1
|
Wu P, Zehnder J, Schröder N, Blümmel PEW, Salmon L, Damberger FF, Lipps G, Allain FHT, Wiegand T. Initial Primer Synthesis of a DNA Primase Monitored by Real-Time NMR Spectroscopy. J Am Chem Soc 2024; 146:9583-9596. [PMID: 38538061 PMCID: PMC11009956 DOI: 10.1021/jacs.3c11836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Primases are crucial enzymes for DNA replication, as they synthesize a short primer required for initiating DNA replication. We herein present time-resolved nuclear magnetic resonance (NMR) spectroscopy in solution and in the solid state to study the initial dinucleotide formation reaction of archaeal pRN1 primase. Our findings show that the helix-bundle domain (HBD) of pRN1 primase prepares the two substrates and then hands them over to the catalytic domain to initiate the reaction. By using nucleotide triphosphate analogues, the reaction is substantially slowed down, allowing us to study the initial dinucleotide formation in real time. We show that the sedimented protein-DNA complex remains active in the solid-state NMR rotor and that time-resolved 31P-detected cross-polarization experiments allow monitoring the kinetics of dinucleotide formation. The kinetics in the sedimented protein sample are comparable to those determined by solution-state NMR. Protein conformational changes during primer synthesis are observed in time-resolved 1H-detected experiments at fast magic-angle spinning frequencies (100 kHz). A significant number of spectral changes cluster in the HBD pointing to the importance of the HBD for positioning the nucleotides and the dinucleotide.
Collapse
Affiliation(s)
- Pengzhi Wu
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Johannes Zehnder
- Laboratory
of Physical Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| | - Nina Schröder
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Pascal E. W. Blümmel
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Loïc Salmon
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Fred. F. Damberger
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Georg Lipps
- Institute
of Chemistry and Bioanalytics, University
of Applied Sciences Northwestern Switzerland, Hofackerstrasses 30, 4132 Muttenz, Switzerland
| | - Frédéric H.-T. Allain
- Department
of Biology, Institute of Biochemistry, ETH
Zürich, 8093 Zurich, Switzerland
| | - Thomas Wiegand
- Laboratory
of Physical Chemistry, ETH Zürich, 8093 Zurich, Switzerland
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Zhao P, Bi X, Wang X, Feng X, Shen Y, Yuan G, She Q. Rational design of unrestricted pRN1 derivatives and their application in the construction of a dual plasmid vector system for Saccharolobus islandicus. MLIFE 2024; 3:119-128. [PMID: 38827506 PMCID: PMC11139203 DOI: 10.1002/mlf2.12107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/25/2023] [Indexed: 06/04/2024]
Abstract
Saccharolobus islandicus REY15A represents one of the very few archaeal models with versatile genetic tools, which include efficient genome editing, gene silencing, and robust protein expression systems. However, plasmid vectors constructed for this crenarchaeon thus far are based solely on the pRN2 cryptic plasmid. Although this plasmid coexists with pRN1 in its original host, early attempts to test pRN1-based vectors consistently failed to yield any stable host-vector system for Sa. islandicus. We hypothesized that this failure could be due to the occurrence of CRISPR immunity against pRN1 in this archaeon. We identified a putative target sequence in orf904 encoding a putative replicase on pRN1 (target N1). Mutated targets (N1a, N1b, and N1c) were then designed and tested for their capability to escape the host CRISPR immunity by using a plasmid interference assay. The results revealed that the original target triggered CRISPR immunity in this archaeon, whereas all three mutated targets did not, indicating that all the designed target mutations evaded host immunity. These mutated targets were then incorporated into orf904 individually, yielding corresponding mutated pRN1 backbones with which shuttle plasmids were constructed (pN1aSD, pN1bSD, and pN1cSD). Sa. islandicus transformation revealed that pN1aSD and pN1bSD were functional shuttle vectors, but pN1cSD lost the capability for replication. These results indicate that the missense mutations in the conserved helicase domain in pN1c inactivated the replicase. We further showed that pRN1-based and pRN2-based vectors were stably maintained in the archaeal cells either alone or in combination, and this yielded a dual plasmid system for genetic study with this important archaeal model.
