of TBA. Non-natural α anomers were used to replace selected nucleotides in the loops and core. Significant stabilization of the quadruplex was observed for the anomeric modification of TT loops at T4 and T13. Replacement of the core guanines either prevents quadruplex assembly or induces rearrangement in G-tetrads. It was found that the anticoagulant properties of chimeric aptamers could be retained only with intact TT loops. On the contrary, modification of the TGT loop was shown to substantially increase nuclease resistance of the chimeric aptamer without a notable disturbance of its anticoagulant activity.
Collapse
Affiliation(s)
- Natalia A Kolganova
- a Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhao X, Liu B, Yan J, Yuan Y, An L, Guan Y. Structure variations of TBA G-quadruplex induced by 2'-O-methyl nucleotide in K+ and Ca2+ environments. Acta Biochim Biophys Sin (Shanghai) 2014; 46:837-50. [PMID: 25246433 DOI: 10.1093/abbs/gmu077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Thrombin binding aptamer (TBA), a 15-mer oligonucleotide of d(GGTTGGTGTGGTTGG) sequence, folds into a chair-type antiparallel G-quadruplex in the K(+) environment, and each of two G-tetrads is characterized by a syn-anti-syn-anti glycosidic conformation arrangement. To explore its folding topology and structural stability, 2'-O-methyl nucleotide (OMe) with the C3'-endo sugar pucker conformation and anti glycosidic angle was used to selectively substitute for the guanine residues of G-tetrads of TBA, and these substituted TBAs were characterized using a circular dichroism spectrum, thermally differential spectrum, ultraviolet stability analysis, electrophoresis mobility shift assay, and thermodynamic analysis in K(+) and Ca(2+) environments. Results showed that single substitutions for syn-dG residues destabilized the G-quadruplex structure, while single substitutions for anti-dG residues could preserve the G-quadruplex in the K(+) environment. When one or two G-tetrads were modified with OMe, TBA became unstructured. In contrast, in Ca(2+) environment, the native TBA appeared to be unstructured. When two G-tetrads were substituted with OMe, TBA seemed to become a more stable parallel G-4 structure. Further thermodynamic data suggested that OMe-substitutions were an enthalpy-driven event. The results in this study enrich our understanding about the effects of nucleotide derivatives on the G-quadruplex structure stability in different ionic environments, which will help to design G-quadruplex for biological and medical applications.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China Department of Chemistry, Shenyang Medical College, Shenyang 110034, China
| | - Bo Liu
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| | - Jing Yan
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| | - Ying Yuan
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| | - Liwen An
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| | - Yifu Guan
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China
| |
Collapse
|
17
|
Sun L, Jin H, Zhao X, Liu Z, Guan Y, Yang Z, Zhang L, Zhang L. Unfolding and conformational variations of thrombin-binding DNA aptamers: synthesis, circular dichroism and molecular dynamics simulations. ChemMedChem 2014; 9:993-1001. [PMID: 24715713 DOI: 10.1002/cmdc.201300564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/14/2014] [Indexed: 01/08/2023]
Abstract
Thrombin-binding DNA aptamer (TBA), with a consensus 15-base sequence: d(GGTTGGTGTGGTTGG), can fold into an antiparallel unimolecular G-quadruplex structure that is necessary for its interaction with thrombin. For the first time, using steered molecular dynamics (SMD) simulations, we have successfully simulated the unfolding process of native TBA G-quadruplex. The unfolding pathway proposed is in agreement with previously reported experimental NMR data. Moreover, the critical intermediate structure in the unfolding pathway, predicted by the NMR results, was identified. The structural characteristics of several TBA oligonucleotides modified with locked nucleoside (LNA) or 2'-O-methyl-nucleoside (MNA) at different positions and number were also investigated by CD spectroscopy. An oligonucleotide substituted with either LNA or MNA at position 2 folds into a native-like G-quadruplex, while doubly substituted derivatives of TBA where LNA or MNA is incorporated at positions 11 and 14 are no longer able to form a G-quadruplex. Starting from the same initial intermediate structure, we successfully overcame sampling limitations, and simulated the large conformational variations in structures of native TBA and modified TBAs by classic MD. Analysis of the models showed that inversion of the glycosyl orientation at position 14 contributes significantly to the disruption of G-quadruplex formation in both of the di-substituted modified TBA systems. Our calculations provide a simple and reliable theoretical model that can be used to investigate and predict the effects of the modifications of an oligonucleotide on the resultant G-quadruplex structure. In addition, the computational protocol described can also be applied for other G-quadruplex systems.
