1
|
Kosek DM, Leal JL, Kikovska-Stojanovska E, Mao G, Wu S, Flores SC, Kirsebom LA. RNase P cleavage of pseudoknot substrates reveals differences in active site architecture that depend on residue N-1 in the 5' leader. RNA Biol 2025; 22:1-19. [PMID: 39831626 DOI: 10.1080/15476286.2024.2427906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 01/22/2025] Open
Abstract
We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site. The frequencies of cleavage at these two sites and Mg2+ binding change upon altering the structural topology in the vicinity of the cleavage site as well as by replacing Mg2+ with other divalent metal ions. Modelling studies of RPR in complex with the pseudoknot substrates suggest alternative structural topologies for cleavage at the main and the alternative site and a shift in positioning of Mg2+ that activates the H2O nucleophile. Together, our data are consistent with a model where the organization of the active site structure and positioning of Mg2+ is influenced by the identities of residues at and in the vicinity of the site of cleavage.
Collapse
Affiliation(s)
- David M Kosek
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - J Luis Leal
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Ecology and Genetics, Evolutionary Biology Center EBC, Uppsala University, Uppsala, Sweden
| | - Ema Kikovska-Stojanovska
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Merck Healthcare KGaA, Global Regulatory CMC & Devices, Darmstadt, Germany
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Shiying Wu
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Bio-Works AB, Uppsala, Sweden
| | - Samuel C Flores
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Rossmanith W, Giegé P, Hartmann RK. Discovery, structure, mechanisms, and evolution of protein-only RNase P enzymes. J Biol Chem 2024; 300:105731. [PMID: 38336295 PMCID: PMC10941002 DOI: 10.1016/j.jbc.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The endoribonuclease RNase P is responsible for tRNA 5' maturation in all domains of life. A unique feature of RNase P is the variety of enzyme architectures, ranging from dual- to multi-subunit ribonucleoprotein forms with catalytic RNA subunits to protein-only enzymes, the latter occurring as single- or multi-subunit forms or homo-oligomeric assemblies. The protein-only enzymes evolved twice: a eukaryal protein-only RNase P termed PRORP and a bacterial/archaeal variant termed homolog of Aquifex RNase P (HARP); the latter replaced the RNA-based enzyme in a small group of thermophilic bacteria but otherwise coexists with the ribonucleoprotein enzyme in a few other bacteria as well as in those archaea that also encode a HARP. Here we summarize the history of the discovery of protein-only RNase P enzymes and review the state of knowledge on structure and function of bacterial HARPs and eukaryal PRORPs, including human mitochondrial RNase P as a paradigm of multi-subunit PRORPs. We also describe the phylogenetic distribution and evolution of PRORPs, as well as possible reasons for the spread of PRORPs in the eukaryal tree and for the recruitment of two additional protein subunits to metazoan mitochondrial PRORP. We outline potential applications of PRORPs in plant biotechnology and address diseases associated with mutations in human mitochondrial RNase P genes. Finally, we consider possible causes underlying the displacement of the ancient RNA enzyme by a protein-only enzyme in a small group of bacteria.
Collapse
Affiliation(s)
- Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Philippe Giegé
- Institute for Plant Molecular Biology, IBMP-CNRS, University of Strasbourg, Strasbourg, France.
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Walczyk D, Gößringer M, Rossmanith W, Zatsepin TS, Oretskaya TS, Hartmann RK. Analysis of the Cleavage Mechanism by Protein-Only RNase P Using Precursor tRNA Substrates with Modifications at the Cleavage Site. J Mol Biol 2016; 428:4917-4928. [PMID: 27769719 DOI: 10.1016/j.jmb.2016.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/28/2016] [Accepted: 10/16/2016] [Indexed: 12/23/2022]
Abstract
Ribonuclease P (RNase P) is the enzyme that endonucleolytically removes 5'-precursor sequences from tRNA transcripts in all domains of life. RNase P activities are either ribonucleoprotein (RNP) or protein-only RNase P (PRORP) enzymes, raising the question about the mechanistic strategies utilized by these architecturally different enzyme classes to catalyze the same type of reaction. Here, we analyzed the kinetics and cleavage-site selection by PRORP3 from Arabidopsis thaliana (AtPRORP3) using precursor tRNAs (pre-tRNAs) with individual modifications at the canonical cleavage site, with either Rp- or Sp-phosphorothioate, or 2'-deoxy, 2'-fluoro, 2'-amino, or 2'-O-methyl substitutions. We observed a small but robust rescue effect of Sp-phosphorothioate-modified pre-tRNA in the presence of thiophilic Cd2+ ions, consistent with metal-ion coordination to the (pro-)Sp-oxygen during catalysis. Sp-phosphorothioate, 2'-deoxy, 2'-amino, and 2'-O-methyl modification redirected the cleavage mainly to the next unmodified phosphodiester in the 5'-direction. Our findings are in line with the 2'-OH substituent at nucleotide -1 being involved in an H-bonding acceptor function. In contrast to bacterial RNase P, AtPRORP3 was found to be able to utilize the canonical and upstream cleavage site with similar efficiency (corresponding to reduced cleavage fidelity), and the two cleavage pathways appear less interdependent than in the bacterial RNA-based system.