Collapse
Affiliation(s)
- Pengpeng Zhao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Xiaonan Bi
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Xiaoning Wang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Xu Feng
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Guanhua Yuan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| |
Collapse
|
3
|
Zabrady K, Li AWH, Doherty AJ. Mechanism of primer synthesis by Primase-Polymerases. Curr Opin Struct Biol 2023; 82:102652. [PMID: 37459807 DOI: 10.1016/j.sbi.2023.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 09/16/2023]
Abstract
Members of the primase-polymerase (Prim-Pol) superfamily are found in all domains of life and play diverse roles in genome stability, including primer synthesis during DNA replication, lesion repair and damage tolerance. This review focuses primarily on Prim-Pol members capable of de novo primer synthesis that have experimentally derived structural models available. We discuss the mechanism of DNA primer synthesis initiation by Prim-Pol catalytic domains, based on recent structural and functional studies. We also describe a general model for primer initiation that also includes the ancillary domains/subunits, which stimulate the initiation of primer synthesis.
Collapse
Affiliation(s)
- Katerina Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK. https://twitter.com/@KZabrady
| | - Arthur W H Li
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| |
Collapse
|
4
|
Li AWH, Zabrady K, Bainbridge LJ, Zabrady M, Naseem-Khan S, Berger MB, Kolesar P, Cisneros GA, Doherty AJ. Molecular basis for the initiation of DNA primer synthesis. Nature 2022; 605:767-773. [PMID: 35508653 PMCID: PMC9149119 DOI: 10.1038/s41586-022-04695-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/28/2022] [Indexed: 11/08/2022]
Abstract
During the initiation of DNA replication, oligonucleotide primers are synthesized de novo by primases and are subsequently extended by replicative polymerases to complete genome duplication. The primase-polymerase (Prim-Pol) superfamily is a diverse grouping of primases, which includes replicative primases and CRISPR-associated primase-polymerases (CAPPs) involved in adaptive immunity1-3. Although much is known about the activities of these enzymes, the precise mechanism used by primases to initiate primer synthesis has not been elucidated. Here we identify the molecular bases for the initiation of primer synthesis by CAPP and show that this mechanism is also conserved in replicative primases. The crystal structure of a primer initiation complex reveals how the incoming nucleotides are positioned within the active site, adjacent to metal cofactors and paired to the templating single-stranded DNA strand, before synthesis of the first phosphodiester bond. Furthermore, the structure of a Prim-Pol complex with double-stranded DNA shows how the enzyme subsequently extends primers in a processive polymerase mode. The structural and mechanistic studies presented here establish how Prim-Pol proteins instigate primer synthesis, revealing the requisite molecular determinants for primer synthesis within the catalytic domain. This work also establishes that the catalytic domain of Prim-Pol enzymes, including replicative primases, is sufficient to catalyse primer formation.
Collapse
Affiliation(s)
- Arthur W H Li
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Katerina Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Lewis J Bainbridge
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Matej Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Sehr Naseem-Khan
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Madison B Berger
- Department of Chemistry, University of North Texas, Denton, TX, USA
- Department of Physics and Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Peter Kolesar
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
- National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, TX, USA
- Department of Physics and Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
5
|
Huang F, Lu X, Yu C, Sliz P, Wang L, Zhu B. Molecular Dissection of the Primase and Polymerase Activities of Deep-Sea Phage NrS-1 Primase-Polymerase. Front Microbiol 2021; 12:766612. [PMID: 34975792 PMCID: PMC8718748 DOI: 10.3389/fmicb.2021.766612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
PrimPols are a class of primases that belong to the archaeo-eukaryotic primase (AEP) superfamily but have both primase and DNA polymerase activities. Replicative polymerase from NrS-1 phage (NrSPol) is a representative of the PrimPols. In this study, we identified key residues for the catalytic activity of NrSPol and found that a loop in NrSPol functionally replaces the zinc finger motif that is commonly found in other AEP family proteins. A helix bundle domain (HBD), conserved in the AEP superfamily, was recently reported to bind to the primase recognition site and to be crucial for initiation of primer synthesis. We found that NrSPol can recognize different primase recognition sites, and that the initiation site for primer synthesis is not stringent, suggesting that the HBD conformation is flexible. More importantly, we found that although the HBD-inactivating mutation impairs the primase activity of NrSPol, it significantly enhances the DNA polymerase activity, indicating that the HBD hinders the DNA polymerase activity. The conflict between the primase activity and the DNA polymerase activity in a single protein with the same catalytic domain may be one reason for why DNA polymerases are generally unable to synthesize DNA de novo.