Collapse
Affiliation(s)
- Lidan Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191 (P. R. China)
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Aviñó A, Portella G, Ferreira R, Gargallo R, Mazzini S, Gabelica V, Orozco M, Eritja R. Specific loop modifications of the thrombin-binding aptamer trigger the formation of parallel structures. FEBS J 2014; 281:1085-99. [PMID: 24304855 DOI: 10.1111/febs.12670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/11/2013] [Accepted: 11/27/2013] [Indexed: 01/31/2023]
Abstract
Guanine-rich sequences show large structural variability, with folds ranging from duplex to triplex and quadruplex helices. Quadruplexes are polymorphic, and can show multiple stoichiometries, parallel and antiparallel strand alignments, and different topological arrangements. We analyze here the equilibrium between intramolecular antiparallel and intermolecular parallel G-quadruplexes in the thrombin-binding aptamer (TBA) sequence. Our theoretical and experimental studies demonstrate that an apparently simple modification at the loops of TBA induces a large change in the monomeric antiparallel structure of TBA to yield a parallel G-quadruplex showing a novel T-tetrad. The present results illustrate the extreme polymorphism of G-quadruplexes and the ease with which their conformation in solution can be manipulated by nucleotide modification.
Collapse
Affiliation(s)
- Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Faustino I, Curutchet C, Luque FJ, Orozco M. The DNA-forming properties of 6-selenoguanine. Phys Chem Chem Phys 2013; 16:1101-10. [PMID: 24287926 DOI: 10.1039/c3cp53885k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present here an exhaustive characterization of the structure and properties of 6-selenoguanine, an isoster of guanine, and the impact of its introduction in DNA. This study reports the results of state-of-the-art quantum mechanical calculations and atomistic molecular dynamics simulations carried out to shed light on the impact of the replacement of guanine (G) by 6-selenoguanine (SeG) in different forms of DNA. The results point out that the G → SeG substitution leads to stable DNA duplex, antiparallel triplex and G-quadruplex structures, though local distortions are also found. These structural changes affect the thermodynamic stability of the mutation leading to a clear destabilization for all studied systems. Interestingly, the lowest effect has been found when the mutation was placed in the triplex-forming oligonucleotide strand in a reverse Hoogsteen orientation, which favours the antiparallel triplex formation regarding the G-tetraplex formation. Detailed QM studies strongly suggest that SeG impacts the HOMO-LUMO gap and accordingly the transfer properties of DNA, opening the way to modulate the conductivity properties of non-natural DNAs.
Collapse
Affiliation(s)
- Ignacio Faustino
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac, 10, Barcelona 08028, Spain
| | | | | | | |
Collapse
|
20
|
Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013; 113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Osman Doluca
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
21
|
Gómez-Pinto I, Vengut-Climent E, Lucas R, Aviñó A, Eritja R, González C, Morales JC. Carbohydrate-DNA interactions at G-quadruplexes: folding and stability changes by attaching sugars at the 5'-end. Chemistry 2013; 19:1920-7. [PMID: 23315826 DOI: 10.1002/chem.201203902] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 11/07/2022]
Abstract
Quadruplex DNA structures are attracting an enormous interest in many areas of chemistry, ranging from chemical biology, supramolecular chemistry to nanoscience. We have prepared carbohydrate-DNA conjugates containing the oligonucleotide sequences of G-quadruplexes (thrombin binding aptamer (TBA) and human telomere (TEL)), measured their thermal stability and studied their structure in solution by using NMR and molecular dynamics. The solution structure of a fucose-TBA conjugate shows stacking interactions between the carbohydrate and the DNA G-tetrad in addition to hydrogen bonding and hydrophobic contacts. We have also shown that attaching carbohydrates at the 5'-end of a quadruplex telomeric sequence can alter its folding topology. These results suggest the possibility of modulating the folding of the G-quadruplex by linking carbohydrates and have clear implications in molecular recognition and the design of new G-quadruplex ligands.
Collapse
Affiliation(s)
- Irene Gómez-Pinto
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Piperakis MM, Gaynor JW, Fisher J, Cosstick R. Thermal stabilisation of RNA·RNA duplexes and G-quadruplexes by phosphorothiolate linkages. Org Biomol Chem 2012; 11:966-74. [PMID: 23250349 DOI: 10.1039/c2ob26940f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of 3'-S-phosphorothiolate linkages on the stability of RNA·RNA duplexes and G-quadruplex structures has been studied. 3'-Thio-2'-deoxyuridine was incorporated into RNA duplexes and thermal melting studies revealed that the resulting 3'-S-phosphorothiolate linkages increased the stability of the duplex to thermal denaturation. Additionally, and contrary to expectation, a similar effect on duplex stability was observed when the same thionucleoside was incorporated into the RNA strand of a RNA·DNA duplex. A suitably protected derivative of 3'-thio-2'-deoxyguanosine was prepared using an oxidation-reduction strategy and this residue also increased the thermal stability the [d(TGGGGT)](4) G-quadruplex when positioned centrally. The results are discussed in terms of the influence that the sulfur atom has on the conformation of the furanose ring and imply that the previously noted high thermal stability of parallel RNA quadruplexes is not derived from H-bonding interactions of the 2'-hydroxyl group, but can be attributed to conformational effects.