Collapse
Affiliation(s)
- Dennis Walczyk
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Timofei S Zatsepin
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; Skolkovo Institute of Science and Technology, 3 Nobel street, Innovation Center "Skolkovo", 143026 Skolkovo, Russia
| | - Tatiana S Oretskaya
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany.
| |
Collapse
|
5
|
Takahama K, Oyoshi T. Specific binding of modified RGG domain in TLS/FUS to G-quadruplex RNA: tyrosines in RGG domain recognize 2'-OH of the riboses of loops in G-quadruplex. J Am Chem Soc 2013; 135:18016-9. [PMID: 24251952 DOI: 10.1021/ja4086929] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Telomeric repeat-containing RNA (TERRA), which contains tandem arrays of short RNA repeats, r(UUAGGG), is an integral component of the telomere and contributes to telomeric heterochromatin formation and telomere-length regulation. TERRA forms a G-quadruplex, but the biologic significance of its G-quadruplex formation is unknown. Compounds that selectively bind to G-quadruplex RNA are useful for understanding G-quadruplex TERRA. Here we report that an engineered RGG domain translocated in liposarcoma (TLS) specifically binds to G-quadruplex TERRA. The Arg-Gly-Gly repeat (RGG) TLS binds to G-quadruplex human telomere DNA and TERRA simultaneously, but we show that substitution of Tyr for Phe in the RGG domain of TLS (TLSRGG3Y) converts its binding specificity solely toward G-quadruplex TERRA. TLSRGG3Y binds to dG tetrads with abasic RNA loops, but fails to bind to rG tetrads without loops or dG tetrads with abasic DNA loops. These findings suggest that TLSRGG3Y binds to loops within the G-quadruplexes of TERRA by recognizing the 2'-OH of the riboses. To our knowledge, TLSRGG3Y is the first known molecule that specifically recognizes the 2'-OH of the riboses of loops in the G-quadruplex. TLSRGG3Y will be useful for investigating the role of the G-quadruplex form of TERRA without affecting G-quadruplex telomere DNA functions.
Collapse
Affiliation(s)
- Kentaro Takahama
- Faculty of Science, Department of Chemistry, Shizuoka University , 836 Ohya Suruga, Shizuoka, 422-8529, Japan
| | | |
Collapse
|
6
|
Abstract
The principle task of the ubiquitous enzyme RNase P is the generation of mature tRNA 5'-ends by removing precursor sequences from tRNA primary transcripts (Trends Genet 19:561-569, 2003; Crit Rev Biochem Mol Biol 41:77-102, 2006; Trends Biochem Sci 31:333-341, 2006). In Bacteria, RNase P is a ribonucleoprotein composed of two essential subunits: a catalytic RNA subunit (P RNA; 350-400 nt) and a single small protein cofactor (P protein; ∼14 kDa). In vitro, bacterial P RNA can catalyze tRNA maturation in the absence of the protein cofactor at elevated concentrations of mono- and divalent cations (Cell 35:849-857, 1983). Thus, bacterial P RNA is a trans-acting multiple-turnover ribozyme.Here we provide protocols for 5'-endonucleolytic ptRNA cleavage by bacterial P RNAs in the absence of any protein cofactor and under single-turnover conditions ([E] >> [S]). Furthermore, we outline a concept that utilizes the bacterial RNase P ribozyme to release RNAs of interest with homogeneous 3'-OH ends from primary transcripts via site-specific cleavage. Also, T7 transcription of mature tRNAs with clustered G residues at the 5'-end may result in 5'-end heterogeneities, which can be avoided by first transcribing the 5'-precursor tRNA (ptRNA) followed by P RNA-catalyzed processing to release the mature tRNA carrying a homogeneous 5'-monophosphate end. Finally, RNase P ribozyme activity can be directly assayed by using total bacterial RNA extracts.
Collapse
Affiliation(s)
- Markus Gössringer
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | | | |
Collapse
|
7
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|