Collapse
Affiliation(s)
- Fengtao Huang
- Key Laboratory of Molecular Biophysics, The Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Fengtao Huang,
| | - Xueling Lu
- Key Laboratory of Molecular Biophysics, The Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxiao Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Longfei Wang,
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, The Ministry of Education, College of Life Science and Technology and Shenzhen College, Huazhong University of Science and Technology, Wuhan, China
- Bin Zhu,
| |
Collapse
|
6
|
Bergsch J, Devillier JC, Jeschke G, Lipps G. Stringent Primer Termination by an Archaeo-Eukaryotic DNA Primase. Front Microbiol 2021; 12:652928. [PMID: 33927705 PMCID: PMC8076596 DOI: 10.3389/fmicb.2021.652928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Priming of single stranded templates is essential for DNA replication. In recent years, significant progress was made in understanding how DNA primase fulfils this fundamental function, particularly with regard to the initiation. Equally intriguing is the unique property of archeao-eukaryotic primases to terminate primer formation at a well-defined unit length. The apparent ability to “count” the number of bases incorporated prior to primer release is not well understood, different mechanisms having been proposed for different species. We report a mechanistic investigation of primer termination by the pRN1 primase from Sulfolobus islandicus. Using an HPLC-based assay we determined structural features of the primer 5′-end that are required for consistent termination. Mutations within the unstructured linker connecting the catalytic domain to the template binding domain allowed us to assess the effect of altered linker length and flexibility on primer termination.
Collapse
Affiliation(s)
- Jan Bergsch
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Jean-Christophe Devillier
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Georg Lipps
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
7
|
Lacabanne D, Boudet J, Malär AA, Wu P, Cadalbert R, Salmon L, Allain FHT, Meier BH, Wiegand T. Protein Side-Chain-DNA Contacts Probed by Fast Magic-Angle Spinning NMR. J Phys Chem B 2020; 124:11089-11097. [PMID: 33238710 PMCID: PMC7734624 DOI: 10.1021/acs.jpcb.0c08150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Protein–nucleic
acid interactions are essential in a variety
of biological events ranging from the replication of genomic DNA to
the synthesis of proteins. Noncovalent interactions guide such molecular
recognition events, and protons are often at the center of them, particularly
due to their capability of forming hydrogen bonds to the nucleic acid
phosphate groups. Fast magic-angle spinning experiments (100 kHz)
reduce the proton NMR line width in solid-state NMR of fully protonated
protein–DNA complexes to such an extent that resolved proton
signals from side-chains coordinating the DNA can be detected. We
describe a set of NMR experiments focusing on the detection of protein
side-chains from lysine, arginine, and aromatic amino acids and discuss
the conclusions that can be obtained on their role in DNA coordination.
We studied the 39 kDa enzyme of the archaeal pRN1 primase complexed
with DNA and characterize protein–DNA contacts in the presence
and absence of bound ATP molecules.