Collapse
|
23
|
Aviñó A, Mazzini S, Ferreira R, Gargallo R, Marquez VE, Eritja R. The effect on quadruplex stability of North-nucleoside derivatives in the loops of the thrombin-binding aptamer. Bioorg Med Chem 2012; 20:4186-93. [PMID: 22727781 PMCID: PMC3534854 DOI: 10.1016/j.bmc.2012.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 11/29/2022]
Abstract
Modified thrombin-binding aptamers (TBAs) carrying uridine (U), 2'-deoxy-2'-fluorouridine (FU) and North-methanocarbathymidine (NT) residues in the loop regions were synthesized and analyzed by UV thermal denaturation experiments and CD spectroscopy. The replacement of thymidines in the TGT loop by U and FU results in an increased stability of the antiparallel quadruplex structure described for the TBA while the presence of NT residues in the same positions destabilizes the antiparallel structure. The substitution of the thymidines in the TT loops for U, FU and NT induce a destabilization of the antiparallel quadruplex, indicating the crucial role of these positions. NMR studies on TBAs modified with uridines at the TGT loop also confirm the presence of the antiparallel quadruplex structure. Nevertheless, replacement of two Ts in the TT loops by uridine gives a more complex scenario in which the antiparallel quadruplex structure is present along with other partially unfolded species or aggregates.
Collapse
Affiliation(s)
- Anna Aviñó
- Institute for Research in Biomedicine (IRB Barcelona), Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) and Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Baldiri Reixac 10, E-08028 Barcelona. Spain
| | - Stefania Mazzini
- Dipartimento di Scienze Molecolari Agroalimentari, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Ruben Ferreira
- Institute for Research in Biomedicine (IRB Barcelona), Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) and Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Baldiri Reixac 10, E-08028 Barcelona. Spain
| | - Raimundo Gargallo
- Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona, Spain
| | - Victor E. Marquez
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702. USA
| | - Ramon Eritja
- Institute for Research in Biomedicine (IRB Barcelona), Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) and Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Baldiri Reixac 10, E-08028 Barcelona. Spain
| |
Collapse
|
24
|
Ketkar A, Zafar MK, Banerjee S, Marquez VE, Egli M, Eoff RL. A nucleotide-analogue-induced gain of function corrects the error-prone nature of human DNA polymerase iota. J Am Chem Soc 2012; 134:10698-705. [PMID: 22632140 DOI: 10.1021/ja304176q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Y-family DNA polymerases participate in replication stress and DNA damage tolerance mechanisms. The properties that allow these enzymes to copy past bulky adducts or distorted template DNA can result in a greater propensity for them to make mistakes. Of the four human Y-family members, human DNA polymerase iota (hpol ι) is the most error-prone. In the current study, we elucidate the molecular basis for improving the fidelity of hpol ι through use of the fixed-conformation nucleotide North-methanocarba-2'-deoxyadenosine triphosphate (N-MC-dATP). Three crystal structures were solved of hpol ι in complex with DNA containing a template 2'-deoxythymidine (dT) paired with an incoming dNTP or modified nucleotide triphosphate. The ternary complex of hpol ι inserting N-MC-dATP opposite dT reveals that the adenine ring is stabilized in the anti orientation about the pseudo-glycosyl torsion angle, which mimics precisely the mutagenic arrangement of dGTP:dT normally preferred by hpol ι. The stabilized anti conformation occurs without notable contacts from the protein but likely results from constraints imposed by the bicyclo[3.1.0]hexane scaffold of the modified nucleotide. Unmodified dATP and South-MC-dATP each adopt syn glycosyl orientations to form Hoogsteen base pairs with dT. The Hoogsteen orientation exhibits weaker base-stacking interactions and is less catalytically favorable than anti N-MC-dATP. Thus, N-MC-dATP corrects the error-prone nature of hpol ι by preventing the Hoogsteen base-pairing mode normally observed for hpol ι-catalyzed insertion of dATP opposite dT. These results provide a previously unrecognized means of altering the efficiency and the fidelity of a human translesion DNA polymerase.