Collapse
Affiliation(s)
| | - Julien Boudet
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Pengzhi Wu
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Loic Salmon
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
8
|
Chen X, Su S, Chen Y, Gao Y, Li Y, Shao Z, Zhang Y, Shao Q, Liu H, Li J, Ma J, Gan J. Structural studies reveal a ring-shaped architecture of deep-sea vent phage NrS-1 polymerase. Nucleic Acids Res 2020; 48:3343-3355. [PMID: 32016421 PMCID: PMC7102993 DOI: 10.1093/nar/gkaa071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 11/23/2022] Open
Abstract
NrS-1 is the first known phage that can infect Epsilonproteobacteria, one of the predominant primary producers in the deep-sea hydrothermal vent ecosystems. NrS-1 polymerase is a multidomain enzyme and is one key component of the phage replisome. The N-terminal Prim/Pol and HBD domains are responsible for DNA polymerization and de novo primer synthesis activities of NrS-1 polymerase. However, the structure and function of the C-terminus (CTR) of NrS-1 polymerase are poorly understood. Here, we report two crystal structures, showing that NrS-1 CTR adopts one unique hexameric ring-shaped conformation. Although the central helicase domain of NrS-1 CTR shares structural similarity with the superfamily III helicases, the folds of the Head and Tail domains are completely novel. Via mutagenesis and in vitro biochemical analysis, we identified many residues important for the helicase and polymerization activities of NrS-1 polymerase. In addition to NrS-1 polymerase, our study may also help us identify and understand the functions of multidomain polymerases expressed by many NrS-1 related phages.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiqing Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yanqing Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yangyang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiwei Shao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yixi Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiyuan Shao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Abstract
Regulation of protein-DNA binding specificity occurs through myriad mechanisms. Boudet et al. discover yet a new form of specificity through allosteric regulation, an ATP-induced structural switch that mediates specific DNA recognition in an archaeoeukaryotic primase.
Collapse
Affiliation(s)
- Matthew J Walker
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA.
| |
Collapse
|
10
|
Bergsch J, Allain FHT, Lipps G. Recent advances in understanding bacterial and archaeoeukaryotic primases. Curr Opin Struct Biol 2019; 59:159-167. [PMID: 31585372 DOI: 10.1016/j.sbi.2019.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/05/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022]
Abstract
DNA replication in all forms of life relies upon the initiation of synthesis on a single strand template by formation of a short oligonucleotide primer, which is subsequently elongated by DNA polymerases. Two structurally distinct classes of enzymes have evolved to perform this function, namely the bacterial DnaG-type primases and the Archaeal and Eukaryotic primases (AEP). Structural and mechanistic insights have provided a clear understanding of the role of the different domains of these enzymes in the context of the replisome and recent work sheds light upon primase-substrate interactions. We herein review the emerging picture of the primase mechanism on the basis of the structural knowledge obtained to date and propose future directions of this essential aspect of DNA replication.
Collapse
Affiliation(s)
- Jan Bergsch
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland; Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Hofackerstrasses 30, 4132 Muttenz, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Georg Lipps
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Hofackerstrasses 30, 4132 Muttenz, Switzerland.
| |
Collapse
|
11
|
Guo H, Li M, Wang T, Wu H, Zhou H, Xu C, Yu F, Liu X, He J. Crystal structure and biochemical studies of the bifunctional DNA primase-polymerase from phage NrS-1. Biochem Biophys Res Commun 2019; 510:573-579. [DOI: 10.1016/j.bbrc.2019.01.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 01/27/2023]
|
12
|
Initiating DNA replication: a matter of prime importance. Biochem Soc Trans 2019; 47:351-356. [PMID: 30647143 PMCID: PMC6393858 DOI: 10.1042/bst20180627] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 11/17/2022]
Abstract
It has been known for decades that the principal replicative DNA polymerases that effect genome replication are incapable of starting DNA synthesis de novo. Rather, they require a 3′-OH group from which to extend a DNA chain. Cellular DNA replication systems exploit a dedicated, limited processivity RNA polymerase, termed primase, that synthesizes a short oligoribonucleotide primer which is then extended by a DNA polymerase. Thus, primases can initiate synthesis, proceed with primer elongation for a short distance then transfer the primer to a DNA polymerase. Despite these well-established properties, the mechanistic basis of these dynamic behaviours has only recently been established. In the following, the author will describe recent insights from studies of the related eukaryotic and archaeal DNA primases. Significantly, the general conclusions from these studies likely extend to a broad class of extrachromosomal element-associated primases as well as the human primase-related DNA repair enzyme, PrimPol.
Collapse
|
13
|
Boudet J, Devillier JC, Wiegand T, Salmon L, Meier BH, Lipps G, Allain FHT. A Small Helical Bundle Prepares Primer Synthesis by Binding Two Nucleotides that Enhance Sequence-Specific Recognition of the DNA Template. Cell 2018; 176:154-166.e13. [PMID: 30595448 DOI: 10.1016/j.cell.2018.11.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/20/2018] [Accepted: 11/17/2018] [Indexed: 02/08/2023]
Abstract
Primases have a fundamental role in DNA replication. They synthesize a primer that is then extended by DNA polymerases. Archaeoeukaryotic primases require for synthesis a catalytic and an accessory domain, the exact contribution of the latter being unresolved. For the pRN1 archaeal primase, this domain is a 115-amino acid helix bundle domain (HBD). Our structural investigations of this small HBD by liquid- and solid-state nuclear magnetic resonance (NMR) revealed that only the HBD binds the DNA template. DNA binding becomes sequence-specific after a major allosteric change in the HBD, triggered by the binding of two nucleotide triphosphates. The spatial proximity of the two nucleotides and the DNA template in the quaternary structure of the HBD strongly suggests that this small domain brings together the substrates to prepare the first catalytic step of primer synthesis. This efficient mechanism is likely general for all archaeoeukaryotic primases.
Collapse
Affiliation(s)
- Julien Boudet
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland.
| | - Jean-Christophe Devillier
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Hofackerstrasses 30, 4132 Muttenz, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Loic Salmon
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Georg Lipps
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Hofackerstrasses 30, 4132 Muttenz, Switzerland.
| | - Frédéric H-T Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
14
|
Redrejo-Rodríguez M, Ordóñez CD, Berjón-Otero M, Moreno-González J, Aparicio-Maldonado C, Forterre P, Salas M, Krupovic M. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements. Cell Rep 2018; 21:1574-1587. [PMID: 29117562 PMCID: PMC5695915 DOI: 10.1016/j.celrep.2017.10.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 01/06/2023] Open
Abstract
Family B DNA polymerases (PolBs) play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB), that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | - Carlos D Ordóñez
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Mónica Berjón-Otero
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Juan Moreno-González
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Cristian Aparicio-Maldonado
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Patrick Forterre
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Margarita Salas
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France.
| |
Collapse
|
15
|
Chatterjee S, Patra MM, Samaddar S, Basu A, Das Gupta SK. Mutual interaction enables the mycobacterial plasmid pAL5000 origin binding protein RepB to recruit RepA, the plasmid replicase, to the origin. Microbiology (Reading) 2017; 163:595-610. [DOI: 10.1099/mic.0.000447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Soniya Chatterjee
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII-M Kolkata 700054, India
| | - Madhu Manti Patra
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII-M Kolkata 700054, India
| | - Sourabh Samaddar
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII-M Kolkata 700054, India
| | - Arnab Basu
- Department of Biochemistry and Molecular Biology, Saint Louis University, One North Grand, MO 63103, USA
| | - Sujoy K Das Gupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII-M Kolkata 700054, India
| |
Collapse
|
16
|
Baranovskiy AG, Babayeva ND, Zhang Y, Gu J, Suwa Y, Pavlov YI, Tahirov TH. Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome. J Biol Chem 2016; 291:10006-20. [PMID: 26975377 DOI: 10.1074/jbc.m116.717405] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 12/31/2022] Open
Abstract
The human primosome, a 340-kilodalton complex of primase and DNA polymerase α (Polα), synthesizes chimeric RNA-DNA primers to be extended by replicative DNA polymerases δ and ϵ. The intricate mechanism of concerted primer synthesis by two catalytic centers was an enigma for over three decades. Here we report the crystal structures of two key complexes, the human primosome and the C-terminal domain of the primase large subunit (p58C) with bound DNA/RNA duplex. These structures, along with analysis of primase/polymerase activities, provide a plausible mechanism for all transactions of the primosome including initiation, elongation, accurate counting of RNA primer length, primer transfer to Polα, and concerted autoregulation of alternate activation/inhibition of the catalytic centers. Our findings reveal a central role of p58C in the coordinated actions of two catalytic domains in the primosome and ultimately could impact the design of anticancer drugs.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| | - Nigar D Babayeva
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| | - Yinbo Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and the Departments of Biochemistry and Molecular Biology and
| | - Jianyou Gu
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| | - Yoshiaki Suwa