Collapse
Affiliation(s)
- Amit Ketkar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, USA
| | | | | | | | | | | |
Collapse
|
25
|
Russo Krauss I, Merlino A, Randazzo A, Novellino E, Mazzarella L, Sica F. High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity. Nucleic Acids Res 2012; 40:8119-28. [PMID: 22669903 PMCID: PMC3439905 DOI: 10.1093/nar/gks512] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The G-quadruplex architecture is a peculiar structure adopted by guanine-rich oligonucleotidic sequences, and, in particular, by several aptamers, including the thrombin-binding aptamer (TBA) that has the highest inhibitory activity against human α-thrombin. A crucial role in determining structure, stability and biological properties of G-quadruplexes is played by ions. In the case of TBA, K(+) ions cause an enhancement of the aptamer clotting inhibitory activity. A detailed picture of the interactions of TBA with the protein and with the ions is still lacking, despite the importance of this aptamer in biomedical field for detection and inhibition of α-thrombin. Here, we fill this gap by presenting a high-resolution crystallographic structural characterization of the thrombin-TBA complex formed in the presence of Na(+) or K(+) and a circular dichroism study of the structural stability of the aptamer both free and complexed with α-thrombin, in the presence of the two ionic species. The results indicate that the different effects exerted by Na(+) and K(+) on the inhibitory activity of TBA are related to a subtle perturbation of a few key interactions at the protein-aptamer interface. The present data, in combination with those previously obtained on the complex between α-thrombin and a modified aptamer, may allow the design of new TBA variants with a pharmacological performance enhancement.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, I-80126 Napoli, Italia
| | | | | | | | | | | |
Collapse
|
26
|
Lech CJ, Cheow Lim JK, Wen Lim JM, Amrane S, Heddi B, Phan AT. Effects of site-specific guanine C8-modifications on an intramolecular DNA G-quadruplex. Biophys J 2012; 101:1987-98. [PMID: 22004753 DOI: 10.1016/j.bpj.2011.08.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 10/16/2022] Open
Abstract
Understanding the fundamentals of G-quadruplex formation is important both for targeting G-quadruplexes formed by natural sequences and for engineering new G-quadruplexes with desired properties. Using a combination of experimental and computational techniques, we have investigated the effects of site-specific substitution of a guanine with C8-modified guanine derivatives, including 8-bromo-guanine, 8-O-methyl-guanine, 8-amino-guanine, and 8-oxo-guanine, within a well-defined (3 + 1) human telomeric G-quadruplex platform. The effects of substitutions on the stability of the G-quadruplex were found to depend on the type and position of the modification among different guanines in the structure. An interesting modification-dependent NMR chemical-shift effect was observed across basepairing within a guanine tetrad. This effect was reproduced by ab initio quantum mechanical computations, which showed that the observed variation in imino proton chemical shift is largely influenced by changes in hydrogen-bond geometry within the guanine tetrad.
Collapse
|
27
|
Hsu CL, Wei SC, Jian JW, Chang HT, Chen WH, Huang CC. Highly flexible and stable aptamer-caged nanoparticles for control of thrombin activity. RSC Adv 2012. [DOI: 10.1039/c1ra00344e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Catana DA, Maturano M, Payrastre C, Lavedan P, Tarrat N, Escudier JM. Synthesis of Phostone-Constrained Nucleic Acid (P-CNA) Dinucleotides Through Intramolecular Arbuzov's Reaction. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Abstract
In contrast to B-DNA that has a right-handed double helical structure with Watson-Crick base pairing under the ordinary physiological conditions, repetitive DNA sequences under certain conditions have the potential to fold into non-B DNA structures such as hairpin, triplex, cruciform, left-handed Z-form, tetraplex, A-motif, etc. Since the non-B DNA-forming sequences induce the genetic instability and consequently can cause human diseases, the molecular mechanism for their genetic instability has been extensively investigated. On the contrary, non-B DNA can be widely used for application in biotechnology because many DNA breakage hotspots are mapped in or near the sequences that have the potential to adopt non-B DNA structures. In addition, they are regarded as a fascinating material for the nanotechnology using non-B DNAs because they do not produce any toxic byproducts and are robust enough for the repetitive working cycle. This being the case, an understanding on the mechanism and dynamics of their structural changes is important. In this critical review, we describe the latest studies on the conformational dynamics of non-B DNAs, with a focus on G-quadruplex, i-motif, Z-DNA, A-motif, hairpin and triplex (189 references).
Collapse
Affiliation(s)
- Jungkweon Choi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | |
Collapse
|
30
|
Paul N, Muthusubramanian S, Bhuvanesh N. A green protocol for the synthesis of conformationally rigid sulfur linked bisquinolines by double Friedlander reaction in water. NEW J CHEM 2011. [DOI: 10.1039/c1nj20539k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Dupouy C, Millard P, Boissonnet A, Escudier JM. α,β-D-CNA preorganization of unpaired loop moiety stabilizes DNA hairpin. Chem Commun (Camb) 2010; 46:5142-4. [DOI: 10.1039/c0cc00244e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|