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| | - Youri I Pavlov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and the Departments of Biochemistry and Molecular Biology and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Tahir H Tahirov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| |
Collapse
|
17
|
Baranovskiy AG, Zhang Y, Suwa Y, Gu J, Babayeva ND, Pavlov YI, Tahirov TH. Insight into the Human DNA Primase Interaction with Template-Primer. J Biol Chem 2015; 291:4793-802. [PMID: 26710848 DOI: 10.1074/jbc.m115.704064] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 12/18/2022] Open
Abstract
DNA replication in almost all organisms depends on the activity of DNA primase, a DNA-dependent RNA polymerase that synthesizes short RNA primers of defined size for DNA polymerases. Eukaryotic and archaeal primases are heterodimers consisting of small catalytic and large accessory subunits, both of which are necessary for the activity. The mode of interaction of primase subunits with substrates during the various steps of primer synthesis that results in the counting of primer length is not clear. Here we show that the C-terminal domain of the large subunit (p58C) plays a major role in template-primer binding and also defines the elements of the DNA template and the RNA primer that interact with p58C. The specific mode of interaction with a template-primer involving the terminal 5'-triphosphate of RNA and the 3'-overhang of DNA results in a stable complex between p58C and the DNA/RNA duplex. Our results explain how p58C participates in RNA synthesis and primer length counting and also indicate that the binding site for initiating NTP is located on p58C. These findings provide notable insight into the mechanism of primase function and are applicable for DNA primases from other species.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center
| | - Yinbo Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, Department of Biochemistry and Molecular Biology, and
| | - Yoshiaki Suwa
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center
| | - Jianyou Gu
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center
| | - Nigar D Babayeva
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center
| | - Youri I Pavlov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, Department of Biochemistry and Molecular Biology, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Tahir H Tahirov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center,
| |
Collapse
|
18
|
Abstract
SUMMARY Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spindles, rods, filaments, spheres, head-tails, bottles, and droplets, and some of these new viruses have been classified into one order, 10 families, and 16 genera. Investigation of model archaeal viruses has yielded important insights into mechanisms underlining various steps in the viral life cycle, including infection, DNA replication and transcription, and virion egression. Many of these mechanisms are unprecedented for any known bacterial or eukaryal viruses. Studies of plasmids isolated from different archaeal hosts have also revealed a striking diversity in gene content and innovation in replication strategies. Highly divergent replication proteins are identified in both viral and plasmid genomes. Genomic studies of archaeal ECEs have revealed a modular sequence structure in which modules of DNA sequence are exchangeable within, as well as among, plasmid families and probably also between viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered regularly interspaced short palindromic repeats) system, to restrict invasive plasmids and viruses. Together, these interactions permit a delicate balance between ECEs and their hosts, which is vitally important for maintaining an innovative gene reservoir carried by ECEs. In conclusion, while research on archaeal ECEs has just started to unravel the molecular biology of these genetic entities and their interactions with archaeal hosts, it is expected to accelerate in the next decade.
Collapse
|
19
|
Boudet J, Devillier JC, Allain FHT, Lipps G. Structures to complement the archaeo-eukaryotic primases catalytic cycle description: What's next? Comput Struct Biotechnol J 2015; 13:339-51. [PMID: 25987967 PMCID: PMC4434180 DOI: 10.1016/j.csbj.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022] Open
Abstract
DNA replication is a crucial stage in the transfer of genetic information from parent to daughter cells. This mechanism involves multiple proteins with one key player being the primase. Primases are single-stranded DNA dependent RNA polymerases. On the leading strand, they synthesize the primer once allowing DNA elongation while on the lagging strand primers are generated repeatedly (Okazaki fragments). Primases have the unique ability to create the first phosphodiester bond yielding a dinucleotide which is initially elongated by primases and then by DNA polymerases. Primase activity has been studied in the last decades but the detailed molecular steps explaining some unique features remain unclear. High-resolution structures of free and bound primases domains have brought significant insights in the understanding of the primase reaction cycle. Here, we give a short review of the structural work conducted in the field of archaeo-eukaryotic primases and we underline the missing “pictures” of the active forms of the enzyme which are of major interest. We organized our analysis with respect to the progression through the catalytic pathway.
Collapse
Affiliation(s)
- Julien Boudet
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
- Corresponding author. Tel.: + 41 446330723; fax: + 41 446331294.
| | - Jean-Christophe Devillier
- University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Frédéric H.-T. Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Georg Lipps
- University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland
- Corresponding author. Tel.: + 41 614674301; fax: + 41 614674701.
| |
Collapse
|
20
|
Berkner S, Hinojosa MP, Prangishvili D, Lipps G. Identification of the minimal replicon and the origin of replication of the crenarchaeal plasmid pRN1. Microbiologyopen 2014; 3:688-701. [PMID: 25060695 PMCID: PMC4234260 DOI: 10.1002/mbo3.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/18/2014] [Accepted: 06/27/2014] [Indexed: 11/26/2022] Open
Abstract
We have determined the minimal replicon of the crenarchaeal plasmid pRN1. It consists of 3097 base pairs amounting to 58% of the genome of pRN1. The minimal replicon comprises replication operon orf56/orf904 coding for a transcriptional repressor and the replication protein of pRN1. An upstream region of 64 bp that contains the promoter of the replication operon is essential as well as 166 bp of sequence downstream of the orf904 gene. This region contains a putative transcriptional terminator and a 100 nucleotides long stem–loop structure. Only the latter structure was shown to be required for replication. In addition replication was sustained when the stem–loop was displaced to another part of the pRN1 sequence. By mutational analysis we also find that the integrity of the stem–loop structure is required to maintain the replication of pRN1-derived constructs. As similar stem–loop structures are also present in other members of the pRN family, we suggest that this conserved structural element could be the origin of replication for the pRN plasmids. Further bioinformatic analysis revealed that the domain structure of the replication protein and the presence of a similar stem–loop structure as the putative replication origin are also found in several bacteriophages.
Collapse
Affiliation(s)
- Silvia Berkner
- Department of Biochemistry, University of Bayreuth, Universitätsstr. 30, Bayreuth, 95447, Germany
| | | | | | | |
Collapse
|
21
|
Gill S, Krupovic M, Desnoues N, Béguin P, Sezonov G, Forterre P. A highly divergent archaeo-eukaryotic primase from the Thermococcus nautilus plasmid, pTN2. Nucleic Acids Res 2014; 42:3707-19. [PMID: 24445805 PMCID: PMC3973330 DOI: 10.1093/nar/gkt1385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We report the characterization of a DNA primase/polymerase protein (PolpTN2) encoded by the pTN2 plasmid from Thermococcus nautilus. Sequence analysis revealed that this protein corresponds to a fusion between an N-terminal domain homologous to the small catalytic subunit PriS of heterodimeric archaeal and eukaryotic primases (AEP) and a C-terminal domain related to their large regulatory subunit PriL. This unique domain configuration is not found in other virus- and plasmid-encoded primases in which PriS-like domains are typically fused to different types of helicases. PolpTN2 exhibited primase, polymerase and nucleotidyl transferase activities and specifically incorporates dNTPs, to the exclusion of rNTPs. PolpTN2 could efficiently prime DNA synthesis by the T. nautilus PolB DNA polymerase, suggesting that it is used in vivo as a primase for pTN2 plasmid replication. The N-terminal PriS-like domain of PolpTN2 exhibited all activities of the full-length enzyme but was much less efficient in priming cellular DNA polymerases. Surprisingly, the N-terminal domain possesses reverse transcriptase activity. We speculate that this activity could reflect an ancestral function of AEP proteins in the transition from the RNA to the DNA world.
Collapse
Affiliation(s)
- Sukhvinder Gill
- Institut Pasteur Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Docteur Roux, 75015 Paris, France, CNRS UMR 7138 Systématique, Adaptation, Evolution, Université Paris 6 quai Saint-Bernard, 75252 Paris Cedex 05, France and Univ Paris-Sud Institut de Génétique et Microbiologie, CNRS UMR 8621, Orsay 91406, France
| | | | | | | | | | | |
Collapse
|
22
|
Functional characterization of the origin of replication of pRN1 from Sulfolobus islandicus REN1H1. PLoS One 2013; 8:e84664. [PMID: 24376833 PMCID: PMC3869888 DOI: 10.1371/journal.pone.0084664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
Plasmid pRN1 from Sulfolobus islandicus REN1H1 is believed to replicate by a rolling circle mechanism but its origin and mechanism of replication are not well understood. We sought to create minimal expression vectors based on pRN1 that would be useful for heterologous gene expression in S. acidocaldarius, and in the process improve our understanding of the mechanism of replication. We constructed and transformed shuttle vectors that harbored different contiguous stretches of DNA from pRN1 into S. acidocaldarius E4-39, a uracil auxotroph. A 232-bp region 3’ of orf904 was found to be critical for pRN1 replication and is therefore proposed to be the putative origin of replication. This 232-bp region contains a 100-bp stem-loop structure believed to be the double-strand origin of replication. The loop of the 100-bp structure contains a GTG tri-nucleotide motif, a feature that was previously reported to be important for the primase activity of Orf904. This putative origin and the associated orf56 and orf904 were identified as the minimal replicon of pRN1 because transformants of plasmids lacking any of these three features were not recovered. Plasmids lacking orf904 and orf56 but harboring the putative origin were transformable when orf904 and orf56 were provided in-trans; a 75-bp region 5’ of the orf904 start codon was found to be essential for this complementation. Detailed knowledge of the pRN1 origin of replication will broaden the application of the plasmid as a genetic tool for Sulfolobus species.
Collapse
|
23
|
Krähenbühl B, Boudet J, Wider G. 4D experiments measured with APSY for automated backbone resonance assignments of large proteins. JOURNAL OF BIOMOLECULAR NMR 2013; 56:149-154. [PMID: 23625454 DOI: 10.1007/s10858-013-9731-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
Detailed structural and functional characterization of proteins by solution NMR requires sequence-specific resonance assignment. We present a set of transverse relaxation optimization (TROSY) based four-dimensional automated projection spectroscopy (APSY) experiments which are designed for resonance assignments of proteins with a size up to 40 kDa, namely HNCACO, HNCOCA, HNCACB and HN(CO)CACB. These higher-dimensional experiments include several sensitivity-optimizing features such as multiple quantum parallel evolution in a 'just-in-time' manner, aliased off-resonance evolution, evolution-time optimized APSY acquisition, selective water-handling and TROSY. The experiments were acquired within the concept of APSY, but they can also be used within the framework of sparsely sampled experiments. The multidimensional peak lists derived with APSY provided chemical shifts with an approximately 20 times higher precision than conventional methods usually do, and allowed the assignment of 90 % of the backbone resonances of the perdeuterated primase-polymerase ORF904, which contains 331 amino acid residues and has a molecular weight of 38.4 kDa.
Collapse
Affiliation(s)
- Barbara Krähenbühl
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
24
|
Halgasova N, Mesarosova I, Bukovska G. Identification of a bifunctional primase–polymerase domain of corynephage BFK20 replication protein gp43. Virus Res 2012; 163:454-60. [DOI: 10.1016/j.virusres.2011.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
|
25
|
Structure and function of the primase domain of the replication protein from the archaeal plasmid pRN1. Biochem Soc Trans 2011; 39:104-6. [DOI: 10.1042/bst0390104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The replication protein of the archaeal plasmid pRN1 is a multifunctional enzyme which appears to carry out several steps at the plasmid replication initiation. We recently determined the structure of the minimal primase domain of the replication protein and found out that the primase domain consists of a catalytic primase/polymerase domain and an accessory helix-bundle domain. Structure-guided mutagenesis allowed us to identify amino acids which are important for template binding, dinucleotide formation and a step before primer extension. On the basis of functional and structural data, we propose a model of the catalytic cycle of primer synthesis by the pRN1 replication protein.
Collapse
|